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A b s t r a c t .  Suppose X~ is an observation, or average of observations, on a 
discretized signal ~n that is measured at n time points. The random vector 
X,~ has a N(~, ,  a~I) distribution, the mean and variance being unknown. Un- 
der squared error loss, the unbiased estimator X~ of ~ can be improved by 
variable-selection. Consider the candidate estimator ~n(A) whose i-th com- 
ponent equals the i-th component of X~ whenever i / (n  + 1) lies in A and 
vanishes otherwise. Allow the set A to range over a large collection of pos- 
sibilities. A Cp-estimator is a candidate estimator that minimizes estimated 
quadratic loss over A. This paper constructs confidence sets that are centered 
at a Cp-estimator, have correct asymptotic coverage probability for ~n, and are 
geometrically smaller than or equal to the competing confidence balls centered 
at Xn. The asymptotics are locally uniform in the parameters 2 (~n, ~n). The 
results illustrate an approach to inference after variable-selection. 

Key words and phrases: Variable-selection, coverage probability, geometrical 
loss, locally uniform asymptotics. 

1. Introduction 

Suppose tha t  Xn is an observation, or average of observations, on a dis- 
cretized signal ~n that  is measured with error at n t ime points. The goal is to 
es t imate  ~n from Xn. Assume that  the errors made in measuring the values of 
the discretized signal are independent,  identically distr ibuted,  and Gaussian with 
mean zero. Then Xn = (Xn ,1 , . . . ,Xn ,n ) '  is a random vector with dis tr ibut ion 

2 N(~n, an2I). Both  the discretized signal ~n = (~n,1, . . . ,  ~n,~)' and the variance a n 
are unknown. 

The quadrat ic  loss of an est imator  ~n is 

(1.1) L~(~n,~,~) = n- l l~n  - ~nl 2, 

where I" I denotes Euclidean norm. This loss is the discrete analog of the integrated 
squared error criterion commonly  used in continuous signal estimation. Quadra t ic  
risk is the expected value of (1.1). By  the Cauchy-Schwarz inequality, 

(1.2) Ln(~, ,  ~,)  = n -1 sup{(u '~ ,  - u'~n)2: u E R n, ]u I = 1}. 
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Thus, an estimator ~ is close to ~ in quadratic loss if and only if every normal- 
ized linear combination of ~,~ is close in squared error to the corresponding linear 
combination of ~n. 

Stein (1956) proved that the best unbiased estimator X~ is inadmissible for 
~ ,  under quadratic loss, whenever n _> 3. Strategies for bettering X~, when n 
is large, accept bias in return for smaller variance. One improvement method is 
the James-Stein (1961) shrinkage estimator. Stein estimators reduce risk at every 
point ~ in the parameter space. As n tends to infinity, they achieve Pinsker's 
(1980) asymptotic minimax bound for estimation over large compact balls about 
the shrinkage point. A second improvement technique local smoothing of the 
components of Xn--is the topic of discrete curve estimation (cf. Rice (1984)). 
Smoothing can reduce quadratic risk far more than uniform shrinkage when the 
parameter value ~,~ is sufficiently 'smooth'. The cost is increased risk when ~ is 
not smooth. 

A third general method for improving on the unbiased estimator X~ is variable- 
selection. Let A be a subset of the unit interval. Consider the estimator ~n(A) 
whose i-th component equals X~,i whenever i / ( n  + 1) lies in A and vanishes oth- 
erwise. Estimate the quadratic loss of ~n(A) for each subset A in a large class 
of candidates. Let .4,~ denote a subset which minimizes estimated loss. The cor- 
responding variable-selection estimator is then ~(-4n). This variable-selection 
approach combines simple shrinkage (the shrinkage factor is either zero or one) 
with localization (the shrinkage factor depends on the index i). The Cp-method, 
introduced by Mallows (1973), is a direct way of estimating quadratic loss so as 
to determine AN. 

Two refinements to this variable-selection strategy are possible. First, we may 
reduce risk further by shrinking more cleverly the components of X~ that are in- 
dexed by A and A c respectively. Stein (1966) gave the basic discussion. It follows 
that the Cp-estimators studied in this paper are not admissible. Appealing never- 
theless is the logical simplicity of variable selection as a technique for improving 
the estimator X~. 

Second, variable-selection may be preceded by an orthogonal transformation O 
of the observation vector X~, such as a finite Fourier transform, or an orthogonal 
polynomial transform, or a wavelet transform, or an analysis-of-variance basis 
transform. Prior information about the data strongly influences the choice of 
transform. Ideally, each component of the rotated mean vector O~,~ would be 
either very large or very small in magnitude relative to the standard error aN. 
When successful, this prior separation of components into an important subset and 
a negligible subset enhances the efficiency of variable-selection estimators for the 
rotated mean. These two improvements to variable selection--adaptive shrinkage 
and prior orthogonal transformation--will not be treated further here. We refer 
the reader to Donoho et al. (1990) for upper bounds on the reduction in risk 
achievable by nonlinear estimators. 

The framework of this paper lets the dimension of the true mean vector ~ 
increase with n and considers candidate estimators ~n(A) for which A ranges over 
certain sets having positive Lebesgue measure. We construct confidence sets that 
are centered at a Cp-estimator ~(A~),  have asymptotic coverage probability a 
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for ~ ,  and are asymptotically closer to ~,~ than the classical level a confidence 
ball centered at Xn. Both of the asymptotic convergences--for coverage probabil- 
ity and for the geometrical error of the new confidence sets--are locally uniform 
over the parameter space. This local uniformity is valuable because pointwise 
asymptotics for variable-selection estimators can create a misleading impression of 
confidence set performance. For example, a natural asymptotic confidence interval 
based upon the Hodges estimator behaves badly near the shrinkage point, despite 
favorable pointwise asymptotics (Beran (1992), Section 3). 

Variable-selection techniques can also be studied in settings where the dimen- 
sion of the true ~n is fixed for all n or where the dimension of the candidate 
estimators is relatively small compared to n. A fixed dimension assumption on 
~ limits the possible importance of estimator bias (cf. Speed and Yu (1993), Sec- 
tion 4). When the dimension of candidate estimators is small relative to n, variable 
selection by Cp is asymptotically equivalent to variable selection by Akaike's (1974) 
AIC or by certain other criteria (cf. Shibata (1981) and Rice (1984), Section 3, for 
details). Equivalence with Cp in this sense does not hold for the larger parameter 
space used in this paper. 

PStscher (1995) constructed confidence sets after model-selection for the mean 
in a bivariate normal model. His approach relied on the fixed dimensionality of 
the parameter space and on the asymptotic conditional distribution of the model- 
selection estimator given the selected submodel. This conditional distribution is 
treated more generally in PStscher (1991). His confidence sets take values in the 
parameter space of the selected submodel and are conservative in their asymptotic 
coverage probability. It is important to note that P5tscher's analysis relies on 
replication asymptotics rather than the time series asymptotics used in this paper. 

Section 2 of this paper defines Cp-estimators for ~ and their asymptotic loss. 
2 from internal analysis of X,~ or from replicated observations on Estimation of a n 

the discretized signal ~n is discussed. Section 3 develops locally uniform asymp- 
totic distributions for the centered quadratic loss of Cp-estimators. Consistent 
estimation of the appropriate limit distribution then yields confidence sets for ~ 
that are centered at Cp-estimators. 

2. Convergence of Cp-estimators 

This section formally defines Cp-estimators for ~n and studies their asymptotic 
loss. The statistical ideas here, which have a long history, draw in particular on 
Mallows (1973) and Rice (1984). The technical formulation and results of this 
section will be used to construct confidence sets in Section 3. 

2.1 Estimating ~ 
Let A be a subset of [0, 1] formed by the union of m ordered closed intervals. 

Thus, 

m 

(2.1) A = U[t2i_,,t2i] 
i-----1 
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where 0 _< tl  _< . . .  _< t2m _~ 1. Let ,S(m) denote the class of all sets A of the form 
(2.1). The value of m is fixed. Define the pseudo-distance between two sets A and 
B in S(m) to be 

(2.2) d(A, B) = p(AAB), 

where # is Lebesgue measure. After forming equivalence classes, S(m) is a compact 
metric space under d. 

---- X i The observed signal vector X~ (X~, I , . . . ,  ~,n) has a N(~n, a~I) distribu- 
tion on R n. Let 0,~ = (~n, a 2) and let Pe~,~ denote this normal distribution. For 
every A E 8(m),  let 

(2.3) 

and let 

(2.4) 

1 if i / ( n + l )  EA h,~#(A) ( o otherwise 

~n(A) = (hn,l(A)Xn,l,..., hn,n(A)Xn,n)'. 

Candidate estimators for ~n are generated by picking a compact subset A of $(m) ,  
possibly 8 (m)  itself, and then considering all estimators of the form (2.4) as A 
ranges over ,4. To ensure that  Xn is among the candidate estimators, we will 
require that  .4 contains the unit interval [0, 1] as an element. 

Example. Suppose m = 1 and 

(2.5) A = {A(t) E $(1): t E R 2 and tl = 0}. 

A typical set in ,4 has the form A(t) = [0, t2], where 0 < t~ < 1. The candidate 
estimators ~n(A(t)) can be described explicitly as follows. When 1 _< j _< n, then 

(2.6) ~n(A(t)) = (X~,I,.. . ,  X~,j, 0 , . . .  0)' 

if j / (n  + 1) _< t2 < (j + 1 ) / ( n +  1). 

When t2 < 1/(n + 1), then ~,(A(t)) = (0 , . . . , 0 ) ' .  When t2 = 1, then ~,(A(t)) = 
Xn. This example produces a nested class of candidate estimators. The candidate 
estimators generated by other choices of .4 need not be hierarchical. 

For every set A E .4, define the non-negative set function v ,  by 

(2.7) u~(A) = n -1 ~ ~n,~2. 
i/(n+l)EA 

Let A c denote the set complement in [0, 1] of A. The quadratic loss (1.1) of the 
candidate estimator ~n(A) is then 

(2.8) L~(~n(A),~) = n-II~(A)  - ~ n l  2 

= n-1 Z (X~,i - ¢~,i)2 +.n(AC).  
i/(n+l)EA 
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We will see, in Theorem 2.1 below, that  this loss converges in probability to a con- 
stant. Consequently, minimizing loss is asymptotically equivalent to minimizing 
risk. 

Estimators of the loss Ln(~n(A), ~n) will be phrased in terms of two non- 
negative set functions, one of which depends on the sample X~: 

(2.9) #n(A) = n-1 E 1 
i/(n+l)EA 

and 

(2.10) i~(A) : n-i E 2 
i/(~+l)eA 

2 such as those discussed in Subsection 2.2. Let ^ 2 be a consistent estimator of an, (7 n 

Define the estimated loss of candidate estimator ~n(A) by 

(2.11) Ln(~n(A),5~) = ~n(A ~) + d2[2#n(A) - 1]. 

Theorem 2.1 below establishes the uniform consistency of this loss estimator for 
Ln over all sets in ,4. If ^2 is unbiased for 2 then Ln(~n(A),~ 2) is an unbiased (7 n O" n , 

predictor of the loss of ~n (A) and is an unbiased estimator of the risk of ~ (A). 
Both (2.8) and (2.11) define random set functions on ,4. 

The idea of Cp-estimation is to select the candidate estimator whose estimated 
loss is smallest. In the present context, let fi~n be a set in A such that  

(2.12) Ln(L(Jn),(r~) = min L~(&(A),O~). 
AEA 

This minimum is achieved because, for fixed n, the estimated loss assumes a finite 
number of values as A ranges over ,4. The estimator 

(2.13) &,c 

is called a Cp-estimator generated by the candidate estimators {~(A) :  A e ,4}. 
This terminology recognizes that  fil~ minimizes the quanti ty An(A c) + 2&n~#~(A) 
over all A E ,4, a procedure analogous to one proposed by Mallows (1973) in a 
different context. 

To establish basic locally uniform asymptotic convergences for Cp estimators 
and their losses, we introduce two assumptions. The notation II" [[A stands for 
supremum norm computed over all sets A E ,4 while plim stands for limit in 
Pen ,s-probability. 

A1. ,4 is a compact subset of $(m) ,  in the metric d, which contains the element 
[0, 1]. The sequence {0~ = ( ~ ,  a2): n _> 1} is such that  

2 O.2 (2.14) lim II 'n -  '11.4 -- o, l i m a  s : 
~q~ "--'+ O 0  n - ' ~  O 0  
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for some finite non-negative measure u on the Borel sets of [0, 1] and some finite 
positive a 2. The measure u is absolutely continuous with respect to Lebesgue 
measure. 

A2. For every sequence {0~} that  satisfies Assumption A1, 

(2.15) plim ^ 2 a2. O" n 

n---* o c  

The first limit in (2.14) holds if ~n# = ~(i/(n + 1)), where ~ is a continuous 
function of [0, 1]. Such an assumption is typical in the literature on curve esti- 
mation or nonparametric regression. In the special case where ,4 consists only 
of the set [0, 1], the first half of (2.14) requires only that  n-1](~l 2 converge to a 
finite constant. This convergence is central in the asymptotic theory of Stein esti- 
mators (cf. Stein (1956), Casella and Hwang (1982)). In general, Assumption A1 
falls between the assumptions used in asymptotics for Stein estimators and those 
for curve estimators. A1 also implies that  v is continuous on A in the metric d. 
Estimators a n ^ 2 that  satisfy A2 will be described in Subsection 2.2. 

Let # denote Lebesgue measure restricted to .4. Define the non-negative set 
function p on .4 by 

(2.16) p(A) = u(A c) + a2#(A). 

As the following result shows, p(A) is the asymptotic loss of the candidate estima- 

tor 

THEOREM 2.1. 

(2.17) 

Consequently, 

(2.18) 

Suppose that Assumptions A1 and A2 hold. Then, 

plim IIL,~(~,~('), ~,~) - PIIA -- 0 
n - - +  O0 

plim - p l l . 4  = o .  
n-...-+ o o  

plim L~(~ , c ,  ~ )  = ~ni~ p(A). 

If M denotes the set of minimizers of p over A, then 

(2.19) plim i n f  d(A~, A) = 0. 
n - - . ~  A c  M 

This theorem is proved in Section 4. By equations (2.17) and (2.18), the loss 
of the Cp-estimator ~n,c coincides asymptotically with the loss of the unknown 
candidate estimators for ~n that  have smallest loss. In this restricted sense, the Cp 
estimator is asymptotically efficient (but see the discussion in the Introduction). 
Moreover, because A was assumed to contain [0, 1], 

(2 .20)  < p([0,  1]) = 
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Equality in (2.20) holds in special circumstances such as u(A c) > aS#(A ~) for 
every A E A except A = [0, 1]. This condition on u holds if each ~2,i is greater 

than and bounded away from a s for all sufficiently large n. In general, the limiting 
loss of the C v estimator is strictly less than that of the unbiased estimator Xn. 

The loss of the Cp-estimator ~n,c is bounded above by n - 1  E n = l  (Xn,i-{n,i) 2 q- 
s u~([0, by a un([0, 1]), whose expectation is a n + 1]). Thus, standard uniform inte- 

grability argument, the risk of the Cp estimator also converges to the limiting loss 
minAe~4 p( A ). 

2 2.2 Estimating a n 
Consistent estimators of a 2, required to define the Cv-estimator ~n,c, may 

be internal or external. Internal estimators depend only on the observed Xn 
and require smoothness or dimensionality restrictions of the possible values of ~ .  
External estimators rely on replication or some other source of independent data 

2 One internal estimator of an 2, suggested by Rice (1984), is concerning a n. 

(2.21) O'n, 1^2 = [ 2 ( n -  1)1-1 ~ - ~ ( X n ,  i - X n , i _ l )  2. 
i=2 

If the sequence {On 2 = (~n, an)} is such that  

s as (2.22) lim n -1 ~ , i  - ~ , i -1)  2 = 0, lim ~r n = < co, 
7~-"+ OO n - - - ~ O ~  

i=2 

then a n ^ 2 converges in Pod,n-probability to a 2. Variants of this internal variance 
estimator that require stronger assumptions on ~n to achieve faster rates of con- 
vergence were discussed by Rice (1984) and by Gasser et al. (1986). 

A second internal estimator is appropriate under the assumption that the dis- 
cretized signal ~n lies in a subspace of dimension n ~ < n. For simplicity, suppose 
that n' is the integer part of cn and c is a constant strictly between 0 and 1. By 
making a suitable orthogonal transformation, assume without loss of generality 
that Xn = (Xn,, Z~-n,),  where Xn, has a N(~n,,a~I) distribution in n' dimen- 
sions, Zn-n '  has a N(0, a~I) distribution in n -  n' dimensions, and Xn,, Zn-n, are 
independent. In this canonical setting, a Cp-estimator of ~n' can be constructed 
from Xn, and the variance estimator 

(2.23) an,2̂ 2 = (n-- n')-llZn_n, 12. 

If the second half of (2.22) holds, then an, 2^2 converges in Po,,n-probability to a 2. 
Replication makes possible external estimation of variance. Suppose we ob- 

serve independent random vectors {X(J): 1 < j < J}, each of which has a Y(~n, a 2) 
distribution. A Cp-estimator would now be based on the average vector 

(2.24) 
J 

xo  = j - l Z  
j=l  
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using the variance estimator 

(2.25) 
J 

-2 = [ n ( J -  1)] - 1 E I X  (j) - Xnl 2. O'n, 2 
j = l  

If the second half of (2.22) holds, then O'n, 2~2 also converges in P0,,~-probability to 
0 .2 ' 

The confidence set constructions of Section 3 involve more than consistency of 
the variance estimator used. If a~,l is the internal estimator defined in (2.21) and 
the first half of condition (2.22) is strengthened to (2.26) below, then the limiting 
distribution of n l / 2 ( & 2 j - a  2) is N(0, 3a4). For a proof, see Gasser et al. (1986) or 
the argument in Section 4 for Theorem 3.1. On the other hand, the distribution of 

n / ^2 2 
- n )an ,2 /a  ~ is chi-squared with n - n ~ degrees of freedom and the distribution 

of n(  J -2 2 
- 1)an ,2 /a  ~ is chi-squared with n ( J  - 1) degrees of freedom. 

The essential features of these variance estimators are captured in one or the 
other of the following assumptions: 

B1. The variance estimator O'n, 1^2 is defined by (2.21). The sequence {~n} sat- 
isfies 

n 

( 2 . 2 6 )  lirno~ f t  - 1 / 2  E ( ~ n , i  -- ~ n , i - - 1 )  2 = 0.  

i = 2  

B2. The variance estimator a~, 2 ^ 2 and X~ are independent random variables. 
The distribution of ^2 2 bnan ,2 /a  ~ is chi-squared with bn degrees of freedom and 
l i m n - ~  b ~ / n  = b < co. 

Note that either B1 or B2 implies the consistency Assumption A2. Under B2, 
the limiting distribution of nl/2(~2,2 - a 2) is N(0, 2b-1~4). 

3. Confidence sets for ~n 

This section considers confidence balls for ~ ,  centered at an estimator ~ and 
having radius d~: 

(3.1) 3n) = {t • Rn: ira -- tl _< 

Once the center ~n is specified, the radius dn is defined so that the coverage 
probability Po~,n[Cn ~ ~n] converges to a as n increases. The geometrical error 
in Cn(~u, dn) as a set-valued estimator of ~n is then measured by the geometrical 
loss 

(3.2) G L n ( C n ,  ~n) = n -1/2 sup It - ~nl 
tECn 

: n - - 1 / 2 1 ~ n  -- ~nl -~- n - 1 / 2 d n .  
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Let U = {u E R~: lul = 1} denote the unit sphere. Confidence set C~ is 
equivalent, by the Cauchy-Schwarz inequality, to the following simultaneous one- 
sided confidence intervals for linear combinations of {n: 

(3.3) C~(~,d~) = {t e R~:sup(u ' t -u '~n)  <_ & }  
ucU 

= {t • R~: ~'t < ~'~ + & w • u}.  

This is the argument for Scheff~'s method of multiple comparisons. 
Each one-sided confidence interval ( -oc,  u'(~ + d~] overshoots the correct value 

u'(n by the amount  max{U'~n +dn- Ut~n, 0}, The maximum normalized overshoot 
as u ranges over the unit sphere is 

(3.4) maxn-1/2max{u'~n + a~ - u'{.,O} 
uEU 

= n - l l 2 m a x l u ' ( ~ .  - ~,,)1 + 
uEU 

= GLn(Cn,~n). 

Minimizing the geometrical loss of confidence set C~ is thus the same as minimiz- 
ing the maximum overshoot of the equivalent simultaneous one-sided confidence 
intervals for (~. 

A standard confidence ball for (~, centered at the unbiased estimator X~, is 

(3.5) cn,s = cn(xn, ~x;1/2(~)). 

-1/2 Here )O~ (a) denotes the square root of the a-th quantile of the chi-squared 
distribution with n degrees of freedom. Under Assumptions A1 and A2, 

(3.6) 

and 

(3.7) 

lim Pe=,n[C~,s ~ {n] : a 
n'---+ ~ 

plim G Ln ( Cn,s , ~n ) = 2a, 
n.---+ O 0  

by (3.2) and the normal approximation to the chi-squared distribution. To check 
(3.7), note that n-1/2[X~ - ~ [  and an both converge in probability to a while 
n-U2X-l(c~ ) = n-U2[n + O(nW2)p/2 converges to 1. 

3.1 Estimated sampling distributions 
^ 

To construct confidence balls for ~,~ that are centered at a Cp-estimator ~n,c, 
we will study the sampling distribution of 

(3.8) ^2 Dn(~n, Xn, an) = nl/2[Ln(~n,c, ~n) -- Ln(~n,C, &2n)]. 

This quantity compares the loss of the Cp-estimator with its estimated loss. The 
asymptotics for Dn depend upon the choice of variance estimator &2. The notation 
Bi will stand for either Assumption B1 or B2 of Section 2, according to the value 
of i. The following locally uniform weak. convergence is proved in Section 4. 



10 RUDOLF BERAN 

THEOREM 3.1. Suppose that conditions A1 and Bi hold and that the limiting 
loss measure p has a unique minimum at Ao in ,4. Then 

(3.9) 

where 

(3.10) 

and 

(3.11) 

E.[Dn(~n, Xn, 5"2,~)lPo~,n] ~ N(O, T2(a 2, V, AO)) 

T?(a2, V, A 0 ) =  2~r 4 + a4[2tt(A0)- 1] 2 + 4a2v(A~) 

T2(a 2, U, A0) = 2a 4 + 2b -la412#(A0) - 1] 2 + 4a2u(A~)). 

Consistent estimators for the asymptotic distributions in this theorem are 
easily constructed. Let A~ be the set, defined in (2.12), that determines the Cp- 
estimator (2.13). Let vn,i be JAn - (r2n,~#n]+, where [.]+ denotes the non-negative 
part function. It follows from (4.7) and Assumption Bi that p l im~_~ lib,,i-vii A = 
0. The natural estimator of the limit distribution (3.9) is then 

(3 .12)  /:/n,i N(0, 2 ^2 = ri 

Under Assumptions A1 and Bi, it follows from (2.19), the convergence of ~n,i, and 
the d-continuity of the measures #, v that 

(3.13) /:/.,i ~ N(0, ~2(a2 i ,  ,u, Ao)) 

in Pod,n-probability. The d-continuity of # stems from definition (2.2) while the 
d-continuity of u is implied by A1. 

3.2 Confidence sets 
For a strictly between 0 and 1, let /:/~J(a) denote the a-th quaatile of the 

estimated sampling distribution defined in (3.12). The asymptotic Cp-confidence 
set for ~n under condition Bi is then defined to be Cn,i = Cn(~n,c, d~,i), where 

(3.14) ~1/2 fI-1[,,~11/2 dn,~ = [nL,~(L,c,b~,~)+ . . . .  ,~,~,,-.,j+ . 

The main asymptotic properties of this confidence set are expressed in the following 
result. 

THEOREM 3.2. Suppose that conditions A1 and Bi hold and that the limiting 
loss measure p has a unique minimum at Ao in A. Then 

(3.15) plim GLn(Cn,~, ~,~) = 2pl/2(Ao). 
n - - + ~  

If  p( Ao) > 0, then 

(3.16) lira Ps,,n [Cn,i ~ ~n.] = a. 
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If  p( Ao ) = O, then 

(3.17) liminf Pe,,~[C~,~ ~ ~ ]  _> a. 
n----*O~ 

11 

The exceptional case p(Ao) = 0 arises only if both #(A0) and v(AS) vanish. 
Roughly speaking, this means that for large n, all but a tiny fraction of the {~2,i} 
are close to zero. It follows from (2.20) and (3.7) that the asymptotic geometrical 
risk of the Cp-confidence set Cn,i is less than or equal to that of the confidence set 
Cn,s centered at Xn. The construction of this section thus translates the improved 
asymptotic loss of a Cp-estimator into improved asymptotic geometrical loss for 
the associated confidence set. 

4, Proofs 

The theorem proofs rely on the following lemma. Let 

(4.1) 

Wn,l(A'On)=n-U~ E [(X'~,i-~n,i)2-a~] 
i/(n+l)eA 

Wn,~(d, On) = n -1/2 E ~n,i(Xn,~ - ~n,i) 
i/(n+l)EA 

for every set A in $(m). Let L~($)  denote the set of all bounded measurable 
functions on ,~(m), metrized by supremum norm. Under Assumption A1, the two 
processes Wn,i(0n) = {Wn,i(A, 0n): A E S(m)} are random elements of L~(S) .  

Let Bi = {Bi(A): A E S(m)} be two independent Gaussian processes on S(m) 
with means zero and 

(4.2) 
Cov[B1 (A), B1 (A')] = # (An  A') 

Cov[B2(A), B2(A')] = v(A A A'), 

where # is Lebesgue measure and v is the bounded non-negative measure defined 
in Assumption A1. Both processes are random elements of L~(8) ,  as will be seen 
in the following proof. 

LEMMA 4.1. Suppose that Assumption A1 holds. The processes {(Wn,l(On), 
W,~,2(0n))} then converge weakly as random elements of L~(S)  × L~(S)  to the 
process ( 2112 a2 B1, a B2 ). 

PROOF. Without loss of generality, suppose that Xn,i = ~n,i + anZi, where 
the {Zi} are lid standard normal random variables. Consider the two partial sum 
processes with sample paths in D[0, 1] that are given by 

(4.3) 
i/(n+l)_~l 

Y ,2(t) = n - 1 / 2  

i/(n+l)<t 
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Define the processes Gi(t) = Bi([0, t]) on [0, 1]. Note that G1 is a Brownian Bridge 
process. Then, under A1, 

(4.4) (Vn,1, Vn,2) ~ (21/2G1, G2) 

as random elements of D[0, 1] × D[0, 1]. 
To verify (4.4), observe that the marginal weak convergence of Vn# that is 

entailed by (4.4) is known (cf. Section 16 of Billingsley (1968) and Section 4 of 
Alexander and Pyke (1986)). Consequently, the bivaxiate processes {(Vn,1, Vn,2)} 
are tight. Because Vn,1 and Vn,2 are uncorrelated, the finite dimensional distribu- 
tions of any linear combination aVn,1 (t)+bVn,2 (t) converge to those of 21/2aG1 (t)+ 
bG2(t), by the central limit theorem. The weak convergence (4.4) thus follows. 

Next, for any set A of the form (2.1), 

(4.5) 

m 

-= 2 E[Vn,l(t2i ) _ Vn,l(t2i-1-)] Wn,l(A, On) a n 
i-= l 

m 

W~,2(A, t~) = aN E[V~,2(t2i) - V~,e(t2i-1-)]. 
i=1 

The lemma follows by applying (4.4) to (4.5) and then checking that the covariance 
structure of the limit process coincides with that given in (4.2). 

PROOF OF THEOREM 2.1. From (2.10), (2.7) and the definition of Wn#(0~) 

(4.6) ~n(A)=u~(A)+a2n#~(A)+n-1/2W~,I(A,O~)+2n-1/2Wn,2(A,O~). 

Lemma 4.1 and Assumption A1 then imply 

(4.7) II~n(.) -[v( .)  + a2#(.)]llA --+ 0 

in Pe~,~-probability. The second convergence in (2.17) follows from (2.11), (4.7) 
and Assumption A2. 

Similarly, by (2.8), 

(4.8) Ln(~(A), ~ )  = n-1/2W~,I(A, 0~) + a2~#~(A) + v~(AC). 

The first convergence in (2.17) follows from Lemma 4.1 and Assumption A1. 
^ 

The definition (2.13) of ~n,c, (2.17) and the triangle inequality yield 

(4.9) 

and 

(4.10) 

^ ^ ^ ~  ° 

L n ( ~ n , C ,  f in)  ""+ ~ p ( A )  

L ^ ^2 - - - ,  O ,  

both convergences being in Pe.,n-probability. Conclusion (2.18) follows immedi- 
ately. 
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Suppose that (2.19) does not hold. In view of the second limit in (2.17), we 
may assume without loss of generality, by going to a subsequence, that 

I tk ,~( ,~n( . ) , ,~ )  - pll.a = o w.p.1 (4.11) 

while 

(4.12) Po,,,n[ inf d(J,~, A) > e] > 
A E M  

for some positive e and 5. Because ..4 is compact, p is d-continuous, and ei, n mini- 
mizes Ln(.~n(-),&~ 2) over A, the uniform convergence (4.11) implies that 
infAeM d(An,A) ~ 0 with probability one. This contradicts (4.12) and so es- 
tablishes (2.19). 

PROOF OF THEOREM 3.1. As in the preceding proof, the definitions of L~ 
and Ln entail 

(4.13) 

and 

(4.14) 

L,~(~n,c, {n) = vn( fln) + ~r2n#n( f~n) + n-1/2Wn,l ( f~n, en) 

^ ^ ^ 2  2 ^ c  Ln({n,c, o'n,~) = vn(-~ c) + cr,~#n(An) + n-1/~Wna(AC, On) 

+ 2n-1/2w,, , , ( , i~,  e,.) + a~,~[ , . (2 . )  - , . ( A  c.)]. 

Hence 

(4.15) D,~(~n,Xn,~r2,i) = nl/2[Ln(~,~,c,~,~) - gn(~,~,c,̂ ^ &2~,i)] 

w,, , l (A.,e, , )  w~,l ^c _ = - (An, &~) 2Wn,2(J,,~, en) 
, /2  ^2 

- -  n ( C r n ,  i - -  O ' 2 n ) [ 2 # n ( A n )  - 1]. 

Suppose Assumption B1 holds and write X~,i = ~ , i  + a,~Z~, as in the proof 
of Lemma 4.1, where the (Zi} are iid standard normal random variables. Then, 
under P0~ ,n, 

(4.16) ^2 = 2-1 -1 2 (Z~2 + a,m ( n -  1) a n Z~_I) 
i = 2  

n 

+ ( n  - 1)-1o'2 n E ZiZi-  op(n-1/~) • 
5----2 

Consequently, 

(4.17) nl/2[~.2 _ 
\ v ' n , 1  a2n) = 2-1[Wnj([2/(n + 1), 1], 0,~) 

+ Wn,l([0, (n - 1)/(n + 1)], 0n)] 
n 

+ n l / 2 ( n -  E _ -flop(l). 1)-1.~  z ,  z i  1 
i = 2  
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The quadratic term in (4.17) converges, by the martingale central limit the- 
orem, to a Gaussian limit. Moreover, let Z be a standard normal variable such 
that B1, B2 and Z are mutually independent. By extension of the proof for 
Lemma 4.1, the processes {(Wn,1, Wn,2, n-1/2a 2 ~-~-~=2 Z~Zi-1)} converge weakly 
to (21/2~r2B1, ~B2, a2Z), as random elements of L~(S)  x L~(S )  x R. 

It follows from (4.17) that n J / 2 ( ~ 2 1 -  a 2) converges weakly to 
21/2a2B1([O, 1])+ a2Z, whose distribution is N(0,3a4). Moreover, (2.19) and 
the d-continuity of the measures #, v imply that 

(4.18) #(A~) -+ #(A0) and v(f4,~) ~ v(Ao) 

in P0~,n-probability. The foregoing considerations establish 

(4.19) ^2 21/2o.2Bl(Ao) 21/2Bl(A~) Dn(~n,X,~,an,t ) ~ 

- 2aB2(A~) - [2#(A0) - 1][21/2B1([0, 1]) + Z]a 2. 

For any set A in A, (4.2) entails 

(4.20) Cov[B1 (A), S l  ([0, 1])] = it(A). 

Thus, after simplification of the variance, the right side of (4.19) has a 
N(0, 71 (a2, v, A0)) distribution. 

Suppose Assumption B2 holds. Then (}2n, 2 is independent of X~ and 

(4.21) ~1/2~,2 '~ ~'n,2 -- a2n) ~ 21 /2b -1 /2a2Z ,  

where again Z is a standard normal random variable such that B1, B2 and Z are 
independent. In view of (4.15), (2.19) and Lemma 4.1, 

(4.22) ^2 21/2a2Bl(Ao) 21/2Bl(A~) D,~(~n,X,~,a,~,2 ) :::> 

- 2aB2(A~) - [2it(A0) - 1121/2b-1/2o2Z. 

The right side of (4.22) has a N(0, T2(a 2, v, A0)) distribution. 

PROOF OF THEOREM 3.2. 
of the loss Ln(~n,c, ~n), 

By the definition of Cn,i and the non-negativity 

(4.23) Po,~,~[Cn,i ~ ~]  

: P O ~ , n { L n ( L , C , ~ n )  ~_ [Ln(~n,C,&2,i)  -4- n-1/2/:/<]((~)]+} 

>_ <_ 

This and (3.13) imply (3.17). By Theorem 2.1, the estimated loss ]-~(~n,c, &2#) 
converges in probability to p(Ao). Thus, when p(A0) > 0, the greater than or 
equal in (4.23) may be replaced asymptotically by equality, proving (3.16). 

From (3.2) and (3.14), 

I/2 ^ (4.24) GLn(Cn,~, (n) Ln (~n,C,~n) "~ [Ln(~n,C, ~2i) -~ rt-1/2/:/-1' \~1/2 = ~,i (a)l+ • 

The right side of (4.24) converges to 2pi/2(Ao) because of Theorem 2.1 and (3.13). 
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