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Abstract. A version of Craig-Sakamoto’s theorem says essentially that if
X is a N(0,1,) Gaussian random variable in R", and if 4 and B are (n,n)
symmetric matrices, then X’AX and X'BX (or traces of AXX' and BXX')
are independent random variables if and only if AB = 0. As observed in 1951,
by Ogasawara and Takahashi, this result can be extended to the case where
X X' isreplaced by a Wishart random variable. Many properties of the ordinary
Wishart distributions have recently been extended to the Wishart distributions
on the symmetric cone generated by a Euclidean Jordan algebra E. Similarly,
we generalize there the version of Craig's theorem given by Ogasawara and
Takahashi. We prove that if a and b are in E and if W is Wishart distributed,
then Trace a.W" and Trace b.W are independent if and only if a.b = 0 and
a.(b.z) = b.{a.x) for all z in £, where the . indicates Jordan product.

Key words and phrases: Jordan algebra, Wishart distributions, exponential
families on convex cones.

1. Introduction

This note has been inspired by two papers on the Craig-Sakamoto’s theorem,
namely Driscoll and Gundberg (1986) and Ogawa (1993). Both are extremely
interesting and thoroughly written papers, the second one completing (and some-
times correcting) the first on many points. Our note has no historical aims and
we encourage the reader to have a look at these two papers for a detailed history
of the subject. We thank both the editor and the anonymous referees for pointing
out some inaccuracies in the references of an earlier version.

We are interested here only on the following simplest version of the Craig-
Sakamoto’s theorem:

THEOREM 1.1. Let X be a N(0,1,)) Gaussian random variable in R" and let
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A and B be symmetric (n,n) matrices. Then
U=X'AX and V=X'BX

are independent random wvariables if and only if AB = 0.

This result is not so easy to prove. It has however an easy extension, which
replaces N(0,7I,) by N(0,%) and AB = 0 by AXB = 0, and more difficult one,
which replaces N(0.I,,) by N{u.I,,) or N{y,¥): the story is described in Driscoll
and Gundberg (1986). Let us now consider another easy extension of Theorem 1.1,
which is already pointed out by Ogasawara and Takahashi (1951). Let us observe
first that in Theorem 1.1, X’AX equals Trace AX X', and that W = XX’ has
the Wishart distribution (denoted W, (1.1,), following the notation of Muirhead
({(1982), p. 67)). Let us also recall that if we denote by C' (resp. int (') the cone
of (n.n) symmetric positive real matrices (resp. positive definite), if p belongs to

(1.1) {1,2,....n=1}U(n — 1, +c0)
and if ¥ is in int C, then a random matrix W taking its values in ' has Wishart
distribution W, (p, £) if, for all matrices S such that ¥~! + 5 is in int C, one has

(1.2) E (exp —% Trace SW> = det (I, + S¥)7P/2,

As a generalization of what is done for the gamma distribution, p in (1.1) is called
the shape parameter and (25)7! in int C is the scale parameter of W, (p, ).
Let us now write the trivial extension of Theorem 1.1 mentioned above:

THEOREM 1.2. Letp bein (1.1), let W be a random variable with distribution
Wi(p. I,) and A and B be symmetric (n.n) matrices. Then

U = Trace{AW) and V = Trace(BW)
are independent if and only if AB = 0.

Proor. Let ¢ > 0 be such that —¢ < t < ¢ and —c < s < ¢ imply that
I, +tA, I, + 5B, I, +tA+ sB are in . Then it follows from (1.2) that U and
V' are independent if and only if for |t| and |s| < ¢ one has

(1.3) (Det(I,, + tA+ sB))™"/% = (Det(I, + tA))"?/>(Det(l, + sB))~"/?.

Condition (1.3) for p is fulfilled if and only if it is fulfilled for p = 1, and from
Theorem 1.1, this is equivalent to AB = 0. 0O

During the last ten years, works on the classification of the natural exponen-
tial families in RY with the simplest variance functions have called attention to
extensions of the Wishart distributions to cones other than the cone of positive
matrices. Let C' be a closed convex cone in a Euclidean space E ({7, ) will denote
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the scalar product in E) such that the interior int C is not empty and such that
cn(-C)={o}.

The dual cone is:
(1.4) C*={ye E;(Z,§) >0 foral ¥in C}.

One can show easily that
(1.5) L(6) = / exp(—(f, 7))dz
C

is finite if § belongs to the interior of C* (see e.g. Rothaus ((1968), p. 165) for a
generalization).

In analogy with (1.1), denote by A the set of A > 0 such that there exists a
positive measure puy on C such that for all g in int C* one has

-

(1.6) (L()) =./£exp<—«éif»pu(df»

=

Then, for (A,#) in A x int C*, the probability on C

—~ — —

(1.7) W (A, 9)(dE) = (L(8))* exp(— (0, 2))ux(dT)

could be called a Wishart distribution in the C-sense.

The distribution (1.7} is a genuine generalization of the ordinary Wishart
distribution: if F is the space H,(R) of symmetric (n,n) matrices, endowed with
the scalar product (A, B) = Trace AB, and if C is Q, the cone of positive matrices,
then in fact C* = C, A is (1.1) multiplied by the factor HLH and, for ¥ in int C,
the equality:

2—1
Walp. %) =1 ((n+ 05, 5 )
links (1.7) with the traditional notation of Wishart distribution on H,(R).

With this definition (1.7) of the Wishart distribution on a general convex
cone of R", the problem of the extension of Theorem 1.2 arises. Observe first that
X — f(X) is a linear form on H,(R) if and only if there exists S in H,(R) such
that f(X) = Trace(SX). Thus Theorem 1.2 can be seen as a characterization
of independent pairs of linear forms of a Wishart distribution in H,(R). More
generally, let W be a random variable in C' with distribution defined by (1.7), let
a and b be in E and define

U= {(a,W) and V =(bW);

we may ask for a characterization of the pairs such that U and V' are independent.
Clearly this is equivalent to

(1.8) L(8)L(0 + ta + sb) = L(O + ta)L(6 + sb)
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for all (t,s) in R such that 6 + ta, 8 + sb, 6 + ta + sb are in int C* (here # is in
int C* and L is defined by (1.5)). Note the independence of condition (1.8) with
respect to A.

The aim of the present note is to solve this problem in the particular case
where int C is an irreducible symmetric cone. These cones have already appeared
in statistics (see e.g. Jensen (1988)) and their Wishart distributions retain some
flavor of the Gaussian origin of the ordinary Wishart. The natural exponential
families associated to them have specially nice properties (see Casalis (1990, 1991),
Letac (1994), Massam (1994) and Massam and Neher (1994)). We recall a few
basic things about them in Sections 2 and 3. Section 4 states and proves our
generalization of Craig-Sakamoto’s theorem to these Wishart distributions.

2. Symmetric cones and Jordan algebras

One can find several references in the English literature on Jordan algebras.
A classical one is Jacobson (1968), but Chapter 1 of Satake (1980) contains a lot
of information, references and exercises. Finally the book by Faraut and Koranyi
(1994), an elaboration of the notes by Faraut (1988), is an excellent reference for
OUr purposes.

A closed convex cone C in a Euclidean space F is said to be symmetric if int C
is not empty, CN—C = {3}, C* = C and if the group G of automorphisms of int '
acts transitively, i.e. if for all z and y in int C, there exists a linear automorphism
g of E such that g(int C) =int C' and g(z) = y. If E = E1 @& FE,, where E]| and E,
are orthogonal with positive dimension, if C; and Cs are symmetric cones of E
and Es, then C = C1 + (5 is also a symmetric cone and C' is said to be irreducible
if there is no such pair (Cy, Ca).

There are only 5 kinds of irreducible symmetric cones. Let us describe them;
if K is the algebra R, or C, or H (Quaternions), or O (Octonions), denote by
E = H,(K) the space of Hermitian (n,n) matrices with entries in K. An element
a in H,(K) is said to be positive if for all z in K™, 2'(az) > 0. H, +(K) denotes
the cone of these positive elements. Up to isomorphism, and with sone overiap
due to isomorphism, the five kinds of irreducible symmetric cones are

(1)

(2) >
(3) Ho+H), n>2
(4)

(5)

5) the Lorentz cone, i.e.

{(f=(z1,...,2p) €ER 2y > (22 +--- + 56721)1/2}, n> 2.
Actually to each symmetric cone one associates essentially one and only one
Euclidean Jordan algebra E (see Faraut (1988), Theorem II1.3.1). Let us recall
that a Euclidean Jordan algebra is a Euclidean space E with scalar product (a, b)
and a bilinear map
ExE—-E (ab)—ab



CRAIG-SAKAMOTO’S THEOREM ON SYMMETRIC CONES 789

called “Jordan product” with the following properties
(i) the map is symmetric, i.e. a.b = b.a,

(ii) there exists e in E such that a.e = a,

(iii) (a,b.c) = (a.b,c) for all a, b, ¢ in E,

(iv) (a.b).(c.d) + (a.d).(b.c) + (a.c).(b.d) = (a.(c.d)).b+ (a.(b.c)).d+ (a.(b.d)).c,
for all a, b, ¢, d in E.

For a shape E as given above, one can prove (Faraut (1988), Chapter III) that
C = {a.a;a € E} is symmetric and that conversely every symmetric cone can be
built in that way. When E = H,(R), the Jordan product is

(2.1) AB = %(AB+BA),

where AB stands for the ordinary product of matrices. Formula (2.1) holds also
in cases (2), (3) and (4). When E = R"™ the Jordan product

Ty = (T1y1+ - + TaYn, T1¥2 + Y122, .. ., T1Yn + Y1T0)

yields the Lorentz cone of example {5).

Finally a Euclidean Jordan algebra is said to be simple if it does not contain
a non trivial ideal, i.e. linear subspace I such that 0 < dim7 < dim F and such
that the image of I x E by (a,b) — a.b is in I. From Faraut ((1988), Chapter III
Section 5), C = {a.a;a € F} is irreducible if and only if E is simple.

3. Determinant, trace and Wishart distribution on an irreducible symmetric cone

Let F be a simple Jordan algebra. There are two important polynomial func-
tions, det. and trace, defined on £ and with values in R (see Faraut (1988), Chapter
IT). For H,(R) and H,(C) they coincide with the ordinary determinant and trace
of real or complex matrices. See details in Casalis (1990) for H,(H) and H,(O).
For example 5, det(zy,...,2,) = 23 — 23 — --- — 22 and Trace(zy,...,2,) = 2.

There are also 3 integers (n,d,r) called the structural constants of E; n is
dim FE, 7 is called the rank of F, d is called the Peirce constant and n = r+%r(r— 1).

For instance, r is the order of matrices in the examples (1), (2), (3), (4) H.(K),
and d is the dimension of K over R, respectively 1, 2, 4, 8. For the Lorentz cone
d=n—2, r =2 Needless to say, (d,r) characterises F up to isomorphismi.

The trace of a.b is proportional to the scalar product. From now we choose the
following normalization of the scalar product: the unit element e, which always
satisfies Trace e = r, must be such that (e,e) = r. This implies that Tracea.b =
{a,b).

Using these quantities, we can write explicitly the Laplace transform (1.5) for
an irreducible symmetric cone C.

For all 8 in int C, we have:

(3.1) L(H):/ exp(~(0, 2))di = Ke(det 6)"/"
C
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where K¢ is a constant independent of §. Thus (1.8) is equivalent to:
(3.2) det(6) det(6 + ta + sb) = det(0 + ta) det(6 + sb)

for all (¢, s) in R?. Since det is a polynomial, equality (3.2) holds in R? if it holds
in a neighborhood of (0, 0).
Let us also recall that the set A described in (1.6) is, in terms of d and r:

(3.3) A:{m‘wr3” “JT—U£}U<U—1ﬂC+m>,

o’ on’ 2n’’ 2n on’

ie.int C — R 6 — (det §)~P%/2 is the Laplace transform of some positive measure
on C if and only if p belongs to {1,2,...,7 = 1} U (r — 1, +00).

This result is due to Gindikin (1975). It had been conjectured a long time
before by Lévy (1948) for the cone H,(R): Shanbhag (1988) gives a clever proof
of it; it can be easily generalized to symmetric cones (see Casalis and Letac (1994)
for this generalization and some bibliographical comments).

4. Craig-Sakamoto's theorem on an irreducible symmetric cone

THEOREM 4.1. Let E be a simple Euclidean Jordan algebra and C be an
irreducible symmetric cone. Let a and b be in E, let X be in the set (3.3) and let
X be a random variable with Wishart distribution W (A, e) on C. Consider

U = Trace(a.X) and V = Trace(b.X).

The following four statements are equivalent

(i) U and V are independent,

(ii) for all (t,s) in R* det(e + ta + sb) = det(e + ta) det(e + sb),

(iii) a.b =0 and for all z in E a.(b.z) — b.(a.x) =0,

(iv) there exists an idempotent ¢ in E such that a € V(e,1) and b € V(c,0).

Comments. With (3.1) and (3.2), equivalence between (i) and (ii) is almost
trivial. Condition (iii) is the closest to the condition AB = 0 in Theorem 1.1.
But note that in H,(R), the condition A.B = 0, i.e. AB + BA = 0 does not
imply AB = 0, whereas AB + BA = 0 plus A.(B.X) — B.(A.X) =0 for all X
(i.e. (AB — BA)X = X(AB — BA) for all X in H.(R)) is equivalent to AB = 0.
Condition (iv) in the case of H,.(R) alludes to the fact that in a Euclidean space,
the product of two symmetric endomorphisms a and b is 0 if and only if there
exists an orthonormal basis fi,..., f» such that

[qu{g 8} and m§:[8 g}.

Equivalence between (iii) and (iv) is easy, as well as the implication (iv) = (ii).
Finally, like in Theorem 1.1, the more delicate point is (ii) = (iv). There are es-
sentially three different proofs of the necessary condition in Theorem 1.1, the one
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given by Ogawa (1949), the one given by Matusita (1949)—it was rediscovered
independently by Lancaster (1954)—and finally the one given by Ogasawara and
Takahashi (1951). These two proofs given in 1949 are historically the first cor-
rect proofs of Theorem 1.1. Olkin ((1990), p. 247), also contains variations of the
method of Ogasawara and Takahashi. We shall give two proofs of (ii) = (iv), imi-
tating first Ogasawara and Takahashi, then Matusita-Lancaster. Actually Ogawa
proves a slightly stronger result, which says in essence that if A and B are 2
symmetric (r,r) real matrices then

det(I, +t(A + B)) = det(I, +tA)det(l, + tB)
for all ¢ in R if and only if AB = 0: it lacks a clear probabilistic interpretation.

PROOF OF THEOREM 4.1.

(i) = (i)

Denote for simplification p = Ad(r 4+ 1)/2. Then for ¢ and s small enough,
from (3.1)

E(exp —tU) = (det(e + ta))™P

E(exp —sV') = (det(e + sb))™?

E(exp —tU — sV') = (det(e + ta + sb))~P.

This identity (ii} holds for ¢ and s small. Since both sides are polynomials in
(t,s), it holds for (¢, s) in R%

(i) = (1)
Similar.

For the remainder of the other equivalence proofs we adopt the following no-
tation. Given a in E, there exists a sequence (cy, ..., cx) of orthogonal primitive
idempotents, with k& < r, such that a = ay¢1 + - - + apck, where the real numbers
aq - - -« are all different from 0. Let ¢ be the idempotent equal to ¢; + - + c.
Finally if V(c,A) for A = 0, 1, 1/2 denotes the eigenspace of the endomorphism
of E x — c.x, we denote by = = z¢ + z,/2 + x; the Peirce decomposition of a
given z in E, with x in V (¢, A); the functions “determinant” defined on the two
subalgebras V{c, 1) and V(c,0) will be denoted by det, and detg respectively.

(4ii) = (iv)
If we apply (iii) to £ = ¢ we obtain

1
O =a.(b.c) —b.(a.c) =a. <b1 + §b1/g> — (bo + b1/2 + b1).a.

Thus 0 = éa.bl/g. Since b, is in V(c,1/2), we can write

1 1
b]/Q = Z b"_/ with bL] in V <Ci, 5) nv <ij 5) .

1<i<k<j<r
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Thus
0=abyp= Z OeCe.bij = Z a;C. U:— Z ;b
e 1<k<y i<k<j i<k<y
Since the b;; are independent this implies a;b;; = 0, and b;; = 0 since a; # 0.
Thus by, = 0.
The other part of the hypothesis is a.b = 0. This yields 0 = a.(b; + bg) = a.by,
and one shows similarly that b; = 0.

(i) = (i#7)

Here b, and by, are 0, and there exists a sequence (cg+1....,c,) of orthogonal
primitive idempotents such that: b = Bycpsy + -+ + Br_rer, where 3y, ..., 3-_s
are in R, and such that cp41 + -+ ¢, = e —c. Thus a.b = 0. To see that
a.(b.z) — b.(a.x) is zero, we compute this quantity in the three cases: r is V(c, \),
with A = 0, 1 and 1/2. From different relations between the V(c, \) (see Faraut
((1988), p. 46)) we have a.(b.x) — b.{a.x) = 0 when x is in V(c, A) for A = 1 or 0.
If £ isin V(c.1/2) we write

r= Z i, with oy in V(e 1/2) NV (e;,1/2).
1<i<k< <r
Thus
Z Q;Tij, b.r = Z /3]';1‘,‘_,‘.
i<k<j i<k<j

from which it follows easily that a.b.(2) — b.(a.x) =0 for all x in E.

(iv) = (i)

We still write b= >"" 3j—rc;. Thus

j=k+1"/

e+ta+sb:Z(1+ta, Jei + Z 1+ s3_1)
i=1 j=k+1
k T
det(e +ta+sb) = [J(1+tas) J] (1 +s8;-4)
i=1 J=k+1
= det(e + ta) det(e + sb).
(it) = (44i) or (iv)
Now comes the interesting part of the proof.
18T PrROOF. Ogasawara-Takahashi’s method.

We will first recall this method in the real symmetric matrix case: for A and
B (r,r) symmetric matrices, and ¢ and s small enough, we write

o0
1
exp — Z - trace(tA + sB)" = det(I, — tA — sB)
n=1

= det(l,, — tA)det(l,, — sB)

o0
1
= exp — Z E(t” Trace A" + s™ Trace B™).

n=1



CRAIG-SAKAMOTO’S THEOREM ON SYMMETRIC CONES 793

Thus Trace[(tA + sB)* —t"A" — s"B"]| =0 for all n > 1.
Watching the coefficient of t2s? for n = 4, one gets

(4.1) 2 Trace AB? A + Trace(AB + BA)? =

Since AB%A and AB + BA are symmetric matrices, this implies AB = 0.

We now imitate this clever trick for a Jordan algebra E. As usual, we adopt
the notation, for z in £ and n in N : 2% = e and z"*! = z.(z™). We have, for ¢
small enough:

k 20 k
tn
et(e — ta) 1;[ ;) g - ;a
= exp — Z — tlace
n=1
(4.2) Trace((ta + sb)" —t"a™ —s"6") =0 forall n>1.

We now take n = 4, look at the coefficient of t2s? in (4.2) and take t = 1 without
loss. One has to compute (a + sb)* according to the rules of Jordan algebras:

(a+ sb)? = a® + 2sa.b + s?b?,
(a+ sb)® = a3 + s(2a.(a.b) + a.b) + s2(2b.(a.b) + a.b?) + s3b.

The coefficient of t2s2 in (4.2) forn =4 is
(4.3) trace(a.(a.b?) + 2a.(b.(a.b)) + 2b.(a.b) + b.(b.a*)) = 0.

We now have to transform (4.3) into something close to (4.1). To do so, we
use (for the first time) the quadratic map P. Let us observe that in general

(4.4) trace P(z)(y) = tracez®y forall z and y in E.
This comes from the fact that
(4.5) trace((x.y).z) = tracez.(y.z) forall =z,y and z in E
(see Faraut ((1988), pp. 32-33)), and from the very definition of P(z)(y) =
2z(x.y) — 22y,
Applying (4.5) we get that
(4.6) trace a®.b® = trace a.(a.b?) = traceb.(b.a?).
Applying (4.4) to z = a and y = b* we get that
(4.7) trace P(a)(b?) = trace a”.b*.
(4.5) gives also

(4.8) trace(a.b)? = tracea.(b.(a.b)) = traceb.(a.(a.b)).
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Gathering (4.6), (4.7) and (4.8), we finally get the desired consequence of (4.3)
as an analogue of (4.1}):

(4.9) 2 trace P(a)(b?) + 4trace(a.b)’ = 0.

Since (a.b)? and b? are in the symmetric cone C, since C' is preserved by the
quadratic maps P(z) and since traces of elements y of C' are non negative (and 0 if
and only if y = 0), we get from (4.9) that a.b = 0 and that P(a)(b®) = 0. Finally,
we write

(4.10) b* = b} + bF + b )5 + 2(b1 + bo)-b1 2.
Using the general rules

(4.11) P(V(e,1))(V(e.1)) C V(e 1),
P(V(e. 1))(V(e.0) + V(c. 1/2)) =0,

we obtain
0 = P(a)(b*) = P(a)(b]) + P(a)(b3,,).

Again, since b? and b'f/Q are in C, we get P(a)(b?) = 0.

Since a~! exists in V(c,1) and since P(a™!) = (P(a))™! in V(c, 1), we get
b2 =0 and by = 0. Since a.b = 0, we get a.by/, = 0. Writing by, = Zi§k<j bi;
with by in V(c;, 1/2) NV (c;,1/2), we get 0 = a.byjp = >, po; @ibij, and finally
b;; = 0 since a; # 0 and the b;; are independent. Thus b; /o =0,a(bxr)-blax)=
0 for all x in E and (iii) is proved.

2ND PROOF. Matusita-Lancaster’s method.

We also recall the principle of this method in the case of real symmetric ma-
trices to prove the necessary condition in Theorem 1.1. Without loss of generality,
we assume that A and B are written by blocks as follows:

li ool

0 0 B, B

with A, = diag(ay, asz,...,ax) and det A; # 0. Thus

1
1 —(I +sB1) + Ay sB1/2
(4.12) — det(I, +tA+sB) =det | ¢ s
t ? 1/2 I _ + 5By

Taking the limit as ¢t — 400 in (4.12) and using (ii), we get
(4.13) ay - -apdet(l,_; +5Bg) = a; - apdet(, + sB).
Comparing the eigenvalues of By and B from (4.13) we get

0 = trace B? — trace Bf = trace(B} + QBl/QB;/.z).
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Since B? and B1/2B1/2 are positive symmetric (k, k) matrices, we obtain B; = 0,
Byj; =0and AB = 0.

To imitate Matusita-Lancaster and equality (4.12), we would need the exact
analogue triangular matrices in the context of symmetric cones and this is not
available. We use instead the following lemma (a detailed proof is in Massam and
Neher ((1994), Proposition 3.3.1)).

LEMMA 4.1. Let ¢ be an idempotent in the simple Fuclidean Jordan algebra
E, let xo+x1 + 712 be the Peirce decomposition of x with respect to ¢ and assume
that =1 exists in V(c.1). Then P(Il/g)(il,‘l—l) is in V(c,0) and
(4.14) detx = dlet I d((;}t(;lfo - P(.Tl/'z)(f[:;l)).

We apply the lemma to @) = ¢+ ta + sby, *g = € — c + sbg and x5 = sby/s:
for fixed s and for ¢ big enough =7 exist; thus from (4.14):

1 1
(4.15) m det(e + ta + sb) = dlet (Z(C + sby) + a> d{()et(;r,o - P(;zrl/g)azl_l),

Since, clearly, r7! —¢_ 1 0, taking limits in (4.15) when ¢ — 400 and using
(ii) we get the analogue of (4.13):

(4.16) (.lﬁt a dgt(e —c+sby) = dlet adet(e + sb).

Let (ckat1, ... ¢r) and (c], ch, ..., c’.) be two sequences of orthogonal primitive
idempotents such that

T r
b() = E jjj Cj and b= E ,"%Cg.
Jj=k+1 i=1

From (4.16), since det; a # 0 we get for all s

r r

[T a+89)=TJ+5s),

j=k+1 i=1
(4.17) trace b} = Z 87 = Z(/j’f)z = trace b*.
j=k+1 i=1

V (e, 1/2) is orthogonal to V(c,0) and V(c, 1) (thus traceb, (b1 + bg) = 0).
Using this and (4.10), we get from (4.17) that trace(b? + b%/z) = 0. Since b3 and
bf/Q are in C, this implies by and by, =0 and (iv) is true.
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5.  Another result of independence
The following result is easily obtained as a consequence of Theorem 1.1:

THEOREM 5.1. Let (£.1)" be a Gaussian centered random variable of R"TF
with covariance matriz:
5 { ¥ E1/2]

Z:/1/2 o

Let Ay and By be symmetric (n,n) and (k,k) matrices. Assume that &, A;, Bg
are invertible. Then, if ' A1€ and 7' Byn are independent, one has £y, = 0.

PrOOF. We write 4 = VT {/él 8} VY and B = VT [8 12 } VI, and
0

note that
(s

(9

Ui
has distribution N(0, I, +x). An application of Theorem 1.1 shows that & A€ and

DI
1’ Bgn are independent if and only if AXB = 0. Since ALB = {8 Alqé)/’zBo}

and since A; and By are invertible, the result is proved. O

Just as we passed from Theorem 1.1 to Theorem 1.2 by introducing the ordi-
nary Wishart distribution. we could give an easy extension of Theorem 5.1 with
Wishart distributions again. We opt not to do so, but rather to give a generaliza-
tion in the framework of symmetric cones.

THEOREM 5.2. Let W be a random wvariable taking its values in a simple
Fuclidean Jordan algebra E, Wishart distributed with scale parameter y in int C
(C is the symmetric cone of E) and shape parameter p in (3.3). i.e. for 6 in int C

E(exp — Trace 8W') = ((dety)/(det(y + )P/
Let ¢ be an idempotent and let a and b be in V(c,1) and V{c,0) respectively.
We assume that a and b are invertible with respect to these subalgebras. Then
trace(a.17) and trace(b.WW") are independent implies that y,,, = 0, where yy /5 s

the projection of y on V(c,1/2).

Proor. Clearly trace(a.W') and trace(b.W}) are independent if and only if
for all (t.s) in R? one has

(5.1) det y det(y + sa + sb) = det(y + sa) det(y + tb).

Since y is in int C, and if y = y1 + yo + y1,2 is the Peirce decomposition of y,
clearly yl_1 and yo_l exist. Denote z5 = P(yl/g)yfl.
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From Lemma 4.2 it is in V/(¢,0), and yo — zo is in C. Let us apply Lemma, 4.2
to each of the 4 determinants of 5.1. After trite simplifications, we get

(5.2) dgt(yo - 20) doet(yo —th— P(y12)(y1 — sa)™")

= dgt(yo — zg — tb) dgt(llo — P(y1/2)(y — sa)™').
Letting s — 400, (5.2) gives

(5.3) dgt(’yo - 29) dgt(yo — tb) = det yo det(yo — zo — tb).

Since det(P(y)(z)) = (det y)?*(det z) for any z and y in E and yo — zg, being
in C, has a square root in C, (5.3) becomes

(5.4) doet(yo — z9) det(yo — tb) = dgt Yo dgt(e — tP((Vyo — 20) "1 (5))).
For t = 0 in (5.4), we get deto{yo — z0) = detgyg, or

deto(e — P((\/y0)"!)(z0))) = 1. Since =5 = P((/F0) )(z0) and e — z{, are both in
C, the eigenvalues of e — z{, are in [0, 1], their product is 1, therefore =, = z5 = 0.

Thus P(yl/g)yl_1 = 0. Writing
k
yf1:Za,-ci with a1 >0 as >0 g >0,
i=1

and ¢ = ¢; + -+ ¢, with (c1....,ct) a sequence of primitive orthogonal idempo-
tents, we have
0= TT&C@P(yl/z)(yfl) = (LU1/2,y1/2~y1_1>s

by using (4.4) and (4.5). Writing

Y12 = Z Qij,

i<k<j

where a;; is in V(¢;,1/2) N V(cy,1/2), we get

yij2yr = 1/2 Z Qaij

and

since the a;; are orthogonal. Since a; > 0, it follows that a;; = 0 and by =0.0
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6. Comments

The first author of this present note has been asked by P. Doisy (Toulouse)
which extension of Theorem 1.1 to infinite dimensional spaces are possible. The
most natural one is to consider symmetric measurable functions a and b : [0, 1]? —
R such that a and b are in L?([0, 1]?), and to consider double integrals with respect
to standard Brownian motion

1 1 1 .
= T, 2YdB , — z, . .
U /0 /0 a(z,y)dB(z)dB(y) 1% /O /O b(zx y)dB(L)dB(y)

It has been proved by Ustiinel and Zakai (1989) that I/ and V are independent
if and only if fﬂl a(z,2)b(z,y)dy = 0 in the L?([0,1]?) sense. It also has been
generalized to higher multiple integrals in the same paper. Sufficient condition
(which was trivial for Theorem 1.1) has got a simpler proof with Kallenberg (1991);
we are indebted to Marc Yor for these two references. Needless to say, these infinite
dimensional results are using the stochastic calculus of Ito and Malliavin and are
no longer elementary.
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