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Abst rac t .  The paper presents a characterization of a general family of distri- 
butions by the form of the expectation of an appropriately truncated function 
of the random variable involved. The obtained result unifies results existing in 
the literature for specific distributions as well as new results that appear for 
the first time in this paper. A discrete version is also provided unifying existing 
characterizations of known discrete distributions. 
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1. Introduction 

Conditional expectations have been widely used for deducing characterization 
results concerning probability distributions. The reason for this can be traced in 
the practical value of such characterizations that stems from the fact that  infor- 
mation concerning conditional expectations is easily accessible. 

In several instances, the characteristic condition involves the expectation of the 
truncated form of appropriate strictly monotonic functions of the random variable, 
that  is an expectation of the form E ( h ( X )  I X > y), y > 0, where h(.) is a given 
strictly monotonic function. Knowledge of the form of this expectation can lead 
to the distribution of the random variable X. Shanbhag's (1970) characterization 
of the exponential distribution by the assumption that 

(i.I) E ( X  I X > y) = y +  E ( X )  

is a typical result in this area of characterizations. 
Of course, there has been a number of other results in the literature based on 

the more general condition, 

(1.2) E ( h ( X )  I X > y) -- g(y) ,y > 0 
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for specific forms of the functions h(.) and g(.). So, for various choices of g(.) it is 
worth mentioning the results by Kotlarski (1973, 1975) Shanbhag and Rao (1975)~ 
Gupta (1975) and Dallas (1976). 

The theoretical interest, the mathematical  elegance and above all the practical 
value of results based on (1.2) is enhanced when g(.) can be expressed in terms 
of h(.) and particularly when h(.) is an additive component in the analytical ex- 
pression of g(-). The reason lies in the interpretation of such an expression as 
an a t tempt  to approximate E(h(X) I X > y) by h(y), an aim often pursued in 
connection with applications. 

Thus, given such an interpretation, Shanbhag's (1970) simple condition in 
(1.1) acquires a greater practical value especially since it is connected with the 
exponential distribution, a distribution with a flood of applications. The same 
can be said for several other results along these lines: 

Using (1.2), Hamdan (1972) characterized a class of distributions which in- 
cludes the Weibull, the exponential and the uniform distribution by assuming 
that  g(y) -- h(y) + h(c), where c is a constant. Under certain restrictions on the 
function g(.), Laurent (1974) showed that  the distribution of a random variable X 
can be uniquely determined by the the condition E ( X  I X > y) = y+ f(y), y > O, 
where f(y) is an arbitrary function satisfying certain restrictions. It would be 
worth noting at this point that  several of the above mentioned characterizations 
can be regarded as consequences of Kotlarski's (1973) result which, under certain 
restrictions, shows that  a distribution function F(.) is uniquely determined as the 
distribution function of a random variable X if and only if 

b / ,  

(1.3) E[h(X) t X > y] = h(y) + /~  (1 - F(x))dh(x)/(1 - F(y)),  a < y < b. 

A natural question that  arises is whether a unification of these results is pos- 
sible. 

In the next section of this paper the answer is given in the affirmative. A 
result is provided that  can indeed be regarded as unifying the above cited char- 
acterizations upon considering g(y) in (1.2) to be of the form h(y) + H(y). Of 
course, (1.3) is of this form except that  it is somewhat restrictive as H(.) is re- 
quired to be expressible terms of a proper probability distribution function. In 
the result that  follows on the contrary, no specific assumptions are made concern- 
ing the form of the function H(.): It is merely, the remainder in the approxi- 
mation of E(h(X) [ X > y) by h(y). Since, as mentioned earlier, approximating 
E(h(X) ] X > y) by h(y) is often pursued in connection with applications, charac- 
terizing the distribution of a random variable X by a generic form of the remainder 
H(y) in the above approximation becomes of greater importance. So, the result of 
Theorem 2.1 in the next section, being in this respect an alternative formulation 
of Kotlarski's (1973) result, can be thought of as connecting a multi tude of char- 
acterization results for specific continuous distributions: Some of them are new, 
others are known. 

Section 3 treats the case of discrete distributions where a known result based 
on a characterizing condition of type (1.2) is Shanbhag's characterization of the 
geometric distribution. So, discrete versions of the characterizing condition (1.3) 
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as well as of the main result of Section 2 are provided leading to known results for 
specific discrete distributions. 

2. Characterization of a general class of distributions based on conditional expecta- 
tions: The continuous case 

THEOREM 2.1. Let X 
tribution function Fx (x), x 
differentiable function with 

be a real valued random variable with continuous dis- 
>_ ~. Let h(.) be a strictly monotonic and continuously 
E(h(X)) < oc and assume that, 

(2.1) E[h(X) I X > y] = h(y) + H(y), y >_ a 

where H(y) is an arbitrary function. Then the distribution of X is uniquely de- 
termined by the form of the function 

H(y) = E[h(X) I X > y ] -  h(y), y >_ a. 

PROOF. From the definition of E[h(X) I X > y] we have 

/v °° h(x)dFx(x) = Fx(y)[H(y) + h(y)]. 

Using integration by parts the R.H.S. and E(h(X)) < c~ we find 

/y c¢ h'(x)Fx(x)dx = H(y)Fx(y). 

Differentiating the above we find 

-h ' (y)Fz(y)  = H'(y)Fx(y) + H(y)F~(y) 

and solving it we find 

(2.2) F x ( y ) = c ° e x p { - / h ' ( y ) + H ' ( y ) d y  } H ( y )  

and Co is determined from Fx  (a) -- 1. This completes the proof of the theorem. 

It is therefore obvious that since in practical situations it becomes often im- 
portant to approximate an expectation of the form E[h(X) I X > y] by h(y), 
(2.2) provides the population distribution for a variety of problems in terms of the 
remainder H(y) of this approximation. 

Thus, Hamdan's (1972) characterization of the Weibull distribution follows for 
h(x) = x ~, a > 0 and H(x) = c, c > 0, x 6 [0, oo) leading to Shanbhag's (1970) 
characterization of the exponential distribution when a = 1. Laurent's result is 
also obtained for h(x) = x, x >_ O. 
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Several new characterizations are further obtained. Of these it is worth 
mentioning (i) a characterization of the power function distribution for h(x) = 
- ln (1  - x"), c~ > 0, x E [0,1] and H(x) =- 1, x E [0,1) reducing to Hamdan's 
(1972) characterization of the uniform distribution in (0, 1) for c~ = 1, (ii) a char- 
acterization of the Burr distribution for h(x) = ln(1 + x~), (~ > 0, x E [0, ce) 
and H(x) -- c, c > 0, x E [0, oc) yielding a characterization of the beta type II 
distribution for ~ = 1, (iii) a characterization of the Pareto distribution in [1, oc) 
for h(x) = In X and H(x) = c, c > 0, x E [1, oc) and (iv) a characterization of the 
Pareto distribution in [8, co) for h(x) - x, x E [8, oc) and H(x) = ~, a - l ,  ~ :> O, 

E [8, 
In closing this section, it would be worth noting the following: As already 

mentioned in the introduction, the particular case where the remainder H(y) in 
the approximation of E[h(X) I X > y] is a constant and of the particular form 
h(c), i.e. the case where g(y) in (1.2) equals h(y) + h(c) provides the possibility of 
extending characterizations of the exponential distribution based on the condition 

(2.3) E[h(X) I X > y] = h(y) + h(c). 

This is an alternative form of the condition of constant residual life expectancy 
whenever h(.) is a monotonic function and leads to a characterization of the distri- 
bution of the random variable h(X)  as exponential. Indeed, Galambos and Kotz 
(1978) point out that  is a disguised but essentially equivalent form of the charac- 
terization of the exponential distribution as the distribution of a random variable 
X based on the condition 

(2.4) E[h(X) I X > y] = y +  c. 

This is due to the fact that for strictly increasing h(.) the events {X > y} 
and {h(X) > h(y)} are equiprobable. Hence, (2.3) provides a family of character- 
izations for the exponential distribution as the distribution of h(X) and can only 
be considered as an extension of (2.4) in the sense that  it may lead to meaningful 
characterizations of distributions whose mean is infinite. 

3. Characterization of a general class of distributions based on conditional expecta- 
tions: The discrete case 

Equation (1.1) expresses an elementary characterization of the exponential 
distribution derived by Shanbhag (1970) while using (1.1) with respect to vari- 
ous monotonic transformations of X leads to characterizations of other continuous 
distributions which, as seen in the previous section, can be unified through Theo- 
rem 2.1. Shanbhag's (1970) characterization of the geometric distribution by the 
condition E ( X  [ X > y) = [y] + E(X) ,  y >_ 0 provides a case of a characteriza- 
tion of a discrete distribution by a property of the expectation of the truncated 
variable X. The relationship that  exists between the exponential distribution and 
the geometric distribution is of course well known and many aspects of it have 
been revealed through the duality of their properties, the above mentioned char- 
acterization being one such instance. As a result of this duality, the geometric 
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distribution is regarded to be the discrete counterpart  of the exponential distri- 
bution. The Paxeto and the Yule distributions are another pair of distributions 
linked by the same type of association (Xekalaki and Panaxetos (1988)). Since 
the results that  preceded and motivated theorem (2.1) lead, among other results, 
to characterizations of the Pareto distribution, it would be interesting to examine 
whether its discrete counterpart,  the Yule distribution, can also be characterized 
by the form of the expectation of an appropriate t runcated random variable. It 
becomes evident from what follows that  indeed this duality exists with respect to 
this characteristic property too. In fact a more general distribution, the Waxing 
distribution, which contains the Yule distribution as a special case, is character- 
ized. 

The fact that  at least two discrete probability distributions can be character- 
ized by the form of appropriate conditional expectations leads to the question of 
whether a more general class of discrete distributions can be characterized in the 
same manner. 

As shown in the sequel, in the form of two theorems, this holds true. Specif- 
ically it is shown (Theorem 3.2) that  a discrete analogue of Kotlarski's (1973) 
characteristic condition as given by (1.3) is valid and the obtained results are fur- 
ther generalized by the subsequent theorem (Theorem 3.3) which in turn  can be 
regarded as the discrete version of Theorem 2.1. 

Before proving the main results we provide some definitions. 

DEFINITION 3.1. A non-negative integer valued random variable X is said to 
have the Waring distribution with parameters a and p if its probability function 
is given by, 

pa(x) 
(3.1) P z = P ( X = x ) -  (c~+p)(x+l)' x = 0 , 1 , 2 , . . . ,  a > 0 ,  p > 0  

where 
a(r) = r ( a  + r ) / r ( a ) ,  r = 0, 1, 2, . . . .  

DEFINITION 3.2. A non-negative integer valued random variable X is said to 
have the Yule distribution on {1 ,2 , . . .}  with parameter p if its probability function 
is given by 

(3.2) Pz = P ( X  = x) - p(x - 1)! x = 1 , 2 , . . . ,  p > o. 

Obviously (3.2) is a shifted one unit  to the right Waxing distribution with a = 1. 

LEMMA 3.1. Let X be a non-negative integer-valued random variable. Then, 

(3.3) P ( X > r ) = ~ ( a + r ) P ( X = r ) ,  r = 0 , 1 , 2 , . . . ,  a > 0 ,  p > 0  

if and only if X follows the Waring distribution with probability function given by 
(3.1). 
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PROOF. 
Necessity: 

Then 
Let X be a random variable having a Waring (a; p) distribution. 

P ( X  > r) = 
oo 

pa(~) 

E (a+p) (x+l )  
x = r + l  

- -  P C ~ ( r )  ~1 (c~ ÷ r)(x) 
(~÷P)(r+l) = (~÷P+r÷l)(x) 

1 o~ p(a + r)(~+l) 

= P ( X  -- r ) ;  x ~  0 (ol ÷ pW r ÷ 1)(x+l) 

= 1-(a + r )P(X  = r). 
P 

Su]~ciency : Let 

(3.4) P ( X > r ) = ~ ( a + r ) p r ,  r = 0 , 1 , 2 , . . . ,  a > 0 ,  p > 0 .  

Specializing (3.4) for y = r and y = r + 1 and subtracting the resulting equations 
we obtain 

~ ÷ r  
p r + l -  ~ +  p+ r + l pr =0" 

The unique solution of the above difference equation is given by 

r-1 
a + i  

Pr =P0 H c~ + p +  1 + i  
i = 0  

= P 0 ( ~ + p +  1)(~1' 

But o0 _- --2-- which completes the proof. ~-~x=0 Pr 1 which leads to P0 = ~+p 

THEOREM 3.1. Let X be a non-negative integer-valued random variable with 
a finite expected value. Then X is distributed according to the Waring distribution 
with probability function given by (3.1) if and only if 

(3.5) E [ X I X > y ] - - # + ( y + I ) # I ,  y = - 1 , 0 , 1 , . . .  

where # = E(X)  - p-l~ and #1 = p-lP , (i.e. #1 is the expected value of the 
corresponding Yule (p) distribution). 

PROOF. 
Necessity: Let X be a random variable having a Tar ing  (a; p) distribution. 

For y = - 1  (3.5) is obvious. For y = 0, 1, 2 , . . .  we have from the definition of 
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E[X { X > y] and the result of Lemma 3.1 that 

E [ X  I X > y] - - -  
p 1 

a + y P ( X = y )  E x P ( X = x )  
x = y + l  

__ p 1 

a + y P ( X = x )  E ( x + y + l  ) P a(x+u+l) 
x=0 a + p (a + p + 1)(~+~+1) 

p 1 

c~ + y P ( X  = y) 
o o  

• E ( x  + y + 1) p a(y+l)(C~ + y + l)(x) 
~=0 a + p (a + p + 1)(y+~)(a + p + y + 2)(~) 

oo 
p (a + y + 1)(:~) 

a + p + y + l  ((~ + p + y  + 2)(x) 
x----O 

p (a + + i)(=) 
+(Y+ 1) E o~+p+y+ 1 (a + p+ y + 2)(x) 

x=O 

a + y + l  
- + y + l  

p - 1  

---- # + (y + 1)#1. 

Su~ciency: Let E[X I X > y] = # + (y + 1)#1. This relation can be 
equivalently written as follows: 

oo 

(3.6) E x P ( X = x ) = # P ( X > y ) + ( y + I ) # I P ( X > y ) ,  y - - - i , 0 , 1 ,  . . . .  
x = y + l  

Subtracting (3.6) from the corresponding equation for y - 1, we obtain 

( y -  # -  yp l )P(X = y) = - # I P ( X  > y), y = O, 1,. . . .  

Since E(X) < oo from (3.5) it follows that #1 > 1. Therefore the last relation 
reduces to 

[#1 - 1 # ) P(X = y), 
P ( X > y ) = L---~I y + -~l y = 0, 1, 2, . . . .  

But this is characteristic for the Waxing (a = ~ 1 - 1 ;  fl  = ~1"1) distribution ac- 
cording to the result of Lemma 3.1. 

We observe from the theorem above that E(X  I X > r) = (r + 1)E(X) for 
all r = 0, 1 ,2, . . .  or equivalently E( X  ] X > r) = rE (X)  for all r = 1 ,2 , . . .  
characterizes the Yule distribution with p > 1. 

THEOREM 3.2. Let Xo and X be two non-negative integer-valued random 
variables with corresponding distribution functions Fo and Fx. Let also Fx (a) = 
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Fo(a) = 0 for some a > O. Let h(.) be a real strictly monotonic function such that 
E[h(Xo)] < c~ and E[h(X)] < oc. Then Xo and X are identically distributed if 
and only if the following condition is satisfied 

(3.7) E[h(X) [ X > y] = E[h(Xo) [ Xo > y] for all y = -1,  0, 1 , . . . .  

PROOF. 
Necessity: 
Sufficiency: 

Obvious. 
Observe that by the definition of E[h(X) I X > y] we have 

oo 

E[h(X)  r X > y] = 
x = y + l  

h(x )P(X  = x I X > y). 

Then, writing 

P ( X  = x l X > y) = ( F x ( x  - 1 )  - g x ( x ) ) / F x ( y ) ,  x = y + l , y  + 2 , .  . .  

we obtain, through an algebraic identity of Abel's lemma type 

oo 

(3.8) E [ h ( X ) ] X  > y] = h (y+ 1) + [Fx(y)] -1 E Fx(x)[h(x + 1) - h(x)]. 
x = y + l  

A similar expression is obtained for E[h(Xo) [ X0 > y], y = -1 ,0 ,  1 , . . . .  Then, 
comparing the relations (3.7) and (3.8) it follows that 

(3.9) [F°(Y)]-I E Fo(x)[h(x + 1 ) -  h(x)] 
x = y + l  

= [ x(y)1-1 F (xl[h(x + 1) - h(x)]  
x = y + l  

y = -1 ,0 ,  1, . . . .  

Let 

oc 

(3.10) Ko(y) = E Fo(x)[h(x + 1) - h(x)], 
x = y ÷ l  

y -- -1 ,0 ,  1, . . .  

and 

(3.11) K ( y ) =  E 
x = y + l  

Fx(x)[h(x+ 1) - h(x)]. 

From (3.10) forming the difference for y and y -  1 we have, after some calculations 

(3.12) ~o(y)= Ko(y) -Ko(y- 1) 
h ( y ) - h ( y + l )  ' y=O,  1, . . . .  
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In a similar way start ing from (3.11) we find tha t  

(3.13) Fx(y) = g ( y )  - K ( y  - 1) 
h ( y ) - h ( y + l )  ' y = 0 , 1 ,  . . . .  

Subst i tut ing back in (3.9) it follows that  

g0(y) K(y) 
(3.14) go(Y) - go(y  - 1) = K(y) - g ( y  - 1)'  y = 0, 1, 2, . . . .  

From (3.14) it is obvious that  K(y)  = CKo(y), where C constant.  Using (3.10) 
and (3.11) this last relation becomes,  

oo oo 

(3.15) E Fx(x)[h(x + 1) - h(x)] = C E Fo(x)[h(x + 1) - h(x)], 
x----y+l x=y+l  

y = 0, 1, 2, . . . .  

Working as with relation (3.10) we have because of the strict monotonici ty  of h(.) 

/7=(y + 1) = CFo(y + 1), y = - 1 ,  0, 1 , . . .  

i.e. 

P = ( y )  = c k 0 ( y ) ,  y = 0 , 1 ,  2, . . . .  

Since Fx(o~) = Fo(o~) = 0 it follows C = 1, therefore, Fx(y) = Fo(y), y >_ o~, 
a _ > 0 .  

Because of the  previous theorem we have that  the geometric distr ibution with 
distr ibution function F(x)  = 1 -  ( 1 - p ) ~  is characterized by E[X I X > y] = y+ 1, 
y = 1, 2 , . . .  if we take h(x) = x. 

The same holds true for the Yule distr ibution with dis tr ibut ion function 
x! F(x)  = 1 (p+l)(~--------~ x = 1 , 2 , . .  p >  0 i f h ( x )  = x a n d E [ X I X  > y] = ( y + l )  p 

' " ' p - - l "  

This also follows from the corresponding characterization of the Waring distribu- 
tion by translat ion and ~ = 1 which can be characterized by relation (3.16) 

p 
(3.16) E [ X I Z > Y ] - p _ l ÷ ( Y + l ) p - - 1 ,  y = 0 , 1 , 2 , . . .  

and h ( x )  = x .  

A proof  of the above is as follows: As X . . . .  
we have 

y 1 is non negative given X > y 

(3.17) 
1 oo 

E [ X  I X > y] = (y + 1) + ~(y) Z 
x=y-.I-1 

~(x). 
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For the Waring distribution ~'(x) = ~*~P(X = x), x = 0, 1 , . . .  a , p  > 0, and p 

substitution in (3.17) gives 

oo 

1 ~ ~ P(x:x) (3.18) E[X I X > y] = (y + 1) + Fx(y) P ~=y+l 

o~ 
1 1 

+ -; Px(yi Z p ( x  = x) 
x----y+1 

= y +  1+ ~ + 1-E[X l X > y]. 
P P 

Solving (3.18) with respect to E[X I X  > y] the result follows. 

THEOREM 3.3. Let X be a discrete random variable defined on {m, 
m + 1, . . .} ,  m -- 0, 1, 2 , . . .  with distribution function Fx(x).  Let h(.) be a strictly 
monotonic function. Then the function 

(3.19) H ( y ) = E [ h ( X ) I X > y ] - h ( y ) ,  y = m , m + l , . . . ,  m = 0 , 1 , 2 , . . .  

uniquely determines the distribution of X.  

PROOF. By an argument similar to that  used for the proof of Theorem 3.1 
it follows that  

E[h(X) I X > y] = h(y+ 1 ) +  ['x(Y) E [h(x + 1 ) - h ( x ) ] F x ( z )  
x=y+l 

o r  

(x) oc 

(3.20) ~ h(x+ 1)Px(x)- ~ h(x),~x(x)= Px(y)[H(y)+h(y)-h(y+l)] 
x = y + l  x-~y+l 

Using the same technique of subtraction we find 

H(y + 1)f'x (y + 1) - [H(y) + h(y) - h(y + 1)]Fx(y) = 0. 

Since h(.) is monotonically increasing the relation (3.19) leads to H(y) > 0 for all 
y. Therefore this last relation can be written, 

Fx(y) - g ( y  - 1) + h(y - 1) - g ( y -  1) h ( Y ) F x ( y -  1) = 0. 

Since F x ( m -  1) = 1 the unique solution of this difference equation is given by, 

9-1 H ( r -  1) + h ( r -  1) - h(r) 
(3.21) F x ( y -  1) = P ( X  >_ y) = H H( '~-  i) 

r~-?Tt 
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Therefore P ( X  >_ y) is uniquely determined by h(y) and H(y). 

Because of the previous theorem we have that the geometric distribution is 
characterized by E[X I X > y] = y + c ,  for c > 1 and y = 1,2, . . . .  Note 
that this result is a variant of Shanbhag's (1970) characterization of the geometric 
distribution. 

COROLLARY 3.1. (Characterization of the (m - 1)-truncated Yule distribu- 
tion) Let X be a discrete random variable taking values on {re, m+ 1,. . .}.  Then 
the distribution of X is the (m - 1)-t~uncated Yule with parameter p = - ~  > 0 
and probability function given by 

(m + 1)(x-m) 
P(X  = x) = P ( p + m +  1)(x-,~+1) ' x = m ~ m +  l , . . . ;  m =  1~2,. . . ,  p > 0  

if and only if 

E [ X l X > y ] = a + ( ~ + l ) y ,  for a < - l ,  3 < 0 ,  a n d y = m , m + l ,  . . . .  

PROOF. Letting h(x) = x and H(y) = ~ + ~y the characterizing condition 
(3.21) becomes 

y-1 ( a -  j3 + 1) +/3r  
P(X > y) = 1-I + Zr 

or equivalently, 

(3.23) P ( X > Y ) = (  a - ~ + l  /3 + m  ( y - m ) /  ( ~ - ~ -  +m) 
(y-m) 

y = m , m +  l, . . . .  

In the special case a - ~ + 1 =/3 the relation (3.22) becomes, 

(m + 1)(y_m) 
P(X  > y) = (1 q- p + m)(y_,~) 

(m + 1)(v-m) 
---- (p q- 1 + y)(1 + p + m)(y--rn+l) 

[ 1 + 1  +1) )  ( m ÷ i ) ( v - m )  
p(Y P (1 + p + m ) ( y - m + l )  ' 

But this is the necessary and sufficient condition for X to be distributed according 
1 to the (m - 1)-truncated Yule (p), p = - ~  > 0 (Xekalaki (1984)). 
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