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A b s t r a c t .  This paper studies regression, where the reciprocal of the mean of 
a dependent variable is considered to be a linear function of the regressor vari- 
ables, and the observations on the dependent variable are assumed to have an 
inverse Ganssian distribution. The large sample theory for the pseudo maxi- 
mum likelihood estimators is available in the literature, only when the number 
of replications increase at a fixed rate. This is inadequate for many practical 
applications. This paper establishes consistency and derives the asymptotic 
distribution for the pseudo maximum likelihood estimators under very gen- 
eral conditions on the design points. This includes the case where the number 
of replications do not grow large, as well as the one where there are no repli- 
cations. The bootstrap procedure for inference on the regression parameters is 
also investigated. 

Key words and phrases: Chi-square distribution, inverse Gaussian distribu- 
tion, pseudo maximum likelihood estimator, strong consistency, weak conver- 
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i .  Introduction 

The  inverse Gaussian dis t r ibut ion has received considerable a t ten t ion  as a 
model for describing posit ively skewed da ta  af ter  the  pioneering work of Tweedie 
(1957a, 1957b) and the  subsequent  review paper  by Folks and Chhikara (1978). 
The  la t ter  paper  por t rayed  many  similarities between this dis t r ibut ion and the  
normal distr ibution.  It  also discussed many other  provocative depar tures  from the  
normal distr ibution.  See the review paper  by Iyengar and Pa twardhan  (1988) and 
the monograph  by Chhikara  and Folks (1989) for various aspects of this distribu- 
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tion and recent research accounts. Its density function is given by 

(1.1) f(y;5, v)=(2T:yav)-U2exp(  ( 1 -  5Y)2~ 

where 5 is known as the drift parameter and v is known as the volatility parame- 
ter. These parameters take strictly positive values. This two-parameter family of 
distributions will be referred to as the IG(5, v). The mean and variance of density 
(1.1) are given by 1/5 and v/53. The above distribution can be viewed as the first 
passage time distribution of a Wiener process with an absorbing barrier. 

The inverse Gaussian distribution has found applications in diverse fields in- 
cluding, life testing (Bhattacharyya and Fries (1982a) and Chhikara and Folks 
(1977)), reliability (Bhattacharyya and Fries (1982b) and Whitmore (1979)) to 
name a few. Several regression models for the inverse Gaussian distribution have 
been studied by Davis (1977), Whitmore and Yalovsky (1978), Bhattacharyya and 
Fries (1982b) and Whitmore (1983). Chaubey et al. (1993) have used such models 
in survey sampling. 

To formulate the inverse Gaussian regression model, let Yi, i = 1,.. .~ n, be n 
independent observations distributed respectively as IG(5i, ~), where 5i = x ~  > 0. 
Here fi = (~1,- . . ,  ]~p)! is a vector of regression parameters and xi = (xil , . . . ,  Xip) I 
is a vector of explanatory variables. We can write y~-i = x~fl + ei, where v-lyie~ 
are i.i.d. X 2 variables. The pseudo maximum likelihood estimators of f~ and u are 
derived by Whitmore (1983) and Bhattacharyya and Fries (1986) and are given 
by 

(1.2) 
(1.3) ~ : (1'Y-11 - 11X~)/n 

where Y is the diagonal matrix with i-th diagonal element being yi, 1 is the 
n-vector of all ones and X = ( x l , . . . , x n )  I. These are called pseudo maximum 
likelihood estimators because the condition x ~  > 0 for all i may not be satis- 
fied. Whitmore (1983) avoids the problem by introducing the notion of a defective 
inverse Gaussian distribution in case the drift parameter is negative but further as- 
suming that resulting estimators are non-negative. It may be observed that (1.2) is 
also the weighted least squares estimator when the weight associated with response 
variable 1/y is y. Bhattacharyya and Fries (1986) and Fries and Bhattacharyya 
(1983) study the asymptotic properties of the estimators. This asymptotic theory 
is based on letting the number of replications go to infinity at a fixed rate. The 
case of small number of replications and large number of distinct design points, 
that is of common use in practice, has obtained considerable attention for usual 
linear regression model (see, e.g., Jacquez et al. (1968), Fuller and Rao (1978)). 
However, such a case has not been considered for the inverse Gaussian regression. 
In this paper we study the asymptotic properties of the resulting estimators ~ and 
i under very general assumptions on the design points. 

The asymptotic distributions of the estimators in (1.2) and (1.3) are derived in 
Section 2. Section 3 establishes the strong consistency of the estimators. The boot- 
strap procedure is described and its properties are analyzed in Section 4. Finally, 
an application of these techniques to a real data set is presented in Section 5. 
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2. Asymptotic distribution 

Recall that  the parameter  space O for the regression coefficients/3 satisfies the 
condition x~fl > 0 for all i. Instead of this condition, we shall consider slightly 
stronger assumption infi x~/3 > 0 for all i and /3 E O. The following theorem 
shows that  the asymptotic distributions of ~ and ~, when properly normalized, 
are normal. 

THEOREM 2.1. Suppose for each t3 C O, there exists a constant c~ > 0 sat- 
isfying 

(i) > aU i 
and 

(ii) maxl<i<~ t lxi l l3tr((X'X) -1) ~ 0 as n ---* oc. 

Further let U1 = (n/2)1/2((5/u) - 1) and U2 = ( X ' M X / u ) I / 2 ( ~  - / 3 )  then the 
random vector 

(Vl, V~) L ---* Af(p+l) (0, I(p+l)), 

where for any symmetric positive definite matrix G, the unique positive definite 
square root F of G (i.e. G = F 2) is denoted by G 1/2, and M is the diagonal 
matrix with i-th diagonal element being mi = ~-1. 

Note that  as mi > 0 for all i, the matrix X t M X  is positive definite, whenever 
X~X is a positive definite matrix. 

Remark 1. Condition (i) basically implies that  the reciprocal of the means 
of yi are bounded away from zero which is a reasonable assumption in practice 
and has been considered by several authors (see Chhikaxa and Folks (1989) for 
details). Condition (ii) on the design matrix is not too restrictive as it may be 
implied by a set of conditions which are similar to those assumed in the case 
of usual multiple linear regression models (see Bunke and Bunke (1986), Section 
2.4.2). In particular, condition (ii) holds if for some sequence of positive real 
numbers an ~ oo, 

1/3 
(iii) maxl<i<n Ilxill = o(qn ) 

and 
(iv) q ~ I ( X ' X )  ~ S, a positive definite matrix. 

The lemmas needed in establishing Theorem 2.1 axe presented below. 

LEMMA 2.1. Let di,~ = x ~ ( X ~ M X ) - l x i  and dn = maxl<i<ndin.  Condition 
(ii) of Theorem 2.1 implies that dn ~ 0 as n ~ oo. 

PROOF. Using the spectral decomposition and Cauchy-Schwaxz inequality, 
it is trivial to establish 

(2.1) x ' Jx  <_ Ilxll 2 t r (J )  and x ' j 2 x  <_ Ilxll2(tr(J)) 2, 
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for any symmetric non-negative definite matrix J and vector x. Hence 

dis = x ~ ( X ' M X ) - t x i  <_ ]lxi H 2 t r ( ( X ' M X ) - I  ), (2.2) 

and 

( t r ( ( X ' M Z ) - l ) )  2 = tr ' -1 , 

This implies 

2 

: X I - - I  I 

2 

~-(~x:(X'MX)-2xiI( ~x:(x'x)-2xi / i=1 

< ( max ~=1~ ~m~(X'MX)-~x~ tr((X'X) -~) 
- - \ i = 1  

< ( max m - l ~  t r ( ( X ' M X ) - l ) t r ( ( X ' X ) - l ) .  
- \ ~ < j < .  ~ ] 

(2.3) t r ( ( X ' M X ) - I )  <- (l<j<nmax m ;  1) t r ( (X 'X) - l ) .  

Hence, from (2.2) and (2.3) we have 

(2.4) d,~ _< II~ll max ]lxjI l3tr((X'X)-l) ,  l<j<n 
which tends to zero by the assumptions of the lemma. This completes the proof. 

Throughout this paper we use the notation A = ( X ' M X )  -1/2. We also use 
the expectations 

= ~ - 1  (2.5) E(yi) i , E(y~ 1) = 5i + u, and E(y~) = u6~ 3 + 6~ 2. 

Note that Var(yi) = u6~ -3. 

trix 
LEMMA 2.2. Under the conditions of Theorem 2.1, the positive definite ma- 

C = A ( X ' Y X ) A  P I p .  
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PROOF. We need to prove that  for each, 1 _< k, l _< p, the (k , / ) - th  element 
bm of the matr ix  A X ' ( Y  - M ) X A  tends to zero in probability. 

Since E(bkz) = 0, it is enough to prove tha t  E(bkl) 2 ~ O. Note tha t  E(bkl) 2 = 
u ~~i~1 mi3zikl2 where zikt is the (k , / ) - th  element of Zi = Axix~A.  By condition 
(i), we have 

(2.6) 
n n 

k,l i=1 k,l i=1 

Noting further tha t  

t r (Z  2) = t r ( A x i x ~ ( X ' M X ) - l x i x ~ A )  

= din t r ( x ~ ( X ' M X ) - l x i )  <_ dn t r ( x i x ~ ( X ' M X )  -1) 

and ~-~n=l m i x i x ~ ( X ' M X )  -1 = Ip, the inequality in (2.6) implies tha t  

Z E(bm)2 <- d~pvc~ 2' 
k,l 

which goes to zero by Lemma 2.1. This proves Lemma 2.2. 

LEMMA 2.3. Let y = (Yl,... ,Yn)'  and V = X ' ( 1  - M - l y ) .  Then under the 
conditions of  Theorem 2.1, 

((n12)l12((~lu) 1 ) ,V 'AIv~)  L - -~ Af(v+ 1 ) (0, /(p+l)) ,  

n 1 -  w h e r e  ~ : n - 1  ~-~.i= l ( 2 - 1  6iyi) Yi . 

PROOF. First  we show tha t  Cov(~, A V )  = 0. By letting ri denote the i-th 
element of the vector 1 - M - l y ,  we have 

Cov(5 ,AV)  = Coy n -1 Z ( ( 1  - ~ -1 6iYi) Yi - u), Z Ax i r i  
i=1 i : l  

n 

= n -1 ~ Cov(~i, Ax~r~), 
i=1 

where vi (1 2 -1 = - 6iyi) yi - v. Since 

(2.7) E(v~r~) = E( ( (~y~ + y [ l  _ 2~)  - . ) (1  - ~y i ) )  
_ E(52yi + y~-l) 3 2 
- - E(bi y~ + 6i), 

subst i tu t ing for the expectat ions (2.5) in (2.7), we find that  E(vir i )  -= 0 which 
proves Cov(~, A V) = O. Consider now the linear combination Wa,b = av/-~( 5-- u) + 

n b 'AV  = ~-~i=1 wi, where (a, b') is a non-zero vector and wi = (a/v /n)v i  + b'Axiri .  
n ?% We will show tha t  ~-]i=1 E(w2)  = 2a2u2 + ullbll 2 and ~-~=1 E(wd)  ~ 0 as n ~ oc 
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and hence by Lyapounov's central limit theorem it will follow that for the vector 
(a, b') ~ O, Wa,b will converge to the normal distribution with mean zero and 
variance 2v2a 2 + v[[bl[ 2. Therefore lemma will follow by the Cramdr-Wold device. 

Shuster (1968) has shown that  the distribution of (vi +v)/v = (1-6iyi)2/(vyi)  
is X~- Hence using the following cumulants of the inverse Gaussian distribution 
(see Chhikara and Folks (1989), p. 12) 

tc2(IG(6, u)) = u/63, ~4(IG(6, v)) = 15v3/6~ 

and the X~ cumulants a2(X 2) = 2, a4(X12) = 48, we have 

n n 

(2.8) E E(w~) = E(2a2u2n-1 + mi(b'Axi)2v) 
i = l  i = l  

and 

r~ 

(2.9) E E(w ) = 

Since 

i = 1  

E((48a4v4n -2 + 15(b'Ax~)am3u 3) 
i : l  

+ 3(2a2u~n -1 + miv(b'Axi)2) 2) 
n 

=_ 48v4a4n -1 + 3v 2 E(m~ + 5m~iv)mi(b'Axi) 4 
i = 1  

n 

+ 12ant]an-1 + 12a2u2n-1 E mi(b'Axi)2" 
i=-I 

E mi(b'Axi)2 = tr b'A mixix~i Ab = b'b, 
i = 1  i = 1  

A n and ~i:1 mix~xiA =- Ip, (2.8) becomes 

n 

E E(w~) = 2a2v 2 + ~llblt 2, 
i.= l 

and by (2.1), 

E mi(b'Axi) 4 < max x~Abb'Axi Emi(b'Ax~)2 < dnl[b[14" 
- \ : < i < ~  / - 

i = 1  i----1 

Hence the expression in (2.9) converges to zero by Lemma 2.1 as n -* co. This 
completes the proof of Lemma 2.3. 

PROOF OF THEOREM 2.1. Since/~ - / 3  = (XtYX)-IV, we have by Lemma 
2.3, 

(2.10) ((n/2v)l/2(~ v),(~ ~)'(X'YX)A) ~ -- -- --~ J~f(p+l) (0, t/I(p+l)). 
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As A ( X ' Y X ) ( f l -  13) = C ( X ' M X ) I / 2 ( f l -  13), we have by Lemma 2.2, and (2.10) 
that ( X ' M X ) I / 2 ( f l -  13), C -1 and C are bounded in probability. Consequently, 

( X ' M X ) ; / 2 ( 3  - 13) - A ( X ' Y X ) ( f l  - t3) = (I  - C ) ( X ' M X ) i / 2 ( 3  - 13) P 0, 

and hence by (2.10), 

(2.11) 

Further note that 

( X ' M X ) U 2 ( f l  - fl) ~ A/'p(0, ulp). 

(2.12) nF~u-1 = E ~i, 
i=1 

where ~i -- (1 - 6iyi)2/(pyi) ,  i = 1 , . . . ,  n are i.i.d. X~ random variables and 

(2.13) nF = (YX13 - 1 ) ' y - 1 ( y x 1 3  - 1) = nb + (fl - 13) ' (X 'YX) ( f l  - / 3 )  

(see Chhikara and Folks (1989), pp. 128-129). By (2.11) and Lemma 2.2, 

- 9 ) ' ( x ' v x ) o  - 

2 = v - 1 ( 3  - -  f l ) t ( X t M X ) I / 2 c ( X t M X ) I / 2 ( 3  --  f l )  --* X1,  

consequently v~ (b  - ~) P 0. This proves Theorem 2.1. 

Remark  2. Under conditions of Theorem 2.1, the right hand side of (2.3) 
converges to zero. Hence by (2.1) and (2.11), 

11(3 - -  fl)[I --< [ [ ( X t M X ) l / 2 ( f l  - f l ) l l ( t r ( ( X ' M X ) - l ) )  1/2 P O, 

giving the weak consistency of fl- The weak consistency of ~ obviously follows 
from Theorem 2.1. 

Remark  3. If n - I ( X ~ M X )  --. T,  where T is a positive definite matrix, then 
under the conditions of Theorem 2.1 

( n / i ) 1 / 2 ( 3  - f l ) •  N,(0,  T - l ) .  

Since, M is generally unknown, the practical use of Theorem 2.1 is limited. 
However, as the following theorem shows, we can get the same limiting distribution 
as in Theorem 2.1, when we replace M by Y. 

THEOREM 2.2. Under the conditions of  Theorem 2.1 

(vl ,  (3 - Z)'((x'Yx)/.) £ 
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To prove this theorem it is enough to establish that  

( ( X t M X ) I / 2 )  -1 ( X t Y X ) I / 2  P IF" 

But by (ii) of Theorem 2.1, 

(2.15) ( X ' M X ) - I X ' Y X  - I = ( X ' M X ) - I ( X ' ( Y  - M ) X )  P O. 

And, (2.14) follows from (2.15) and the following lemma. 

LEMMA 2.4. Let C and D be symmetric  non-negative definite matrices. I f  
C2D 2 --* I then C D  -~ I .  

PROOF. Let P and Q be orthogonal matrices such that  C = P A U  and 
D = QFQ', where P P '  = P ' P  = I ,  QQ'  = Q'Q = I, A = d iag( )u , . . . , ) ,p )  
and F = diag( 'yl , . . . ,Tp) ,  Ai, i = 1 , . . . , p  being the eigen values of C and 7~, 
i = 1 , . . . , p  being those of D. Denoting Pi to be the i-th column of P and Qi to 
be that  of Q, we have 

C2D 2 = p A 2 p ,  QF2Q, v- '  A2 2p  p,--, ,-,, = 2.~ i"Yj i i ~ i t d j - " *  I .  
i,j 

Since Pi and Qj are bounded, and AiTj _> 0, 

I(Ai3'j - 1)P~Qjt < 2 2 ' ](A~Tj - 1)P'Qj l  = IP ' (C2D 2 - I)Q~] --. o. 

Consequently, ~-]~,j(Ai~/j - 1)P~Qj --, O, i.e. C D  - I ~ O, which completes the 
proof of the above lemma. 

3. Strong consistency 

The bootstrap methodology studied in the next section, requires the strong 
consistency of/3 and ~. This is established in the next theorem under slightly 
stronger conditions than those assumed in Theorem 2.1. 

THEOREM 3.1. Assume condition (i) of Theorem 2.1 and 

(3.1) (logn) max I l x j l l a t r ( (X 'X)  -1)  --* 0 as n ~ oc. 
l<j<_n 

Then ~ - / 3  --* 0 and b - u ~ 0 a.s. 

The next lemma is useful in proving Theorem 3.1. 

LEMMA 3.1. 

(3.2) 

(3.3) 

Under the conditions of  Theorem 3.1, we have 

C = A ( X ' Y X ) A  --. Ip a.s., 

D = ( X ' M X ) - I ( X ' Y X )  --* I F a.s, 
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C -1 --* Ip a.s., and D -1 -* Ip a.s. 

PROOF. Using the inequality 

1 - (1 - u)1/2 _ (u/2) < (u2/4) for lul < 1/2, 

we get that  the moment  generating function M of IG(~, u) satisfies 

M(t)  = exp{(~/u)(1 - (1 - 2tu6-2)1/2)} <_ exp{ut2/~ -3 + t ~ - l } ,  

whenever ttu6-2[ < 1/4. Hence for any e > O, 0 > 0 and for any set of constants 
aim, i = 1 , . . . ,  n, satisfying ]Oai~u6~ 21 < 1/4, we get by Markov's inequality, that  

e~°P yi - mi)ain > e <_ E(exp{Oa~n(yi - m~)}) 
\ i = 1  

_< exp uO 2 3 2 m i  ain • 

As a result, by taking e0 = 31ogn, we get P ( I ~ ( Y ~ -  m~)ainl > e) = O(n-2) ,  
provided 

(3.4) ( max milain[ logn --* 0 and (logn) E m3a~n ~ O. 
k,l < i < n  / i = 1  

By the Borel-Cantelli lemma, this yields almost sure convergence of ~-~in=l(yi - 
m i ) a i n  t o  zero. 

To establish (3.2) we let ain denote the (k, /)- th element of Axix~A and verify 
the convergence in (3.4). For this choice of aim, we have 

- 2  2 2 2 < c~2tr(Axix~(X,MX)- lx~x~A)  < cfl dn, m i  ain  _ 

and 

n n 

3 2 Z miai~ <- c~ 2 Z mi t r (Ax ix~ (X 'MX) - l x i x~A)  
i-~ l i= l 

<_c~2(l<mj<~_nx~(X'MX)-lxj)tr(Ip) 

< c~2pdn. 

These inequalities imply (3.4), since d~ logn --* 0 by (2.4) and (3.1). This proves 
(3.2). 

To prove (3.3), let ain denote the (k,/)- th element of (X 'MX)- ix~x~ .  Then 
we have 

2 < t r ( ( X , M X ) - l x i x ~ x ~ x ~ ( X , M X ) - l )  = ][xill2x~(X,MX)-2xi, (3.5) ai~ _ 



84 GUTTI JOGESH BABU AND YOGENDRA P. CHAUBEY 

and hence by (2.1), (2.3) and (3.5), 

( r(I ' l-lll 
ain -- 1 

This implies the first convergence in (3.4). 
Since mi are bounded by c~ 1, we have by (2.3) and (3.5) that, 

E miain3 2 _< c~2- l<_j_<nmax Ilxjll 2 tr mix~(X'MX)-2xi 
i=1 i--1 

<_ I'~Hc~ 2 (l<mi<_axn Hx~" 3) t r ( ( X ' X ) - l ) ,  

which implies the second convergence in (3.4). This proves (3.3). Convergence 
of inverses to the identity matrix follows because the determinants of C and D 
converge to 1 a.s., and the ( i , j ) - th  cofactor tends to 1 or 0 a.s. according as i = j 
or not. 

PROOF OF THEOREM 3.1. Strong consistency of/~ follows by Lemma 3.1, 
since 

- Z = ( ( x ' Y x )  - 1  - ( X ' M X ) - I ) x ' I  

= ( O  - 1 - I p ) f ~ + 0  a.s. 

To prove the consistency of b, in view of (2.12), (2.13) and the the strong law 
of large numbers, it is enough to show that 

(3.6) (~ - ~) '(X'YX)(~-/~)(logn) -2 + 0 a.s. 

Clearly by (2.1), we have 

(3.7) ( ~ -  ~ ) ' ( X ' Y X ) ( ~ -  ~) = V ' ( X ' Y X ) - I V  
= V'AC-1AV 

<_ V ' ( X ' M X ) - I v  tr((X'YX) - I (X 'MX))  

<_ V ' ( X ' M X ) - I V  tr((A(X'YX)A)-I) .  

By Lemma 3.1, we have tr((A(X'YX)A) -1) -~ p a.s. To complete the proof we 
show that 

(3.8) V'A(logn) -1 -+ 0 a.s., 

which implies, by (3.6) and (3.7), the strong consistency of ~. Note that for each 
1 _< j _< p, with ain = j- th  coordinate of x~A(mi logn) -1, we have 

(milognain) 2 < x'~(X'MX)-lx¢ <_ dn 
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and 

n 71 

3 2 (l°g n)2 E miain <- E mix;(X'MX)-'xi 
i = 1  i = 1  

= tr m i x i x  X t M X )  -1 = p .  

Therefore the conditions in (3.4) are verified. This establishes (3.8) completing 
the proof of Theorem 3.1. 

4. Bootstrap 

In this section we describe the bootstrap procedure to estimate the sam- 
piing distribution of the estimators and study the asymptotic properties. Let 
Y/*, i = 1 , . . . ,  n be independent inverse Gaussian random variables with means 

1/x~fl and the dispersion parameter P. Let Y* = diag(Yl*,...,Yr~). Given the 

original sample, the pseudo maximum likelihood estimator corresponding to j3 is 
given by/3* -- (X~Y*X)- IXt l .  

Since 
x~(~-  fl) = x~A(X 'MX)I /2 ( f l -  fl) 

we have 

 )ll (x~(X'MX)-Xx~}~/2ll(X'MX)~/2(~- fl)]l. 

Hence under the conditions of Theorem 2.1, we have 

P(x~fl > (1/2)c~ for all i} --* 1 as n --* 0% 

^ 

and under the conditions of Theorem 3.1, we have infl<i<~ x~/3 > 0, for all large 
n and for almost all samples sequences. 

THEOREM 4.1. Under the conditions of Theorem 3.1, we have for almost all 
sample sequences, 

* - £ 

where M = diag(x~/3,.. . ,  x~fl). Consequently, for almost all sample sequences, 

sup I P * ( ( X ' 2 ~ X ) X / 2 ( ~  * - ~ )  < z )  - P ( ( X ' M X ) I / 2 ( f l  - fl) <_ z)l --* O, 
z E R P  

where P* denotes the probability measure induced by the bootstrap sampling 
scheme, gwen the original data. 

Proof of Theorem 4.1 is similar to that  of Theorem 2.1, as P ~ u a.s. Instead 
of Lemma 2.2, one uses Lemma 3.1. 
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Remark 4. Using the ideas, especially Lemma 2, of Babu and Bai (1992), 
it can be shown under very general conditions on xi that  for any 0 > 0, and for 
almost all sample sequences, 

P ( A X ' Y X ( ~  -/3) e uH) - P*((X'](/IX)-I/2x'Y*X(/3 * - ~) e PH) 

= o(n-1/2) + O(Op((OH)°/v~)), 

holds for any p-dimensional borel set H. 

5, Numerical illustration 

Nelson (1971) presents the failure times of two batches of insulation material in 
a motoret te  test performed at elevated temperature settings. The first batch was 
tested at temperature settings of 190°C, 220°C and 240°C, while the second batch 
was tested only at 260°C. Bhattacharyya and Fries (1982a) find the IG reciprocal 
linear model to be adequate for this data; where they choose the x values given by 
x = 10-s(t  3 - 1803), t denoting the temperature in centigrade. In this section we 
use this data  to illustrate the results obtained in this paper. Denoting the failure 
times (in thousands of hours) by Yl, Y2,.. •, Yn, we are thus fitting the model given 
by IG(5/, u) where 

(5.1) 5i =/3o + ~lx~. 

The pseudo maximum likelihood estimates of/30, [31 and u are respectively given 
by 

~0 = .037310, 

(5.2) ~1 = 7.317285 and 

P = .040233. 

These estimates differ from those reported in Bhattacharyya and Fries (1982a), 
because we have used the data  for both batches in our computat ion whereas they 
used the data  only for batch I. 

A crude estimate of the variance covariance matrix is provided by P(X 'YX)  -1 
because of Theorem 2.2 and 3.1. The asymptotic normality of the estimators 
can be used to approximate the confidence intervals for /30, /31 and/or  related 
parameters. For example, an approximation to 100(1 - a)% confidence interval 

for 13/ is/3 4- za/2 ~ ,  where zq the 100(1 - q)-th percentile of the standard 

normal variate and ~(/3~) is the estimate of the var(/~) obtained from the above 
estimate of the variance-covariance matrix of/3. The estimates of variances of the 
pseudo maximum likelihood estimates of/30,/31 for the above data  are given as 

(5.3) 
 (3o) = 5 .593833 × 10 -4 ,  

v(/31) = .242709. 
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We also used the Bootstrap method described in Section 4. This provides direct 
estimates of the bias as well as those of the variances of the estimators of the 

~. ^. p, parameters. We generated 500 bootstrap samples, thus providing (0(i), ;31(i), i ), 
i = 1, 2 , . . . ,  500. Taking averages of these yields the Bootstrap estimates, 

/}t = 0 3 9 9 4 9 ,  

(5.4) /}~ = 7.326207 and 

P* = .038258. 

Thus the estimates of biases of the pseudo maximum likelihood estimators are 
given by 

estimate of bias of/}0 =/}~ -/}0 = .002639, 

(5.5) estimate of bias of/}1 =/}; -/}1 = .008922 and 

estimate of bias of ~ = P* - P = -.001987. 

Furthermore, the sample variances computed from the 500 bootstrap sample values 
provide the following estimates of the var(/}0) and that of var(/}l), 

(5.6) 
6(/3~)) = 5.214227 x 10 -4, 

6(/}~') = .245392. 

We note that for this data the Bootstrap estimates are close to the crude estimates 
but the usefulness of the Bootstrap is clearly demonstrated in computing the 
estimate of the bias and the variance of pseudo maximum likelihood estimators. 
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