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Abstract. In this paper, we establish several recurrence relations satisfied
by the single and the product moments for order statistics from the right-
truncated generalized half logistic distribution. These relationships may be
used in a simple recursive manner in order to compute the single and the
product moments of all order statistics for all sample sizes and for any choice
of the truncation parameter P. These generalize the corresponding results for
the generalized half logistic distribution derived recently by Balakrishnan and
Sandhu (1995, J. Statist. Comput. Simulation, 52, 385-398).
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1. Introduction

Balakrishnan and Sandhu (1995) considered the generalized half logistic dis-
tribution with cdf

1—(1—kx)/* 1
1.1 = —_—— <zr< - >
(11) C@) =Tk 0STSp k20
and pdf

2(1 — kz)(t/F)—1 1
1.2 = <z< - >

discussed its properties and showed that it is an IFR (Increasing Failure Rate)
family. Hence, they pointed out that the above given generalized half logistic

* Earlier went by the name R. A. Sandhu.
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distribution will be quite useful as a life-span model; see Cohen and Whitten
(1988) for an excellent treatment of many such life-span models.

If the shape parameter & — 0, the cdf in (1.1} becomes (1 — e *)/(1 + e %)
and the pdf in (1.2) becomes 2¢"%/(1 + e~%)%, z > 0. This is the standard half
logistic distribution introduced and discussed in detail by Balakrishnan (1985); see
also Balakrishnan and Cohen (1991). It should be mentioned here that Hosking
(1986, 1990) proposed, discussed and applied many such generalizations of stan-
dard distributions.

In this paper, we consider the right-truncated generalized half logistic distri-
bution with pdf

1 201 — kg)/0 1
(1.3) flz) =< P{1+(1—kz)l/k}2’
0, otherwise

OSISPl

and cdf

1 {1—(1—k$)1/k

(1.4) F(z)= = T ka)iF

P } 0<z <Py

here, 1— P (0 < P < 1) is the proportion of truncation on the right of the standard
generalized half logistic distribution in (1.1), and

1 1—P\"*
1. P =1 (——= k>
(1.5) 1 k{ <1+P) }, >0

is the point of truncation on the right. The right-truncated form of life-span
models are often of great interest in reliability studies; for example, see Cohen
(1991).

It is easy to note that P = G(P;) (k > 0, 0 < P; < 1/k) is monotonic
increasing in P; and hence, for fixed values of k and P, P; is uniquely determined.
Similarly, we also note that P, = G™}(P) (k > 0, 0 < P < 1) is monotonic
increasing in P so that, for fixed values of k and P;, P is uniquely determined.
Next, we consider P; as a function of k. If we can show that, for fixed P, P, as a
function of k is monotonic, it will immediately imply that & is uniquely determined
for fixed values of P and P;. Thus, by denoting };—g by a, we would like to show
that

ap; 1-— a* + ka*loga

dk —k2
is either positive or negative for all k > 0. Since 0 <a < 1for 0 < P < 1 and
k > 0, we may use the expansion

—loga® = —log{l — (1 —a*)}
:(1—~ak)+%(1—ak)2+%(1—ak)3+-~-
<(l-a)+(1—-af)?+(1-a")+

_l—ak

ak
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which simply implies that
1—a* +ka*loga >0

and, hence, %Pkl < 0. Also, limy_,g d—;ﬁl = —(log—a) < 0. Therefore, for 0 < P < 1,
we have established that P, is a monotonic decreasmg function of k. Further,
for the special case when P = 1, we have P; = 1/k which is again a monotonic
decreasing function of k. Consequently, there is a unique choice of k for fixed
values of P and P;.

Let X3, Xo,...,X,, be a random sample of size n from the right-truncated
generalized half logistic distribution in (1.4), and X;., < Xo.p < -+- < X,y be
the corresponding order statistics. Let us denote the single moments E(X}, ) by
,uwl for1<r<mnandi=0,1,2,..., and the product moments E{X,.,X;s.,) by
pr.sm for 1 <1 < s < n. For convenience, let us also use p,.,, for ,u,«}n and fir i
for u@,

From (1.3) and (1.4), we observe that the characterizing differential equation
for the right-truncated generalized half logistic distribution is

(1) (1-ka)f(@) = 55{1 - PFx))

(1.7) _ %[1 _P?+2P*{1 - F(z)} - P*{1 - F(2)}’]

1

(1.8) = 5pl

1- P+ P{l1-F(z)} + P(1 - P)F(x)
+ P2F(z){1 - F(z)}]

for 0 <z < P;. We shall use egs. (1.6)—(1.8) in the following sections to establish
several recurrence relations satisfied by the single and the product moments of
order statistics. These relations will enable one to compute all the single and the
product moments of all order statistics for all sample sizes in a simple recursive
manner. For example, by starting with the values of E(X) = u1.1 and E(X?) =
ug 2, one can determine the means, variances and covariances of all order statistics
for all sample sizes through this recursive computational procedure.

Since the values of F(X) and E(X?) are needed as initial values for the
recursive process, we next derive exact explicit expressions for these two quantities.
Consider

(1.9) E(X)z/olF‘l(u)du:%/ol{l— (i;ig)k}du

1 1 2 / 1 y" T dy (sett' Y 1- Pu)
= — —_ — 1n =
k P Ja_pyasp) (1 +9)? & 1+ Pu

12 [ 1 gk (=P)/(1+P) ok
[
ETRP o T+9R™ T o (T+)

1 2 1 1
—r*p{mﬁﬂ [2’1’“’“’5]
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Table 1. Mean of right truncated generalized half logistic distribution for selected values of k
and P.

P 0.05 0.10 0.20 0.30 0.40 0.50

.50 51406922 50513286  .48795723 47166276 .45619501 .44150328
.55 .57037461 55932774  .53819504  .51826939 .49946767 .48171312
.60 62854366  .61506220 .58939987  .56536005 .54281886 .52166297
.65 68899982  .67270410 .64184933 .61314529 .58641064 .56148109
70 75229522 73272875  .69589451  .66188430 .63043563 .60131332
.75 81918113  .79577715  .75199925  .71191078 .67513376 .64133358
.80 .89073828  .B6276277  .81081098  .76367907 .72082146 .68176195
.85 06864634  .93509069  .87330364 81785536 76794854 72289887
90 1.05584620 1.01519025 .94111768  .87553030 .81722758 .76520131
95 1.15874725 1.10826237 1.01764090 .93887393 .87002068 .80950358
1.00 1.30833018 1.23811426 1.11686427 1.01602278 .93098366 .85840735

1+k
_ - P
— 1 (1 P) 2F1 l:2,1+k,2+k,——-—1 :I},

Q+k)\1+P 1+P
where
(1.10) 2 Fla,b; ¢; 7] =ZM c#0,—1,-2,...

a7
=0 (C)’LZ'

is the Gaussian hypergeometric function. Proceeding similarly, we obtain

14
2—__-————-_
(111) B(X*) = 15 - 55
1 1
P 2,132 4+ k3 =
{4(1+k)2F1[” + ,2]
1 /1-P\'"* 1-P
- (== P2+ k24 k———
1+ k) (1+P) 2 1{’ TR 1+PH
2
" %P
L R0+ 2k
4T +2) 0T "2
1 1—pP\'t* 1-P
- 2,1+ 2k;2 + 2k; ~—— | ¢
(1+2k)<1+P> ZFl[’ +2ki2 4 28, 1+P]}

Higher order moments may also be similarly derived.
The Gaussian hypergeometric function in (1.10) may be calculated to any
desired accuracy by using, for example, the hypergeom command in MAPLE V,



RELATIONSHIPS FOR MOMENTS OF ORDER STATISTICS 523

Table 2. Variance of right truncated generalized half logistic distribution for selected values of
k and P.

P 0.05 0.10 0.20 0.30 0.40 0.50

.50 .09318739 .08835339 .07951988 .07168372 .06472247 .05852971
.55 .11654737 .10980655 .09619784 .08696054 .07762065 .06942212
.60  .14419122 13494501 .11841794 .10417733 .09187922 .08123468
.65 17710827 .16456461 .14241634 .12363652 .10766796 .09405152
700 21671050 .19979344 .17031961 .14576191 .12522814 .10799843
J75  .26510137 .24229675 .20315206 17116372 .14490741 .12326064
.80  .32560576 .29467625 .24248077 .20076013 .16722389 .14011511
.85 .40395028 .36134645 .29089176 .23603012 .19299650 .15899518
.90  .51142677 .45084026 .35319853 .27963374 .22365499 .18064008
.95  .67669998 58418383 .44060923 .33744876 .26221222 .20654458
1.00 1.09690889 .89207280 .61142036 .43573174 .32047569 .24194366

Release 3. In order to facilitate the easy usage of the recursive algorithm developed
in this paper, we have computed the values of the mean and variance of the right
truncated generalized half logistic distribution from egs. (1.9) and (1.11) and have
presented them in Tables 1 and 2, respectively, for some selected choices of k and
P. These values were calculated to 20 digit accuracy and are correct to all 8
decimal places reported in the tables.

The results established in this paper generalize the corresponding results
for the generalized half logistic distribution proved recently by Balakrishnan and
Sandhu (1995). Similar recurrence relations for moments of order statistics from
exponential and truncated exponential distributions were derived by Joshi (1978,
1979, 1982). Results of this nature are also available for a number of other dis-
tributions, and interested readers may refer to the monograph on this topic by
Arnold and Balakrishnan (1989).

2. Relationships for single moments

The density function of X,., is given by (David (1981), p. 9, Arnold et al.
(1992), p. 10)

n!

(2.1)  frn(2) = T =Di(n -1

{F@)}yH1-F@)}""fz), 0<z<h,

where f(z), F{z) and P; are as given in egs. (1.3), (1.4) and (1.5), respectively.

Then, by making use of the characterizing differential equations in (1.6)—(1.8),
we establish in this section several recurrence relations for the single moments of
order statistics.
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THEOREM 2.1. Fori=0,1,2,...

22) uiY= [(1 — PP 2P —oP(i+ {plY — kit
and forn > 2

i i i 2P(1+1 : ;
(2.3) uit), = [(1 — PO, opriy C2EEED (o g ]

ProoF. Forn>1landi=0,1,2,..., let us consider

Py
@) wl =kl = [ 1= ka1 - P o)t

Py

— o5 [ - P e - ) - P Fy
(1= F@p

2P[(1-P Min—1+2P%I 5 — P21 1],

upon using (1.7). Integration by parts directly gives
PitY(i+1), whenn=1
YR
Ly =50 /G +1)
and
Lnsr = pin /G4 1)
Substituting these expressions in (2.4) and simplifying the resulting equations, we

derive the recurrence relations in (2.2) and (2.3). O

THEOREM 2.2. Fori=0,1,2,...,
i 1 i ’
25)  ugs = Sl = PYPI 2P+ D{a] — kulTVY,
and forn > 2

i 1 i+l i 2P(i+1)
(26) .u"f'l,:ll:)n-f—l = ﬁ [ gli_lz)n—l - (1 - P2)P1+1 + ——‘n—{:ugl)n (l+1)}

PrROOF. Forn>1landi=0,1,2,..., let us consider

P
@1 uh= kel =0 [ e k)P (e
0

P
n 1

=35 |, T {F(z)}" {1 - P?F?(z)}dz

2P{f2n 1 — P?Io ],
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upon using (1.6). Integration by parts now gives

{P;’“/(z’ +1), when n = 1
2,n—-1~=

(P =i MG +1),  whenn>2
and
, " _
Dynsr = {PFH - ulH) VG +1).

Upon substituting these expressions in (2.7) and simplifying the resulting equa
tions, we derive the recurrence relations in (2.5) and (2.6). O

THEOREM 2.3. For2<r<n-1andi=0,1,2,...,

(+1) _  (i+1) ntl
2.8 D)
(28) Hrnel = ety ¥ (0 ) P2

i+1 i+1
- [n(1 - PZ){IU‘S':n—)I - #5—1:21—1
+2(n —r+ PHuEH — 040y
—2(i + 1)P{p), — kpltVY),

and forn > 2
i+1 i+1 n+1 i ;
(29) /‘7(::+)1 = ”E:—l:)n+1 + W[n(l - P2){P1+1 - :U"E:jllz)n—l
+2P2{puEY — uit )
PrOOF. For2<r<mnandi=0,1,2,..., let us consider

. . !
(2.10) ), — kplfh = m
-A (1~ k2){F (@)} {1 - F(2)}"" f()da

n!
T r—Di(n—r)2P

P
-A S{F@)) {1 - F@)}™

(1= P?+2P?{1 - F(2)} - P?{1 — F(z)}?dz
n!
C(r=1Dn-r)2P
: [(1 - PZ)IS,n—r + 2P2I3,n—r+l - PzIS,n—r+2]7
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upon using (1.7). Integration by parts directly yields

(r=DHn -7 +1) i+1
m—{ 7(‘1"1 HT(‘ 1)nla when2<r<n-1
fonr=9 |
( 1) z+1 - tu"gj_il:)n—l ) when r = n,
(r—DYn —r+1)! 4
B3nr41= (i+1) _
> e -(l+ 1) {'u Hor— 1n}
and

Tomrsz = (r = Dln —r +2)! I Y
=T (n + 1)‘(2 + 1) Hor. ntl Loy Lin41

Upon substituting these expressions in (2.10) and simplifying the resulting equa-

tions, we derive the recurrence relations in (2.8) and (2.9). O

Remark 2.1. By letting the proportion of truncation 1— P — 0 (and, hence,
Py — 1/k) in Theorems 2.1-2.3, we deduce the recurrence relations established by
Balakrishnan and Sandhu (1995) for the single moments of order statistics from
the standard generalized half logistic distribution.

Remark 2.2. The relationships proved in Theorems 2.1-2.3 will enable one
to compute all the single moments of all order statistics for all sample sizes in
a simple recursive manner. By starting with the values of p1 = E(X) and
p,ﬁ = E(X?) (see Tables 1 and 2), for example, one can use these results to
determine the first two single moments (or the means and variances) of all order
statistics for all sample sizes n. This can be done for any choice of the truncation

parameter P and the shape parameter k.
3. Relationships for product moments

The joint density function of X,., and X, (1 < r < s < n) is given by
(David (1981), p. 10, Arnold et al. (1992), p. 16)
n!

B franle) = o ey @Y @) - P

A1 -F}"fl@)fly), 0<z<y<Ahy
where f(z), F(x) and P; are as given in egs. (1.3), (1.4) and (1.5), respectively.
Then, by making use of the characterizing differential equations in (1.6)—(1.8),
we establish in this section several recurrence relations for the product moments
of order statistics.

THEOREM 3.1. Forl <r <n-—2,

(2) 2(7’L+1) _ (2)
(32) Hror+tim+1 = Hpeng1 n—r+1 Hrr+in — Mpp
1
=YY k T m T M
+ P(TL ){ Hrr+1: © ’n}
n(l — P?) )

W{HT r+ln—1 — Hp.pq
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and forn > 2

2
(33)  pn-tnm+1= /»‘5;—)1:n+1
+(n+1)|pn-1nn — #f;zzm
1
+ F{kﬂn—l,n:n - ;u'nflzn}

n(l — P?)
2p?

2

+ {Pl,U/n—l:n—l “Hplim—1s-

ProoOF. For 1< r <n-—1,let us consider from (3.1)

(34) Hrm = kur’r+1:" = E(Xr:nXS-}-l:n - er:an+1:n)
n!
N (7' - 1)!(n —r— 1)!
P, P
[ =@yt - Ry
0 z
f(z)f(y)dydz

n!

: Py 1
- 2P(r — )i(n~r—1)! /0 o{F ()} f(z)J1(z)dx

upon using (1.7), where

P
(35) JL(@)=Q1-P%) [ {1-F(y}" " 'dy

P Py
+2P? / {1~ Fy)}""dy - P* / {1- Fg)}"dy

T

= (1 - Pz)Jl,n—r—l + 2Ple,'n,—'r - Ple,n—r+1-
Integration by parts directly gives
—z{l1-F@)}" "+ (n-r-1)

Py
Jin—r—1 = / y{1-F(y)}" " *f(y)dy, whenl1<r<n-2

Py -z, when r=n—1,
P
Fiper = —2{l ~ F@)}"" + (n - 1) / u{1 - F)}" " f(y)dy,

T
and

Py
Jip-ry1 = —z{l = F(z)}""™' + (n—r+1) / y{1 - F(y)}" ™" f(y)dy.

Substituting these expressions in (3.5) and the resulting expression of J; () in (3.4)
and then simplifying the resulting equation, we derive the recurrence relations in
(3.2) and (3.3). O
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THEOREM 3.2. Forl<r<s<n-—lands—7r2>2,

(3.6) Hr sind1 = Hrs—-1int1
2(n+1)
=,
n—s+2

sin ™ Mrs—1in

1
+ m{kﬂ"r,s:n —~ lyin}
n(l — P?
( ) {#r,s:n—l - ;U'T,s—l;n—l} ’

T m—s+ P2
and for 1 <r<n-2

(37) Hrnin4+1 = Hrn—-1in+1
1
+ (n + 1) Prpnin = Bron—1m + F{kﬂnn:n - ,u'r:n}

n(1 - P?)

2 P2 {Pllllr:n—l - Nr,n—l:n—l} .

+

PROOF. For1<r < s<nands—r>2, let us consider from (3.1)

(38) Hrn — k,ur,s:n = E(Xr:n - kX'r:nXs:n)
n!
T r—=Dl(s—7—1DYn~—s)!

P pP
[ 0 mp@y T E ) - Py
L= F(y)}"° f(2) f(y)dydz

n!
- 2P(r — Hi{(s —r — 1)}{n — s}!

P,
- / o{F(@)} f(2) Jo(z)dz

upon using (1.7), where
Py
Jo(z) = (1 - P?) / (F(y) - F(@)}* "1 - F(y)}"*dy
Py
+2P? / (F(y) - F@)} {1 — F(y)}"*+dy

P,
_p? / (F(y) - F(2)}"1{1 - F(y)}***2dy

=(1-P)Jon-s+2P*Jon_si1 — P2Jon_sta.

(3.9)
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Integration by parts yields

( P
(s—r—1) / y{(F(y) — F(2)}*~2{1 - Fy)}"* f(y)dy

P,
) / u(F(y) - F@)}~" {1 - F(y)}" " f(y)dy,

when s<n-—-1

J2,n—s = ﬁ

P{l-FE}" " —(n-r-1)

P,
| [ uF@ - F@y T ), when =,
P
Tansn= (=1 =1) [ 4{F@) - F@F {1~ F)I"** fw)dy

Py
F(n—s+1) / y{F(y) - F(@)}*~ " {1 - F)}"* f(y)dy,

and

P,
Janssz = —(s—7—1) / W{F(y) — F@)}* 21 - F(y)}" 2 (y)dy
Py

+(n—s+2) / y{F(y) - @)}~ H1 - F)}"* f(y)dy

Upon substituting these expressions in (3.9) and the resulting expression of Jy(z)
in (3.8) and then simplifying the resulting equation, we derive the recurrence
relations in (3.6) and (3.7). D

THEOREM 3.3. Forn > 2,

1 n
(3.10) 2,341 = p‘l(’le,—}-l +(n+1) {F{ﬂzm —kpy,2:m} — 2p? uﬁ{ 1] ,
and for2<r<n-1

) 2(n+1)

(3.11)  prir 421 = u£+2 R ) [ {prs1m — kpbrrs1n}

2P2 {#5-27);—1 - #T—l,r:n—l}} .
PrROOF. For 1 <7 <n—1,let us consider from (3.1)
(3.12) pri1m — Klrriiin
= E(Xg;an+1:n - er:an+1:n)
n!
T r—Dliln—r—-1)

- / 1 / "y — k) (F(@)y 1~ F@))" f(2) f(y)dedy

n!

P
= B Dim—r=1) /0 y{1 - Fy)}" " f(y) K1(y)dy
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upon using (1.6), where

(3.13) Ki(y) = /Oy{F(w)}T‘lda: ~ P? /:{F(a:)}”“dm
=Ki,-1 — P°K1 41

Integration by parts yields

Y, when r =1

WPy -1 [ " o{F(@)) " f(z)dz, whenr>2,

Kl,r—l =
and

Kiro =y{F@) " =+ 1) [ a{F@) flo)s

Upon substituting these expressions in (3.13) and the resulting expression of K;(y)
in (3.12) and then simplifying the resulting equation, we derive the recurrence
relations in (3.10) and (3.11). O

COROLLARY 3.1. By settingr =n —1 in (3.11), we obtain for n > 3

2
(3.14)  tnntint1 = /‘5;-3—1:714—1

2(n+1)[1

n 2
- ﬁ{ugllzn—l - un—2,n—1:n—1}} .

THEOREM 3.4. For3<s<n,

1 n
(315) H2,s+1:n41 = H3,54+1:n+1 + (TL + 1) [ﬁ{ﬂs:n - k'ull,s:'n} - ﬁllfl,s—lzn——lJ )
and for2<r<s<nands—r>2
(3.16)  pri1s+1nt1 = Hri2,s+1n+1

2(n+1)
r(r+1)

1
[ﬁ {Hs:n - k/J“r,s:n}

n
- ﬁ{ﬂr,s—l:n—l - Nr—l,s—l:n—l} .

ProoF. For1<r <s<mands—7r>2, let us consider from (3.1)

(317) Hs:n — kUT,s:n = E(X,,(.)me;n - er:nXs:n)
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n!
- (r=Dls—7r—-1l(n—s)!

Py
-./o /0y(l—kx){F(x)}r—1{F(y)_F(z)}s_r_l

{1~ F(y)}" " f(z) f (y)dzdy
n!
TP(r—1l(s—r—Dl(n—s)

Py
/0 y{1 - F(y)}"* f(v) K2(y)dy

upon using (1.6), where
619 K= [ F@)HFQ) - F@) " de
- P [{F@y R - P e
0

=Kor_1— P Ky ,y1.
Integration by parts yields
¢ v
(=2 [ o{F ) - P fa)da,

when r =1

s DS F@Y T (F(y) - F@)) " f(o)de

Ho—r=1) [ @Y (F) - Foy (@)

when r > 2,

\
and

Karon=—(r+1) | 'S {P@Y (Fly) — F@)y f(z)de

F(s—r-1) / o)) {FW) - F@)}2f(x)da.

Upon substituting these expressions in (3.18) and the resulting expression of K;(y)
in (3.17) and then simplifying the resulting equation, we derive the recurrence
relations in (3.15) and (3.16). O

COROLLARY 3.2. Upon setting s = n in (3.16), we obtain for2 <r <n—2
(319) Hr+1,n+lin+1 = Ur4+2 n+1n+1
2n+1)[1

m‘ F{p‘n:n - klf"r,n:n}

n
- W{ﬂ«r,n—l:n—l - llfr—l,n—l:n-l}-l .
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THEOREM 3.5. We have

k 1
(3.20) p1,3:3 =3 [(1 + ﬁ) H1,2:2 + Hg —gH123
1 ¢y 1 1—- P2
“g#gz) - ﬁ/l»zz + Pz Mg;%]’
and forn >3
2(n+1 k
(3.21) Uln+lntl = n((n — 1)) [ <n -1+ ’15) Kinm + Hln-1n
_n- 1 1
n n 1#1 nin+l — nt 1#1,n—1:n+1
1 4 n(1— P?)
P/an:n 2 P2 H1in—1mn—1{-

PRrOOF. For n > 2, let us consider from (3.1)
(322) Hnwn — kllfl,n:n = E(X?nxnn - le:an:n)

Py Y
= n(n—1) / / y(1 - ka){(F(y) - F(z)}"?
f(z) f(y)dzdy

upon using (1.7), where
(3.23) (1-P? / {F(y) )} 2dx
27 [[(F) - F@)}" {1 - F(@)}da
0

_p? / "(F(y) - F@))" {1 - F(2)}ds

= (1= P)L, 2+ 2P*[Lp_1+ {1 — F(y)}Ln_2]
— P¥[Ly, +2{1 = F(y)}Ln—1 + {1 — F(y)}* L]
=[1-P2+2P{1-F(y)} - P{1 - F(y)}*|Ln-2
+[2P% - 2P*{1 - F(y)}| L1 — P?L,.

Integration by parts yields

” when n = 2
e { (n—2) /0 " o{P(y) - F@)}"f(@)dz, whenn>3

Loy = (n—1) /0 Y F) - F(@))""*f(z)dz

and
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Y
Ln=n [ a{F@y) - )" fla)da,
0

Upon substituting these expressions in (3.23) and the resulting expression of L(y)
in (3.22) and then simplifying the resulting equation, we derive the recurrence
relations in (3.20) and (3.21). O

Remark 3.1. As mentioned earlier in Remark 2.1, if we let the proportion
of truncation 1 — P — 0 in Theorems 3.1-3.5, we deduce the recurrence relations
established by Balakrishnan and Sandhu (1995) for the product moments of order
statistics from the standard generalized half logistic distribution.

Remark 3.2. The relationships established in Theorems 3.1-3.5 will enable
one to compute all the product moments of all order statistics for all sample sizes in
a simple recursive manner. This can be done for any choice of the shape parameter
k and truncation parameter P.

4. Recursive computational algorithm

By starting with the values of py.1 = E(X) and uﬁ = FE(X?) (see Tables 1

and 2), p1.0 and ugz% can be determined from (2.2) while ps.2 and u% can be

computed from (2.5). For the sample of size 3, p1.3 and #52% can be determined

from (2.3), po.3 and ug“); from (2.9), and finally p3.3 and u:(f% from (2.6). Similarly,

for the sample of size 4, 1.4 and pfi can be determined from (2.3), p2.4 and ,ug?i

from (2.8), p3:4 and ugﬁ from (2.9), and finally 4.4 and ;Lffi from (2.6). This

process may be followed similarly to determine p.,., and ,u,(?T)L for 1 <r <n and
for n = 5,6,.... From these values, variances of order statistics can be readily
computed.

By starting with the fact that puy 22 = u2., (see David (1981), Arnold and
Balakrishnan (1989)), u1 2.3 can be determined from (3.3), y2 3.3 from (3.10), and
then p1,3:3 from (3.20). For the sample of size 4, p1,2.4 can be determined from
(3.2), po,3.4 from (3.3), p3 4.4 from (3.14), p13.4 from (3.7), po,4.4 from (3.15),
and finally g1 4.4 from (3.21). For the sample of size 5, p1.2:5 and p2 3.5 can be
determined from (3.2), us 4.5 from (3.3), pg 5.5 from (3.14), p1,3:5 from (3.6), w2 4:5
from (3.15), p3 5.5 from (3.19), py .45 from (3.7), p2 5.5 from (3.15), and finally
1,55 from (3.21). This process may be followed similarly to determine . s.,, for
1<r<s<nandforn =6,7,.... From these values, covariances of order
statistics can be readily computed.
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