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A b s t r a c t .  We treat with the r-k class estimation in a regression model, which 
includes the ordinary least squares estimator, the ordinary ridge regression 
estimator and the principal component regression estimator as special cases 
of the r-k class estimator. Many papers compared total mean square error of 
these estimators. Sarkar (1989, Ann. Inst. Statist. Math., 41, 717-724) asserts 
that the results of this comparison are still valid in a misspecified linear model. 
We point out some confusions of Sarkar and show additional conditions under 
which his assertion holds. 
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1. Introduction 

It is well-known in the regression model : 

(1.1) r = x +e 

that  the ordinary least square (OLS) estimator ~ of the regression coefficient vector 
fl has large variance under the multicollinearity of explanatory vectors 

x = ( x l , . . . ,  

In order to take care of the trouble of this variance divergence, we discuss the 
following two devices to solve the normal equation of the least square method 
although these cause their estimators to be biased: 

(L1) Reduction of the p x p information matrix X t X  to r × r one with r < p 
eliminates the multicollinearity. 

(L2) Addition of the dummy diagonal matrix kip to X ~ X  ensures the stability 
of the solution and its variance. 
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From the point of view of (L1), Kendall (1957) proposed and Maxquardt 
(1970) investigated the principal component regression (PCR) estimator/}(r, .) 
(say), where r is the number of principal components selected. From the point of 
view of (L2), Hoerl and Kennard (1970) proposed the ordinary ridge regression 
(ORR) estimator/}(-, k) (say). See also Lawless and Wang (1976). 

Now, we face to the r-k class estimator derived from a combination with the 
above two devices, which is suggested by Marquardt (1970) and examined in detail 
by Baye and Parker (1984). Let us denote the r-k  class estimator with r selected 
principal components and the dummy constant k by ~(r, k). Then, the OLS, PCR 
and the ORR estimators are rewritten with this notation as follows: 

(1.2) h(r,  ) = t}(r,0) ,  = 

respectively. 
Baye and Parker (1984) showed that the total mean square error (TMSE) of 

the r-k  class estimator is less than one of the PCR estimator under the common 
r and adaptive k: 

TMSE(fl(r, k)) _< TMSE(/3(r, .)), 

where, denoting the Euclidean norm by I1" [[, 

TMSE(/~(r, k)) = E { (fl(r, k ) - fl)' (]~(r, k ) - fl)} = E { ]l~(r, k ) - fill2}. 

In the same way, Nomura and Ohkubo (1985) also showed the superiority of the 
r-k class estimators with adaptive r, k over the OLS, ORR estimators. See also 
Martinez (1990). 

Sarkar (1989) treated with the following misspecified linear regression model: 

(1.3) Y *  = X f l + u ,  u = C ' y + e  

which is caused by omission of some explanatory vectors 

C = 

whereas Rao (1973) discussed the same model from the point of view that con- 
comitant vectors C are added to the explanatory vectors and are available to 
estimation of regression coefficients. Sarkar asserted, unfortunately with some 
confusions, that the superiority of the r-k class estimator over the OLS, PCR, 
ORR estimators is still kept in the misspecified model under the same conditions 
as in Baye and Parker and Nomura and Ohkubo. Our main aim is to point out 
his confusions and to correct the conditions so that the Sarkar's assertion could 
be affirmed. 
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2. Preliminary 

Let us consider the model (1.3) where Y* is an n dimensional column vector of 
response variables, f~, 7 are p, q dimensional column vectors of unknown regression 
coefficient parameters, respectively, and X,  C, e satisfy the following assumptions: 

ASSUMPTIONS. (A1) X is an n x p matrix of explanatory vectors standard- 
ized in such way X ~ X  is a correlation matrix and C an n x q matrix of concomitant 
vectors, which are observable and satisfy 

rank(X, C) = p + q(_< n), X '  C # O. 

(A2) e is an n dimensional column vector of errors with the following mean 
vector and variance matrix: 

E(6) = 0, v (6)  = a2Xn 

where IN is the n dimensional identity matrix and a 2 is an unknown variance of 
error. 

In this model, we consider the r-k class estimator for regression coefficients 
without using concomitant variables explicitly: letting Np -- {1 , . . . ,  p}, 

(2.1) l)*(r,k) T a (k) -1 ' ' = T~X Y*, for r E N p ,  k>_O, 

which includes the OLS, PCR, ORR estimators as special cases, respectively: 

(2.2) 

(2.3) 

(2.4) 

fl* = ( X ' X )  - 1 X '  Y*, 

~*(r,.) T rA;  1 ' ' = T~.X Y*, r C N p ,  

~ * ( . , k ) = ( X ~ X + k l p ) - l x t y  *, k>O.  

In the above equations, we use the notations defined as follows : A = diag(A1,. . . ,  
Ap) is the diagonal matrix of eigenvalues of X ~ X  with 

A1 >_ "'" _> ,~r >_ Ar+l _> "'" _> Ap > 0 

and T = ( t l , . . . ,  tp) is a p x p orthogonal matrix satisfing T ~ X t X T  = A. Fur- 
thermore, T~ and 
respectively: 

satisfing 

Tp\r are p x r and p x (p - r) orthogonal submatrices of T, 

T = (Tr; Tp\r) = ( t l , . . . ,  tr; t r + l , . . . , t p )  

T~X'XT~ = A,  - diag(.Xl,.. . ,  )~,-), 

T£\rX'  XTp\r = Ap\r -- diag(A,-+l,... ,.kp), 

and At(k) = Ar + kL .  
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Sarkar (1989) discussed the r-k class estimator in the misspecified regression 
model which is the same as the above concomitant regression model without the 
fact that  C is unobservable in the former model but observable in the latter. 
Then, he asserted that  the superiority of r-k class estimator holds still in the 
misspecified regression model under the same conditions as in the usual regression 
model (1.1). However, we have the following equation of the total mean square 

error of r-k estimators/}(r, k) and ~*(r, k) in the above two models (1.1) and (1.3), 
respectively: 

^ *  

(2.5) TMSE(~ (r, k)) 

= WMSE(fl(r,k)) 

+ 6' T~Ar(k) -2 T~6 + 26' TrA~(k) -1 T¢( T~A~(k)-IA~ T¢ - Ip)~, 

where 6 = X I C~, and 

(2.6) TMSE(~(r,  k)) = a 2 tr Ar(k) - IArAr(k )  -1 + II(T~A~(k)-IA~ T'~ - Ip)~ll 2. 

Unfortunately, Sarkar lost the last term in the above equation (2.5), although this 
cross term can not be ignored. 

In the next section, we investigate the effects of this cross term for TMSE 
comparisons in the concomitant regression model and show additional conditions 
for concomitant variables under which the superiority of r-k class estimator is 
confirmed to be kept. 

3. Main results 

First, we rearrange the results and their at tended conditions of comparison 
among the TMSE's  of the r-k class estimators in the usual regression model. We 
have the following four conditions: 

2o -2 
(c1) o < k _< H~ll--- ~,  

O-2 
2 N p \ r  ' (C2) ~i ai > O, for i E 

2a 2 
(C3) 0 < k _< i la, . l l~,  

(C4) 0 - < k <  min { A' ( a2 ) }  

where for r = 1 , . . .  ,p, we put sets of integers: 

Nr = { 1 , . . . , r } ,  N p \ r = { r + l , . . . , p } ,  

and vectors: 

Np\ ,  = O, 

,:, = [ ~ , , . . . ,  o,,., ~ , . + , , . . . ,  ,:,,,]' = ~p',,- T,~\r~' J 

[ ] [-',l 
~ =  [ ' r /1,. . . ,~,, ,r /r+,, . . . ,r /p] '= 'q~ -- T~krSj = T'~. %\,- 
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In the sense of TMSE, Hoerl and Kennard (1970) and Marquardt (1970) showed 
the superiority of the ORR estimator under Condition (C1) and that of the PCR 
estimator under (C2) as compared to the OLS estimator, respectively. Baye and 
Parker (1984) and Nomura and Ohkubo (1985) also obtained the superiority of 
the r-k class estimator as compared to the PCR estimator under (C3) and the 
ORR estimator under (C4), respectively. Note that (C1) is included in (C3) and 
(C2) is done in (C4), as a special case, respectively. 

Now, we propose the following conditions which guarantee Sarkar's assertion 
in the misspecified regression model : 

(CI*) : (C1) and 

(C2") = (C2), 

(C3") : (C3) and 

( C4*) :0_<k <  min 
iENp\~ 

ai~i>O, for any i c N  v, 

a i~  _ O, for any i E Nr, 

Since (C2") = (C2) is included in (C4") and (CI*) is done in (C3") as a special 
case, respectively, it is sufficient to discuss cases for Conditions (C3") and (C4"). 

First, we consider the comparison between the TMSE of the r-k class estimator 
^ ~  ^ ¢ $  

(r, k) and the PCR estimator fl (r,-). 

THEOREM 3.1. Under Condition (C3") for a fixed r E Np, the total mean 
square error of the r-k class estimator is less than that of the PCR estimator: 

^ ~  ^ ~  

TMSE(fl ( r , k ) )<  TMSE(fl (r,.)). 

PROOF. It follows from the relation (1.2) and the equation (2.5) that 

TMSE(/~* (r, k)) - TMSE(/~* (r,.)) 

= {TMSE(/~(r, k)) - TMSE(/~(r, .))} + 8'Tr(Ar(k)  -2 - A~ -2) T~8 

+ 25' TrA~(k) -] T~( TrA~(k ) - IAr  T~ - Ip)~ 

-= R1 -4- R2 -4- R3 (say), 

where R3 was omitted in Sarkar (1989). Let us check the sign of R1, R2 and R3. 

We have, already under (C3), 

and, for k > 0, 

R1 ---- TMSE(/}(r, k)) - TMSE(/~(r, .)) < 0, 

iENr 
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Furthermore, we see 

k 
R 3 = - 2 E  ( h i + k )  2 a i ~ i < 0 '  

iENr 

under additional condition : 

a i ~ i ~ O ,  for i E N ~ .  [] 

Since (C3") for r = p means (C4"), we have the following corollary by Theorem 
3.1 together with the relation (1.2). 

COROLLARY 3.1. Under Condition (C1"), the total mean square error of the 
ORR estimator is less than that of the OLS estimator in concomitant regression 
model: 

TMSE(~*(.,k)) < TMSE(~*). 

Next, we consider the comparison between the r-k class estimator/3*(r, k) and 
^ $  

the ORR estimator ~ (., k) in the concomitant regression model (1.3). 

THEOREM 3.2. Under Condition (C4") for a fixed r E Np_l, the total mean 
square error of the r-k class estimator is less than that of the ORR estimator: 

TMSE(~*(r,k)) < TMSE(~*(.,k)). 

PROOF. Note that we can rewrite the TMSE of/~* (r, k) as follows: 

(3.1) TMSE(/}*(r, k)) = a 2 tr a~(k)-~ a~a~(k)  -1 + ~ (Ip - T,. T~)B 

+ (6-  kfl)' T~a~(k) -2 T ¢ ( 5 -  kt~). 

This equation and the relation (1.2) leads to 

TMSE(#*(r, k ) ) -  TMSE(#* (., k)) 

= cr 2 tr a r ( k ) - l a r A r ( k )  -1 + ~'(Ip - T~ T~)I3 

+ ( l i -  k~)' T~A~(k) -2 T ~ ( $ -  kl~) 

- {a 2 tr A ( k ) - I A A ( k )  -1 + ( 6 -  k~) 'TA(k)  -2 T ' ( $ -  k~)} 

= (ap\rap\~ - a 2 tr Ap\r(k)- lAp\~Ap\~(k)  -1) 

- (6 - k~)' Tp\rAp\~(k) -2 Tp\r(6 - k~) 

--- R1 + R2 (say). 

Let us check the signs of t?/1 and/~2. Since the matrix At(k) -2 is positive definite 
for k > 0, we see R2 < 0, with equality only for Tp\~(6- k~) = 0. 
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Furthermore, we have 

a2A~ } 
E <0, 

iENv\~ 

under Condition (C4"). [] 

We have the following corollary by Theorem 3.2 with k -- 0: 

COROLLARY 3.2. Under Condition (C2") for a fixed r E Np-1, the total 
mean square error of the PCR estimator is less than that of the OLS estimator: 

TMSE(~* (r,.)) < TMSE(~*). 

4. Discussion 

Our results is not really a comment for the Sarkar's assertion. Because the 
conditions (CI*), (C3") can not be used under the misspecified model proposed by 
Sarkar (1989). If the conditions could be recomposed without depending on C in 
(1.3) like the conditions (C2"), (C4"), we would use his model from (in) which C is 
eliminated (unknown). Unfortunately, such conditions couldn't be made up. Rao 
(1973) discussed mathematically same model from the point of view that  (known) 
concomitant vectors C are available to estimation of regression coefficients/~. Since 
the conditions was well-reformed under the model, we introduced the framework. 
Hence, our results do not hold without the idea which C is the known matrix of 
concomitant variables. 
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