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A b s t r a c t .  The threshold method estimates the total rainfall Fc  in a region 
G using thc area Bc  of the subregion where rainfall intensity exceeds a certain 
threshold value c. We model the rainfall in a region by a marked spatial point 
process and derive a correlation formula between Fc  and Ba. This correlation 
depends not only on the rainfall distribution but also on the variation of num- 
ber of raining sites, showing the importance of taking account of the spatial 
character of rainfall. In the extreme case where the variation of number of 
raining sites is dominant, the threshold method may work regardless of rainfall 
distributions and even regardless of threshold values. We use the lattice gas 
model from statistical physics to model raining sites and show a huge varia- 
tion in the number of raining sites is theoretically possible if a phase transition 
occurs, that  is, physically different states coexist. Also, we show by radar 
observation datasets that  there are huge variations of raining sites actually. 

Key words and phrases: Threshold method, meteorology, rainfall, radar, 
marked spatial point process, linear regression, lattice gas model, Gibbsian 
process, potential, phase transition, non-ergodicity. 

1. Introduction 

I t  is widely recognized t ha t  meteorological  condit ions of t ropical  regions have 
world wide influences and meteorological  d a t a  f rom these areas is i m p o r t a n t  in 
unders tand ing  m a n y  problems.  Nevertheless,  observat ion in t ropical  regions (in- 
cluding land and sea) is frequently difficult and making  the use of satelli tes is 
the only pract ical  possibility. The  T R M M  (Tropical Rainfall  Measur ing  Mission) 
p rogram,  a J a p a n - U S A  joint nat ional  project ,  is p lanning to send a first satell i te 
equipped with a rainfall radar  in 1997 to collect rainfall  d a t a  in t ropical  regions. 
The  threshold m e t hod  is one of the a lgor i thms which will be  used in the T R M M  
program to  es t imate  rainfall intensi ty f rom measu remen t  of the rainfall radar  of 

the  satellite. 
The  threshold  m e t hod  has its basis on an empir ical  fact as observed in Chiu ' s  

(1988) sys temat ic  analysis of the  G A T E  datasets .  (The  G a r p  Atlant ic  Tropical  
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Experiment, GATE, was the first major international experiment of the Global At- 
mospheric Research Program, GARP. It was conducted over tile tropical Atlantic 
ocean and adjacent land areas under the joint auspices of the World Meteorologi- 
cal Organization, WMO, and the International Council of Scientific Unions, ICSU, 
from June through September 1974, see Patterson et al. (1979).) He pointed out 
an almost linear relation between total rainfall in a region and the area of the 
subregion where rainfall intensity exceeds a certain threshold value. For a suitable 
choice of the threshold value, the square R 2 of the correlation coefficient can be 
very close to 1 (R 2 = 0.98 for GATE phase I dataset and R 2 = 0.97 for GATE 
phase II dataset). Although such high correlations are only possible for carefully 
chosen threshold values, we can also notice a curious fact that the R2-value is 
always fairly high irrespective of threshold values. For example, R 2 = 0.78, 0.89, 
0.98, 0.95, 0.85 for GATE phase I dataset and R 2 = 0.71, 0.85, 0.97, 0.96, 0.87 
for GATE phase II dataset for threshold values 0, 1, 5, 10, 20 mm/hour  (optimal 
threshold values are both 5 ram/hour). The threshold method is attractive be- 
cause it allows us to estimate rainfall intensity even if we cannot measure lower 
values of rainfall intensity precisely, which is usual in radar measurement. 

Observation as in Chiu's study has been reconfirmed in various other rain- 
fall datasets and corresponding optimal threshold values are given. Also, several 
theoretical studies have been done to explain why the threshold method works 
and to give a method of deciding the optimal threshold value, see, e.g., Braud et 
al. (1993), Shimizu (1992), Shimizu et al. (1993), Short et al. (1993), and their 
references. These studies are based mainly on the modeling of rainfall intensity 
distribution by mixtures of the form (1 - A)5 + )~p where 6 is the unit mass at the 
origin, A is the probability of rain, and p is the conditional distribution of rainfall 
intensity under the condition of rain. A possible criticism of them is that they do 
not take account of the apparent spatial character of the problem. In this research, 
we propose a framework of modeling the problem as a spatial phenomenon. 

Our model, tile marked spatial point process model, consists of two spatial 
processes. The first is the point process X which indicates random positions of 
sites (discretized as lattice points) where it rains. The second is an accompanying 
random field S which represents (potential) rainfall intensities (instantaneous or 
cumulative in a unit area and a unit period) observable at raining sites. We will 
give the formula of the theoretical correlation between the total rainfall Fa  within 
a base region G and the area BG of sites in G where rainfall intensities exceed a 
given threshold value. This formula is seen to have a spatial character, that is, it 
depends not only on the distribution p of rainfall but also on the spatial variation 
of number of raining sites, showing the importance of taking account of the spatial 
character of rainfall. An important consequence is that, in an extreme case where 
a variation of the number of raining sites is dominant, the rainfall distribution 
and even the threshold value may be of secondary importance. It is our opinion 
that this explains why the correlation is always fairly high regardless of threshold 
values. 

In order to show that such a large vm'iation of numbers of raining sites is 
possible at least theoretically, we model the raining site process by the lattice 
gas model which is well-known in statistical physics. Although there is no easily 
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verifiable general condition, it is known that a huge variation of number of raining 
sites can occur if a phase transition exists, that  is, physically different raining 
phases coexist. This is also known to be equivalent to the non-ergodicity of raining 
sites process. 

Finally, we analyze a radar observation dataset, the TRMMGT dataset mea- 
sured by the NOAA/TOGA C-band radar. This analysis actually shows variations 
of number of raining sites which are far larger than those the independent raining 
sites assumption predicts. 

The main purpose of this research is the spatial formulation of the problem and 
the theoretical explanation why the threshold method works so fine. The actual 
estimation procedure is not discussed. One may use a simple linear regression once 
a strong correlation is observed. 

2. Preliminary 

Let 7/2 be the planar lattice. Each i E 7/2 is called a site. Each (finite or 
infinite) subset of 7/2 is called a configuration and the space of all configurations 
is denoted by C. For each h c 77 2 the map Th is the translation by the vector h. 
The translated set ~'hG is denoted by Gh. The area, that is, the number of sites 
in G is denoted by IGI. 

Let X = {Xi} be a point process defined on the lattice 7/2. The point process 
X is a set-valued random function and indicates the random positions where some 
phenomenon (rain in our case) happens. The process X is simple if Xi 7 ~ Xj 
whenever i ¢ j .  It is stationary if distributions of numbers IX N Ghl, h ~ 2 2, are 
the same for every finite G. Let S = {S(i)}, i E 7/2, be an accompanying random 
field. Each S(i) means the random quantity which is potentially associated with 
the site i. That is, if it rains at a site i, it results in the rainfall S(i) during a 
certain unit period of observation. Combining X and S, we construct our basic 
model {(Xi, Ri)}, where Ri = S(Xi). In the terminology of the marked point 
process theory, Ri is called the mark attached to the point Xi. 

Fix a finite set G and two arbitrary functions b(x) and f(x) and define fol- 
lowing quantities 

Aa = IX n GI, 

Ba : ~ la(Xi)b(Ri), 
i 

Fc = E lc(Xi)f(Ri).  

In the threshold method AG is the area of the subregion of G where it rains and 
FG is the sum of quantities f(Ri) within the region G. For example, if f(x) = x, 
FG is the total rainfall in the region G during a unit period. 

We always assume the simpleness of X, the stationarity of both X and S, and 
the finiteness of expectations [1={5 2 (S(0))} and n:{f2(S(0))} throughout the paper. 
Let us list basic assumptions used in the sequel. 

(A) X and S are independent to each other. 
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(B) X and S are independent to each other and S is an independent random 
field. 

(C) Both X and S are independent random processes and are independent 
to each other. 

Remark 1. The random field S is independent if random variables {S(i)} 
are mutually independent. The point process X is independent if it is equal to the 
set {i; Y(i) -- 1} of an independent random field {Y(i)} taking only two values 
{0, 1}. The assumption (B) is equivalent to say that we attach lid replicates Ri to 
each Xi of X. 

3. Variance formula 

Let p be the common distribution of random variables {S(i)}. Because of the 
assumed stationarity of X, we have 

E{AG} -- AlCl 

where the constant )~ -- E{A{i}} is the intensity of the process X, that is, the 
mean number of points per one site. Also we have 

(3.1) E{Fc}=E{E{~Ia(X~) f (S(X~)) IX}}  

Next we consider the correlation of B c  and F t .  Since 

BcFc = E 1G(Xi)b(Ri)f(Ri) + E lc(X~)IG(Xy)b(Ri)f(Rj), 
i i#j 

we can show 

(3.2) E{BGFc} = E{E{BGFc I X } }  

=/bfdp.  lCl + G-hlA2(h) 
h # 0  

where we set 

-- E [G n Gh[E{b(S(O))f(S(h))}A2(h) 
h 

A2(h) -- E{A{o}A{h}}. 

Note that ~-~h [G rq G_hlA2(h) = ${A2Go} and A2(0) = A. Therefore we have the 
first result. 
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PROPOSITION 3.1. The covarianee of Bc  and Fc is given by 

Cov{BG, Fc} = Z IG f~ G-hlA2(h) Cov{b(S(0)), f (S(h))}  
h 

In particular, the variance of FG is given by 

Var{FG} = E IG N G_h]A2(h) Cov{/(S(0)),  f (S(h) )}  
h 

and we have a similar expression for Var{Ba}. If Assumption (B) is supposed 

Cov{Ba, Fc} = Cov{b(S(0)), f(S(0))}. ~lal 

+ ( f  bdp f fdp) Var{AG}. 
If, further, Assumption (C) is supposed 

Cov{Ba,-Pc} = Cov{b(S(O)), I(S(0))} • ~lal 

+ ( f  bdp f fdp) ~(1- ~)lG,. 

PROOF. The first result follows from relations (3.1) and (3.2). Others are 
easy. Note that Aa = Y~iea Y(1) in the last case. [] 

4. Threshold method 

Let W and Z be two correlated random variables. Suppose the observation of 
W is impossible or difficult, while that of Z is tractable or easier. Hence, we are 
interested in the estimation of W using Z. If we use the linear estimator 13Z + c~, 
the theoretical estimation error is given by 

E{IW- Z z -  ~12}. 

To get the scale independent error, we consider the estimation error 

E . 

The minimum of this expression is seen to be equal to 

Err = 1 - I Corr{m z}?. 
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Therefore, if the correlation of W and Z is close to 1, we are encouraged to est imate 
W linearly using Z. 

In the threshold method,  we want to est imate FG using Ba where f (x )  = x 
and b(x) = lc(x) = l[c,oc)(x) with some threshold value c > 0. Note tha t  coeffi- 
cients a and/3 depend on the region G in general. The square of the correlation of 
Ba and F a  is given by the results of the preceding section. We use the following 
symbols 

fftl = ~={S(0)} = f m d p ( m ) ,  

m2 = Var{S(0)} = f m2dp(m) - m 2 , 

n (c) = E { l c ( S ( 0 ) ) }  = 

n2(c) = Var{lc(S(0))} = nl(C ) - -  Tt21(C),  

k2(c) = Cov{S(0),  lc(S(0))} = mdp(m) - -  rnlYtl(C ). 

If Assumption (B) is supposed, 

Err = 1 - Ik2(c)AIGI + mini(c)  Var{AG}I 2 
{m2A[G[ + m 2 Var{Aa}}{n2(c)AlG I + n~(c) Var{Aa}}" 

If Assumption (C) is valid, 

Err = 1 - [k2(c) + mini(c)(1 - A)[ 2 
{m2 + m21(1 - A)}{n2(c) + n21(c)(1 - A)}' 

Note tha t  the last expression is independent of G. 
From these expressions, we can see tha t  whether or not we can est imate 

F a  linearly using BG does indeed depend not only on S but  also on X.  An 
important  consequence is tha t  the correlation may be close to 1 regardless of both  
the distribution of S and the threshold value c in an extremal case where, say, 
Var{Aa} is of order O([G[ 2) and the area [G[ is large enough. Of course, this 
is only possible if the process X is dependent.  We believe tha t  this explains the 
empirical fact tha t  R2-values can be fairly large regardless of threshold values. 

Remark 2. A radar can scan a very wide region instantaneously. On the 
other hand, one cloud cluster may sometimes be as big as the total  scan field, 
see the last section. Therefore, it seems natural  tha t  an est imation of regression 
coefficients a and /3 should be based on observations on different periods over 
the same fixed wide region G. Of course, regression coefficients should be chosen 
for a specified region and a specified season. As long as the R2-value is large, the 
knowledge of A or p may be of secondary importance. Several papers discussed how 
to est imate the best threshold value from est imated A and p under the assumption 
(C). If, further, we est imate Var{Aa},  A2 and so on from data,  we may est imate 
the best threshold value from our formulas under assumptions (B) or (A). 
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PROPOSITION 4.1. Assume Assumption (A). Let 13i be the a-algebra gener- 
ated by S(i) and let c~(n) be the mixing coefficient defined by 

c~(n) = s u p { I P { A n B  } - F{A}P{B}I : A ¢ Bi, B C/~j, ti - J l  > n}. 

If  there is a constant d > 0 such that 
(N5 

(4.1) < 

and S(0) 2+d is integrable, then we can show 

Var{F~} = O(,Gl) + ( f o ~ m d p ( m ) )  2Var{Ac} ,  

Var{Ba} = O(lal) + @(,~ Var{Aa}, 

(// // ) Coy{Be, FG} ---- O(IGI) + dp(m) mdp(m) Var{Aa}. 

PROOF. Let Wi be measurable with respect to Bi and ~={1Wil 2+d} be finite 
and bounded. Then it is known that the sum ~ h  I Cov{l/Vo, Wh}I is finite under 
the assumption (4.1), see, e.g., Bolthausen (1982). Note that IA2(h)] < 1. Hence 

~ h  ]G A G_hlA2(h) Coy{S(0), S(h)} < ]G] E ] Cov{S(O), S(h)} I. 
h 

Other relations can be proved similarly. [] 

Remark 3. From this result, we can observe that Corr{BG, Fc} is asymp- 
totically equal to 1 if Var{Aa}/]G I ---+ oc as G T Z2, that is, the threshold method 
does work fine if IG] is large enough. If, further, Var{Aa} = O(IG12), 

rhinE{ ~ G ~ F G c ~ . ~  1 B  - a 2 }  Var{Fa},G, 2 - ~ - ~  G - Err ---+ O, 

as ICI-  ~ ,  that is, Fa/IGI can be estimated linearly using by Ba/IGI. 

PROPOSITION 4.2. Assume Assumption (C) and also assume that p has a 
continuous density function. The minimum of the best linear estimation error of 
the threshold method is attained by the solution Co of the foUowing equation 

(Am1 - c)(n2(c) + n~(c)(1 - A)) = (Anl(c) - 0.5)(k2(c) + m~n~(c)(1 - A)). 

The minimum is equal to 

1 - 4(Aml - c0)2 x n2(c0) ÷ n~(c0)(1 - A) 
( 2 ~ n l ( C 0 )  - -  1) 2 m 2 ÷ m21(1 - -  /~) 

PROOF. Straightforward. [] 
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5. Lattice gas model and coexistence of phases 

Our conjecture assumes a huge variation of numbers of raining sites. Although 
the analysis of the TRMMGT database in the next section suggests it strongly, 
it is worthwhile to show that it is possible at least theoretically. We will borrow 
a model, the lattice gas model, from statistical physics and relevant results. But 
it is not our intention to suggest that this particular model is a decent model 
of the rainfall phenomenon. Nevertheless, we believe, two characteristic features 
which this model is capable to express, that is, the formation of clusters and the 
coexistence of different physical conditions, seem to be reasonable in actual rainfall 
phenomenon. Although all results of this section are straightforward consequences 
of existing theories, it is worthwhile to state them in some details. 

Let # be a constant, called a chemical potential, and let ¢(i) : 7/2\{0} ~ ~ be 
an even function, called a pair interaction potential function. We assume the reader 
is familiar with the definition of lattice gas model, that is, the Gibbsian model on 
the configuration space C = {0, 1} ;g2, and basic concepts such as stationarity and 
ergodicity of Gibbsian distribution, see, e.g., Ruelle (1969, 1978) or Georgii (1988). 
The totality of stationary Gibbsian distributions corresponding to (#, ¢) is denoted 
by g = g,,¢. If the condition 

i¢o 

holds, it is known G ¢ 0. But it is also known ~ may contain more than two differ- 
ent distributions. This phenomenon is known as a phase transition in statistical 
physics and implies that physically different states can coexist. 

Ergodic Gibbsian distributions correspond to physically pure states. It is 
known that the totality g* of stationary ergodic Gibbsian distributions is non- 
empty and coincides with the set of extremal points of the convex set g. Each 
P E g can be expressed uniquely as a mean of a probability measure on g* 
equipped with a suitable measurable space structure 

(5.1) P -- ~ .  Qd~/(Q). 

The following characterization of ergodic Gibbsian distributions is known, see e.g., 
Ruelle (1978). Let H be a continuous function on C and set 

1 
(H)G----IG-- ~ E H o Th. 

h6G 

A sequence of finite sets G = {Gn} tends to infinity in the sense of van Hove, 
written as G / oc, if IGnl -4 oc and IGn o Th\Gnl / IGnl  ----* 0 for each h, 

PROPOSITION 5.1. (Ruelle (1978), Chapter 3) 
bution P is ergodic iff 

lira Var{(H)c}  = 0 
G/c~ 

A stationary Gibbsian distri- 
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for every continuous H. I f  a Gibbsian distribution P is not ergodic, has the de- 
composition (5.1), and Q{fo} is not constant "y(Q)-a.s., then 

lim Var{(~O}G} = lim Var{AG}/IGI2> O. 
G/oc G/oo 

This result shows that, if the assumption of Proposition 5.1 holds, Var{Aa} 
is of order IGt 2. Hence, the threshold method works if IGI is large enough. 

One question remains here. What conditions on p and ¢ are necessary to have 
#Gu,v > 1? Although there have been many studies, we have still only partial 
understanding of phase transition phenomena. This is in contrast with our daily 
experience where coexistence of several different phases (such as ice, water, and 
vapor) is fairly common. Existing results are almost all mere existence theorems 
and the following seems to be most general. This is a particular case of Georgii 
((1988), Theorem 16.21) and its subsequent comments, see also Exercise 2 of Ruelle 
((1978), Chapter 3). 

PROPOSITION 5.2. (Georgii (1988), Theorem 16.21) Let (#0,¢o) be a po- 
tential such that ~ i ¢ o  [¢o(i)1 < +co. Then there exists a potential (#1, ¢1) with 
#1 >_ O, ¢1 <_ 0 satisfying ~-:~i#o I~1(i)1 < + ~ ,  and two members Q1 and Q2 of 

6,o+,1,¢0+¢1 such that f ~odQ1 ~ f ~odQ2. Moreover, we can assume, for each 
fixed r > O, that ¢1(i) = 0 /f lil < r. 

Remark 4. In general, (~1 may not be of finite range, that is, {i; ¢1 (i) ~ 0} 
may be an infinite set. Therefore, remote sites may interact with each other. We 
can assume that both Q1 and Q2 are ergodic. Roughly speaking, this proposition 
implies that a phase transition may occur if 

1) there is an attractive tendency among remote raining sites, that is, raining 
sites tend to form clusters, while 

2) the number of raining sites remains moderate. 

Remark 5. The lattice gas model can be considered as a process on {0, 1} z= . 

The Gibbsian model on the state space {-1 ,  1} Z2 is well-known in statistical 
physics as the Ising model and considered as a model of magnets or crystals. 
Assume that the chemical potential p = 0 and that the interaction is of the form 
with a positive constant J 

J if i = ( 0 , ± 1 ) ,  (-4-1,0), 

0(i) = 0 otherwise. 

Then it is known that there are two different elements P+, P_ of G* such that 
every P E ~ is expressed as their convex linear combination iff J > Jc, see Prum 
and Fort (1991). In particular, there is a phase transition. The critical parameter 
Jc is given as the root of sinh 2Jc = 1. Since, under the transformation x = +1 H 
y = (x + 1)/2 -- 0, 1, this Ising model is equivalent to a lattice gas model, we have 
an example of phase transition models. 
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Fig. 1. Transition (row-by-row) of raining sites from 1988.28.00:00 to 1988.31.22:00 for 
every two hours (dataset II). 

Remark 6. We note that,  even i fVar{Ac} is not of order larger than O(lal) ,  
the threshold method still works if the finite limit limG/+o~ Var{Aa}/IGI exists 
and is relatively large. A condition which guarantees the existence of this asymp- 
totic variance is known. The basic tools are Dobrushin's uniqueness condition and 
F611mer's covariance estimate. See F511mer (1982) for details. But the asymptotic 
variance is always difficult to be evaluated numerically and a Monte Carlo estimate 
is the last resource. 

Remark 7. A phase transition implies a mixture of rain conditions with 
different rainfall characteristics, variances in particular. On this account, it may 
be enlightening to refer to Shimizu et at. (1993). In this paper, authors noted 
two meteorological types of rainfall, that  is, the stratiform and the convective 
environments. For example, a low area-average rain rate with low variance suggests 
a stratiform rain r~gime, while the same area average with a high variance suggests 
a convective environment. 

6. Analysis of the TRMMGT database 

In this last section, we analyze the TRMMGT database. This database con- 
tains rainfall maps as measured by the NOAA/TOGA C-band radar which was 
located near Darwin, Australia. Each data, the unit in mm, consists of a 141 x 141 
pixel array with areal resolution of 2 km x 2 km. Sites beyond 140 km and closer 
than 20 km from the radar are missing and the actual number of observed sites 
is 15,380. We use two hourly data sequences which cover periods Julian days the 
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Fig. 2. Hourly t ime series of number of raining sites from1988.01.20:00 to1988.19.23:00 
(dataset I). 
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Fig. 3. R2-values for threshold values c = 0(0.05)6 for d a t ~ e t  I (straight line) and II 
(dotted line). Largest values are marked. 

first to 19th (Dataset I) and 26th to 47th (Dataset II) in 1988. Note that  Darwin 
was in the wet season. Figure 1 is an animation of the transition of raining sites 
for 4 days from the dataset II. Figure 2 shows the hourly time series of numbers 
of raining sites of the dataset I. They clearly show that  both the area and the 
position of raining sites change very quickly and, therefore, cause a huge variation 
of Ac. 
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Table 1. Sample intensities ~ and sample variances V of AG for TRMMGT database. V* is 
15,380 x ~(1 - ~). 

data size ~ V* V 
Dataset I 436 0 .1452 1910 6330 x 103 = 3314 x V* 
Dataset II 515 0.2157 2601 1154 x 104 = 4437 x V* 

O 

O 

0 

0 

. . . . . .  vwlOOOOOo 

O 
O 

40km 60km 80km l O O k m  120km 140km 
Distance from the radar 

Fig. 4. Graph of ~ / [ G [  °912 for varying radii (dataset II). The horizontal 
line y = 0.54 is added for comparison. 

Figure 3 is graphs of R2-values for threshold values c = 0.0(0.05)6.0. We can 
reconfirm Chiu's  discovery tha t  there  is a very high correlat ion between F c  and 
B a .  Also note  tha t  correlations are fairly high irrespective of threshold values. 
Best threshold values are seen to be 3.3 m m / h o u r  (Dataset  I) and 2.6 m m / h o u r  
(Dataset  II). Corresponding R2-values are 0.955 and 0.952 respectively. 

Sample intensities ~ and sample variances V of Aa based on hourly da ta  
are t abu la ted  in Table 1. If the independent  raining site assumption is valid, V 
should be close to V* = 15,380 x ~(1 - ~). Clearly the independent  raining site 
assumption is rejected. Finally, Fig. 4 is the graph of v/Var{Ac}/IGI °912 for 

varying radii (dataset  II). It  shows tha t  v @ a r ( A c )  ~ 0.541GI °-m2, a fact which 
strongly suggests the presence of a phase transit ion.  For the dataset  I we have 
v /Var (Aa)  ~ 0.80IGI °.s42. 

Prom these table and figures, we can see a huge variat ion of numbers  of raining 
sites which we have conjectured to be the main reason why the threshold me thod  
works so fine. 
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