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A b s t r a c t .  In order to construct fixed-width (2d) confidence intervals for the 
mean of an unknown distribution function F, a new purely sequential sam- 
pling strategy is proposed first. The approach is quite different from the more 
traditional methodology of Chow and Robbins (1965, Ann. Math. Statist., 36, 
457-462). However, for this new procedure, the coverage probability is shown 
(Theorem 2.1) to be at least (1 - a) + Ad 2 + o(d 2) as d --* 0 where (1 - (~) is 
the preassigned level of confidence and A is an appropriate functional of F,  un- 
der some regularity conditions on F. The rates of convergence of the coverage 
probability to (1 - a) obtained by Csenki (1980, Scand. Aetuar. J., 107-111) 
and Mukhopadhyay (1981, Comm. Statist. Theory Methods, 10, 2231-2244) 
were merely O(dl/~-q), with 0 < q < 1/2, under the Chow-Robbins stopping 
time T*. It is to be noted that such considerable sharpening of the rate of con- 
vergence of the coverage probability is achieved even though the new stopping 
variable is Op (T*). An accelerated version of the stopping rule is also provided 
together with the analogous second-order characteristics. In the end, an exam- 
ple is given for the mean estimation problem of an exponential distribution. 

Key words and phrases: Distribution-free, fixed-width confidence intervals, 
confidence level, second-order expansions, purely sequential, accelerated se- 
quential, Markov inequality. 

1. Introduction 

Let  X 1 ,  X 2 ,  . . • be a sequence of independent  and identically dis t r ibuted (i.i.d.) 
r andom variables having an unknown distr ibution function (d.f.) F(x),  x E R. We 
write 9 = fR xdF(x)  and ~2 __ f R ( x _  9)2dF(x) respectively for the mean  and 
variance of the d . f . F .  Having obta ined X 1 , . . . ,  Xn and given a preassigned number  
d (>  0), we consider the fixed-width confidence interval In = [-~n - d, )~n + d] for 
9 where )(n = n -1 ~-~in___l Xi. For large n, PF{9 E In} ~ 2~(nl/2d/a) - 1, which 
will be at  least (1 - a )  with a preassigned a E (0, 1) provided tha t  n is the 
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1 Here and elsewhere, smallest integer > a2a2/d 2 = C, say, where O(a0) -- 1 - ~a. 

one writes O(x) = f ~ (270 -1 /2exp ( -½Y2)dy .  Of course, C is unknown since 
o .2 = a2(F) is unknown. In fact no fixed-sample-size procedure will provide a 
fixed-width confidence interval for ~ having a prescribed coverage probability at 
the same time. 

Chow and Robbins (1965) proposed the following ingenious purely sequential 
sampling strategy. One starts with X 1 , . . . ,  X,~ where m ( ~  2) is the initial sample 
size and then proceeds by taking one X at a time according to the stopping rule 

(1.1) 2 2 n -1 ) /d2 } ,  N = N(d) = inf{n > m : n > ao(S ~ + 

_ n X where S 2 (n 1) -1 E i = I (  i - -¢Yn) 2. Having obtained X1, . . .  , X m , . . .  ,XN,  
one proposes the fixed-width confidence interval IN = [)~N + d] for t~. Under the 
assumption that 0 < 62 < cx~, Chow and Robbins (1965) proved that 

N / C  --~ 1 a.s., E ( N / C )  ---, 1, 
(1.2) 

P { O E I N } - - ~ I - - a ,  as d--~O. 

and 

From this point onward, let us write P(.)  and E(.) instead of PF(') and EF(. ) 
respectively. Csenki (1980) used the Berry-Esseen rate for the random central 
limit theorem obtained by Landers and Rogge (1976) to verify that 

(1.3) P{O E IN} = (1 -- (~) + O(dl/2-q), 

for the Chow-Robbins stopping rule (1.1) with 0 < q < ½, under appropriate 
moment conditions on F.  Mukhopadhyay (1981) also obtained (1.3) under more 
economical moment conditions. One is referred to Mukhopadhyay and Vik (1985) 
for some related details and other references. 

When F(x)  = ~((x  - O)/a), the result in (1.3) can be strengthened consider- 
ably by replacing it with the asymptotic second-order expansion, namely, 

(1.4) P{O E IN} ---- (1 -- a) + Aa-2d  2 + o(d2), 

where A is a computable real number, m > 7, and (S 2 -~-n -1)  is replaced by S~ in 
(1.1). Such an expansion was provided by Woodroofe (1977). In the case of two- 
parameter negative exponential distributions, analogous second-order expansions 
have been derived. One is referred to Mukhopadhyay (1988) for a review. But, we 
are not aware of results such as (1.4) when F is unknown. 

Our intention in this paper is to propose purely sequential and accelerated 
sequential stopping times with a generic notation N for which we can claim the 
following second-order expansion of the coverage probability: As d -+ 0, 

(1.5) P{O E IN} >_ (1 -- c~) + A*d 2 + o(d2), 

under the assumption that E[IXll 6] < ~ ,  where A* = A*(F) is an appropri- 
ate functional. We obtain such a strong result in spite of the fact that in this 
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case N / C  ----', k a.s. and E ( N / C )  ---* k as d ---* 0 where k(> 1) is a known con- 
stant, that  is our newly proposed stopping variables N and the Chow-Robbins 
stopping variable have similar rates of convergence and they are asymptotically 
in the close proximity of each other in some sense. Section 2 is concerned with 
these aspects associated with the newly proposed purely sequential stopping rule 
and the main results are summarized in Theorem 2.1. In Section 3, we introduce 
the acceleration technique in this setup in order to reduce sampling operations, 
and yet obtain an asymptotic second-order expansion of the coverage probability 
that resembles (1.5), among other characteristics (Theorem 3.1). Section 4 deals 
with the analogous problems for the mean of an exponential distribution from the 
perspective of second-order asymptotics, briefly indicating the "fine-tuning" ideas 
proposed earlier in Mukhopadhyay and Dat ta  (1994) (referred to in the sequel as 
MD (1994)). 

2. A purely sequential methodology 

Recall that  In = [Xn + a~. Now, we have 

P{9 ~ In} _< E[(X,~ - 9)2]/d 2 = a2(nd2) -1 

if n is the smallest integer > o2(ad2) -1 -~ no, say. We shall pretend that no is 
the optimal fixed sample size, had a been known, for our purposes instead of the 
C ( =  a2a2/d2) in Chow and aobbins  (1965) where ¢(a0) = 1 - ½a. Note that  
no/C = (ha02) - ] ,  which is fixed for all d(> 0), but  it is true that this ratio is 
larger than unity. However, the point is that no -- O(C) and we shall mimic this 
no in proposing the purely sequential sampling scheme for which a second-order 
expansion such as (1.5) would be provided. 

Let m = m(d) = max{2, [(ad2)-l /2] * + 1} where [u]* = largest integer < u. 
Now, one starts with X 1 , . . . ,  Xm and then proceeds by taking one X at a time 

n X according to the stopping rule [with S 2 = n -1 ~-~i=1( i - ~:n) 2] 

(2.1) N -- N(d) = inf{n > m(d) :  nad 2 >_ S2n}. 

We have P ( N  < ec) = 1 for all fixed a 'E  (0, 1) and d(> 0) when 0 < a < oc. In 
the end, one thus proposes the fixed-width confidence interval IN = [)(N + d] for 
9. Along the lines of Chow and Robbins (1965), we can show that N --* oo a.s., 
N/no --* 1 a.s., and E(N/no)  --* 1 as d ~ O. 

Let us write rni = E[(X1 -9) i ] ,  i = 3,4, for the third and fourth central 
moments of F ,  and ~ = E(R)  where the probability distribution of R is given by 

(2.2) 

for 0 < r < oc with T = inf(n _> 1 : 2n--~-]k= 1 > 0}. With these notations 
in mind, we now state and prove the following results. 
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THEOREM 2.1. Let E[IXll 6] < co. Then, under the purely sequential proce- 
dure (2.1), we have as d ---* 0: 

(i) E ( N  - no) = ~ - m4a -4 + o(1); 
(ii) P{O C IN} ~ (1 -- a) -- a2a-2d2{5 + 6(m3/a3) 2 - ~} + o(d2); 

if (X1 -~)2/cr2 has a nonarithmetic distribution. 

PROOF. We exploit the results and tools from Arcs and Woodroofe (1993), 
henceforth abbreviated as AW (1993), after verifying their conditions (C1)-(C6). 
Let us write Y/ = (X~ - 0,(X~ - 0) 2 - a2), i = 1 , 2 , . . . ,  so tha t  these Y 's  are 
i.i.d, having a d.f., say, G whose mean vector is 0 and the covariance matr ix  is 

{ ~= m3 ) We define functions gn :  R 2 --~ R as 
m 3 m4- - f f  4 ] " 

{ a 2 / ( a 2  + v - u 2) if n ~ a -2 

g~(u, v) = a 2 / m a x { n - i ,  a2 + v - u 2} if n > a -2. 

If we now define g(u, v) = O'2(O'2-~-V--U2)--I for all (u, v) E R 2 such tha t  a 2 + v - u  2 # 
0, then it is easy to verify tha t  g is twice continuously differentiable on some 
neighborhood of (0,0), c = D(g) I(0,0)= ( 0 , - a - 2 ) ,  gn = g for all n > 1 on some 
neighborhood of (0, 0), and obviously g(0, 0) = 1. 

Next, one notes tha t  the stopping variable N from (2.1) has the same repre- 
n 

sentation as in (2) of AW(1993) with a = no, c = ( 0 , - a - 2 ) ,  En  = ~-]i=1 Yi and 
Zn n + (c, ~]n} + ~n for n > 1, where ~n ngn(~'n) + ~ = 1 (  i - 0) 2a-2 - 2n, 

a n d l e t ~  = ½(W, D2(g)[(0,0) W ) w i t h  W ~ N2 0, m3 m4-~ 4 

Diag(2a -2, 2a-4) .  
As per suggestions from one of the referees, we briefly state conditions (C1)- 

(C6) from AW (1993) for completeness. For some 3 < p < co, and 0 < So, el < 1, 
AW (1993) assumes: 

(C1) fR2(y ,y )F(dy)  < co and fR2 [(c,Y}IPF(dy) < co; 
(C2) [max(Zn - n ¢ o  1, 0)] p, n > 1, are uniformly integrable; 
(c3) En%l < - (1  -  l)n} < co; 
(C4) l ima\0  supn> 1 P{maxk<n5 I~n+k - -  ~nl > g }  = 0 for all 0 < e < oc; 
(C5) There exist events An, n = 1 , 2 , . . . ,  and /3 E [3  co) for which 

~n~=l nP(U~= n d~) < oc, maxk_<n [~n+kI(An+k)l ~, n ~_ 1, are uniformly 
integrable; 

(C6) ( n - - 1 / 2 ~ - ' ] n ,  ~ n )  A( W ,  4 )  a s  n --~ 0 0 .  

Since equations (12) and (17) of AW (1993) hold in our case with q = 3, 
their Proposit ion 4 leads to the verification of conditions (C4)-(C6) wi th /~  = 3. 
Next, (C1) of AW (1993) holds since G has mean 0, F has finite 6th moment,  
so tha t  fR2 IlYll2dG < co and fR2 I(c, y)13dG < co. In order to verify (C2) of 
AW (1993), first notice tha t  Zn = ngn(Yn) and thus, Z~ < n2a 2 for all but  a 

i few small values of n, and Z~ ~ 2n on the set {S 2 > ~} w.p. 1, for all n > 2. 
So, by analogous arguments from Example 2 of AW (1993), we claim tha t  (C2) 
holds in this situation. As far as the verification of (C3) goes, Proposit ion 5 of 
AW (1993) seems to be of no help. In the Appendix, we show directly tha t  (C3) 
indeed holds here. One notes at  this point tha t  u = E(~) --- ½E[( W ,  D2(g) I(0,0) 
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W>] --- 1E[2W20- -2  -[- 2W220- -4] -- m46r-4,  and  by Proposition 3 of  AW (1993), 

( N - 1 / 2 ~ N ,  ~ N ,  RN)  £--~( W ,  ~, R) as d --* 0 with R N  = ZN -- n o ,  the "overshoot" 
at the stopped stage and R given by (2.2). Also, R and ( W,  ~) are independent. 

Part  (i) now follows immediately from Theorem 1 of AW (1993). For part 
(ii), we use Corollary 1 of Theorem 2 of AW (1993) with b = (0--1,0) and write 

(2.3) 0-4(a2d4)-IE{(XN - 8)2/0 "2} -[- E ( N )  - 20-2(ad2) -1 

+ m4(r -4 - 1 + 2(m3a-3) 2 + 0(1). 

Now, use the expression of ~ in terms of W1 and W2 as well as the facts that  
W1/0- ~ N(O, 1) and the distribution of W1W2 is the same as that  of the random 

1 variable ~ [(m3 +0-(m4 - a 4) 1/2)U1 + (m3 - 0-(m4 - 0-4)1/2)[/2] where U1, U2 are i.i .d. 
X12. In other words, E(W4/0-  4) = 3 and E[W2W2/0-  6] = 2(m3/0-3) 2 + (m4/0- 4) - 1. 
Hence, (2.3) leads to 

(2.4) E[ (X N  - 0)2/d 2] = a + a2d2a-2{5 + 6(m3/a3)  2 - 7/} + o(d2), 

in view of part (i). Now, observe that 

P{O • IN}  :> 1 -- E { ( f ( N  -- 0)2/d2}, 

and hence (2.4) completes the proof. 

Remark  2.1. If the distribution of (X1 - 8)2//0 -2 is arithmetic, then we can 
claim that E ( N  - no) = O(1) and P{O • IN}  >_ (1 -- a) + O(d 2) under the same 
conditions as in Theorem 2.1. The necessary modifications in the proof will be 
routine in view of AW (1993). 

Remark  2.2. We have used a special case of Markov inequality to bound 
P{O E IN}.  Instead, one may be tempted to use a sharper bound such as P{0 
IN}  < infp>0 E { I f ( g  -- OIP/dP}. But, first of all this infimum may not be attained 
for any p and even if it is attained for some p, such "optimal" choice of p will then 
depend on the unknown distribution F.  However, for F belonging to a certain 
specific class, say, 5 r, such "optimal" p may not depend on F,  and this may 
lead to a sharper bound. But then one would require second-order expansions 
of E { I f ( N  -- OIP/dP }. This direction of potential improvement in the bound may 
perhaps materialize in the future in view of AW (1993). The present work provides 
the impetus and opens up possibilities for further investigations. 

Remark  2.3. For fixed n, one may write down the Edgeworth expansion of 
P ( 8  E In}, and determine the "optimal" fixed-sample n via that route. But, once 
the stopping rule is proposed, then the problem is one of evaluating P{0 C In I 
N --- n} for all fixed n. At this time, it is quite unclear as to how the Edgeworth 
expansion of P{0 C I~} is supposed to help here. On top of this, the analysis 
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would also depend largely on the extent of control one would have on P ( N  = n) 
for all n. At present, we do not have many clues. 

Remark 2.4. In the case where F is given by a one-parameter exponential 
family, Woodroofe (1986) obtained very weak expansions of certain sequential 
confidence intervals. The impetus of his work in the general case of ours with 
unknown F remains a matter of guesswork at this time. 

3. An accelerated sequential methodology 

Instead of one by one sequential sampling as in (2.1), let us now pursue 
the idea of acceleration. In order to reduce the number of sampling operations, 
one starts out purely sequentially and goes part of the way, followed by aug- 
mentation via batch sampling of an appropriate size. The original development 
in the normal fixed-width confidence interval problem for the mean was due to 
Hall (1983). The associated general theory was put forth in Mukhopadhyay and 
Solanky (1991). Here, we develop the analog of the new and improved acceleration 
idea of Mukhopadhyay (1993) in the context of the present problem and study the 
associated rates. 

Let us first choose and fix p E (0, 1) such that p-1 is an integer and define 
m = re(d) = max{2, [(p-lad2)-1~2]* + 1}. One starts with X 1 , . . . ,  Xm and then 
proceeds by taking one X at a time according to the stopping rule [with S 2 = 

n X n-1E :I( - 2n)  2] 

(3.1) t = inf{n _> re(d):  n a d  2 :> pS2}.  

One has P( t  < co) = 1 for all fixed a C (0, 1), d(> 0), and a E (0, 00). Note that 
t estimates pno, a fraction of no. Let 

(3.2) Q = p - i t ,  

and one then samples the difference of ( Q -  t) observations, all in one single 
batch. Based on X 1 , . . . , X Q ,  we propose to estimate tO by means of the fixed- 
width confidence interval [Q =- [XQ -F d]. 

THEOREM 3.1. Let E[IXll 6] < oo. Then, under the accelerated sequential 

procedure (3.1)-(3.2), we have as d ~ 0: 
(i) E ( Q  - no) = p - l ( ~  _ mnsr-4) + O(1); 

(ii) P{O C IQ} ~ (1 -- a) - a2a-2d2{5 + 6(m3/a3)  2 - ?7 + (p-1 _ 1)(2m4o-4 _ 
1 - 7)} + o(d2); 

i f  (X1 - 0)2/a  2 has a nonarithmetic distribution and 7, ma, m4 are the same as 

in Theorem 2.1. 

Before we proceed to prove this result, let us first prove the following lemma. 

LEMMA 3.1. Suppose that (X1 - to)2/a2 has a nonarithmetic distribution, 

E[tXll 6] < cx) and let V = no-1/2( t  - n~) where n~ = pno. Then, we have as 

d ~ O :  



SEQUENTIAL FIXED-WIDTH CONFIDENCE INTERVALS 503 

(i) V E-~ N(O, m40"-4 - 1); 
(ii) V 2 is uniformly integrable; 

(iii) E ( t  -1) = n 0 + (2m44 -4 1 -~] )n~  -2 + o ( n ~ - 2 ) .  

PROOF. In order to prove part  (i), first note that  S 2 = (1 - n - 1 ) S  .2 where 
Sn 2 is a U-statistic and hence from Sproule (1969, 1974), one immediately con- 

* i / 2 1  c~2 cludes tha t  nol/2($2 t - a 2) and n o ~ - 1  - 42) both  converge in distribution to 
N(0,  m4 - a a) as d --* 0. One may also refer to Lee (1990) in this context.  Now, 
from (3.1) one writes 

(3.3) .1/2,~2 no 1/2 a2rnn*o-1/2I(t = m), n0 w~ - ~2) ___ ~2 V < (sL1 - ~2) + 

where I( .)  stands for the indicator function of (.). Now, part  (i) follows if we can 
1 2 show tha t  I ( t  = m) P 0 as d --* 0. Observe tha t  we can make mad 2 < ~pa for 

sufficiently small d. Now, for arbi t rary  ~(> 0), we write, for sufficiently small d, 

P{I ( t  = m) > e} <_ e - l p ( t  = m) = e - l p ( m a d  2 > pS 2)  

< _ ~ - 1 P { I S ~ - 4 2 1 _ > 1 ~ 2 } - , 0  a s  d - * 0 .  

Par t  (ii) follows from the  Corollary to Proposit ion 8 of AW (1993). For part  
(iii), first note tha t  

(3.4) E(n~/t)  = n~-l  {El(t  - n~)2/t] - E( t  - n;) + n~}, 

(3.5) E(t  - n ; )  -- ~] - m40--4 --{- o(1), 

1 * in view of Theorem 2.1(i). Now, (t - n~)2t-~I(t > ~no) _< 4V 2, tha t  is the 1.h.s. 

is uniformly integrable. Also, the 1.h.s. ~ ( m 4 a  -4 - 1)X 2, in other  words, 

(3.6) E [ ( t -  n~)2t- l I  ( t  > ~n~) J -- ( m 4 a - 4 - 1 )  +o(1). 

Also, E [ ( t -  n ; )2 t - l I ( t  < 1 • ~.2 _ ~n0) ] < (n~ + ~m)P(t  < 1 • _ _ ]n0)  = o(1), by applying 
Lemma 1 of AW (1993) with p -- 3. Combine this with (3.6) to write 

E[(t - n;)2t  -1] - -  ( /Yt4 O ' - 4  - 1) + o(1), 

and the result follows from (3.4)-(3.5). 

PROOF OF THEOREM 3.1. Par t  (i) is immediate  from (3.5) since Q = p- I t  
and n~ = pno. In order to verify part  (ii), first note tha t  

(3.7) E[( f(Q - 0) 2] ---- p2E[( f~ t - 0) 2] + p(1 - p)a2 E(t-1).  

One may  refer to Mukhopadhyay  (1993) in this regard. Now, replacing N and d 
by t and dp -1/2 respectively, we obtain from (2.4), 

(3.8) pE[(Xt - 0)2/d 2] ---- a + (~2d2p-14-2{5 + 6(m3/43) 2 - ~]} + o(d2). 
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Combine (3.7)-(3.8) with Lemma 3.1 (iii) to write 

(3.9) E [ ( X Q  - O)~/d ~] 
= p~  + ~ d ~ - ~ [ { 5  + 6 ( m ~ / ~ )  ~ - ~}  

+ (p -1  _ 1 ) ( 2 m 4 a - 4  _ 1 - ~7)] + (1 - p ) a  + o(d  2) 

= a + a 2 d 2 a - 2 [ { 5  + 6 ( m 3 / a 3 )  2 - r]} 

+ ( p - ~  - 1 ) ( 2 . ~  - ~  - 1 - 7)1 + o(d~), 

parallel to what we had in (2.4). The proof is now complete since P{O 6 IQ} >_ 
1 - E{(2Q - 0)2/d2}. 

Remark 3.1. Observe that the accelerated sequential methodology (3.1)- 
(3.2) requires approximately 100p% of the sampling operations associated with 
the full sequential procedure (2.1). In other words, the amount of operational sav- 
ings can be truly substantial via (3.1)-(3.2), whereas the second-order expansions 
provided in Theorems 2.1 and 3.1 are quite similar indeed. 

Remark 3.2. In the case where (X 1 --0)2/0 -2 is arithmetic, we can only claim 
that E(Q-no)  = O(1) and P{0 • IQ} > ( 1 - a ) + O ( d  2) under the same conditions 
as in Theorem 3.1. 

4. Exponential mean: an example 

Now, we consider a special d.f. given by F(x) = {1 - exp( -x /A)}  I(x > O) 
with the mean of the distribution, A • (0, oc). Having recorded X1,. • •, X~, and 
given d(> 0) as well as 0 < a < 1, we consider the bounded length confidence 
interval Ii n = [(J(~ - d) v 0, )(n + d] for A. However, note that 

(4.1) P{A ¢ In} = P{A ¢ 
= P { ~  • 

= f { : ~ •  

= P { A  • 

/n n)2n _> d} + P { A  E [O, Xn +d]  nJ (n  < d} 

[n n X n  > d} + P { , ~ - d  < f(~ < d }  

L, AX~ > d} + P { A  E Iv CqXn < d} 

Ln}__> l - a ,  

i f E { ( f ( n - t ) 2 / d  2 } <<_ a, that is i fn > no = A2(ad2) -1. In this case, of course, cr 2 = 
A 2. Since no is unknown, the purely sequential procedure (2.1) and its accelerated 
sequential version (3.1)-(3.2) can be put forth in a straightforward manner, and 
hence the Theorems 2.1 and 3.1 would certainly provide the associated second- 
order rates of convergences. 

The full sequential procedure (2.1) is in order. The notations in the proof 
of Theorem 2.1 simplify to a = n~ = ,~2(ozd2) -1, Zn = n + {c, ]En} + ~ where 

n c = (0 , -A-2) ,  ]E,~ = ~-]i:] Yi with Yi = ( X i - A , ( X ~ - A )  2 - A 2 ) .  Here W = 
( ( ~  ~ )  ( ~ o ) 

(W1, W2) ~ N2 0, 2~ z s~4) and D29 1(0,0)= 2~0- 2~ 4 , so that , -- 9. 

That is, P{A C I~} _> (1 - c~) - a2d2A 2(29 - 7/) + o(d2) • Note, however, that 
in this methodology, one plugs in the sample variance S~ in the stopping rules 
while replacing A 2 by an estimator. But, in this specific instance we have a simple 
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parametric family, and it will perhaps make more sense to replace )~2 by )(n 2 in the 
stopping rules from sufficiency considerations. 

Hence, the following purely sequential stopping rule is proposed. Let m(>  1) 
be the starting sample size and define 

(4.2) No = inf{n > m :  n~d 2 > f(2n}. 

Finally, we estimate ~ by means of I~v o. Then, if we choose to use a fixed m, from 
Theorem 2.1 of MD (1994), it follows that 

(4.3) P{A e I~vo} > (1 - a) - (~2d2A-2(16.5 + 2D) + o(d2), 

for m _> 7, with D = E n ° ° = l  ~nl -1 E{(X2~2 _ 3n) v 0}. Also, for m >_ 3, one obtains 

1 
(4.4) E(go  - no) - 2 2D + o(1). 

One may independently derive (4.3)-(4.4) by using the results of AW (1993) 
once one allows m to grow as in our (2.1). It will suffice to note that  Yi = (Xi - 
A, 2A(Xi-A)),  9(Yl, Y2) = A2(A2+y2+y2)-1, c = Og [(0,0)= (0 , -A-2) ,  02g  [(0,0)= ( ) ( ( .  2.)) -2~ -2 0 and ~ = A-4W2 - A-2W12 where (W1, W2) ~ N2 0, 2~3 a~4 0 2A - 4  ' 

Other details are omitted. 
Along the lines of MD (1994), we may "fine-tune" (4.2) so that in the second- 

order expansion of the confidence coefficient, one obtains (1 - a) + o(d 2) instead 
of (4.3). Define 

(4.5) N* = inf{n > m(>  1): (n + s )ad  2 > X 2} 

with s = - (16.5  + 2D) where m is held fixed. Now, one proposes the interval 
I~v. for ~ and from Theorem 2.2 of MD (1994), one claims that P{$  E I~v. } > 
(1 - a )  + o(d 2) if m > 7. 

4.1 The accelerated methodology 
The accelerated estimation technique proposed in (3.1) (3.2) does indeed 

work here without any difficulty. Theorem 3.1 then provides the second-order 
expansion of E(Q - no) as well as the lower bound of P{A E I~} which is 
(1 - a) - a2d2A-2{(29 -~?) + (p-1 _ 1)(17 - 7 ) }  + o(d2) • But, then one would be 
interested to accelerate the purely sequential procedure (4.2) in order to curtail 
sampling operations. 

Let m(>  1) be the fixed starting sample size, and choose and fix 0 < p < 1 
where p-1 is an integer. Define 

(4.6) to inf{n > m :  had  2 > p n}, 

(4.7) M -- p - i t  o. 

One samples the difference (M - to) in one single batch. Finally, we propose to 
estimate A by means of I~ .  Then, from Theorem 3.1 of MD (1994), we obtain 

(4.8) P{/X C I ~ }  _> (1 - a) - 32d2~-2{12 + p-1(4.5 + 20)}  + o(d 2) 

for rn > 7. It would be desirable to obtain the fine-tuned version of (4.6)-(4.7). 
However, in view of Section 3.2 of MD (1994), such a development would be fairly 
straightforward. Hence, this is omitted for brevity. 
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Appendix 

In the setup of Theorem 2.1, we need to verify tha t  the condit ion (C3) of AW 
(1993) holds. Note tha t  

,r ~ ~ (Xi - 0) 2 
(A.1) '~,-a~n = ~ + n -1 - ~  2 = Tn, say, 

i=a 

and we have to show that  

o o  

(A.2) ~ nP{{n < --~l?'t,} < (X3 
n=l  

with 0 < c a < 1. Now, for 0 < c < ca < 1, we write 

(A.3) P{{~ < - c a n }  _< P T~ < - e  1 ["1 ~ ~ 1 - e + P ~ < 1 - e 

= In + IIn, say. 

Then,  one has (with e' = Ea - c > 0) 

I n < P  ( l - e )  + n i=a 
- -  0 .  2 - -  

and hence using Theorem 1 of Ka tz  (1963) with t = 3, we have y~.n°°=l nIn < oo if 
E[IXa[ 6] < oc. Also, with some c" > 0, we can write for large enough n, 

{Sn  } I I n < P  ~ > l + c "  

_<P ( n - l )  -a ~-~ _ > 1 +  
i=a 

_ n i = l  -0-~ _ > 1 +  

and by a similar reasoning as before, we claim tha t  y~.n~_a nII,~ < cc if E[IXa [6] < 
cx). Hence, (A.3) leads to (A.2). 
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