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Abstract. Approximations of density functions are considered in the mul-
tivariate case. The results are presented with the help of matrix derivatives,
powers of Kronecker products and Taylor expansions of functions with ma-
trix argument. In particular, an approximation by the Wishart distribution
is discussed. It is shown that in many situations the distributions should be
centred. The results are applied to the approximation of the distribution of the
sample covariance matrix and to the distribution of the non-central Wishart
distribution.
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1. Introduction

In statistical approximation theory the most common tool for approximating
the density or the distribution function of a statistic of interest is the Edgeworth
expansion or related expansions like tilted Edgeworth (e.g. see Barndorff-Nielsen
and Cox (1989)). Then a distribution is approximated by the standard normal
distribution using derivatives of its density function. However, for approximating
a skewed random variable it is natural to use some skewed distribution. This idea
was elegantly used by Hall (1983) for approximating a sum of independent random
variables with the chi-square distribution.

The same ideas are also valid in the multivariate case. For different multivari-
ate statistics Edgeworth expansions have been derived on the basis of the mul-
tivariate normal distribution, N,(0,%) (e.g. see Traat (1986), Skovgaard (1986),
MecCullagh (1987), Barndorfi-Nielsen and Cox (1989)), but it seems more natu-
ral in many cases to use multivariate approximations via the Wishart distribu-
tion. Most of the test-statistics in multivariate analysis are based on functions of
quadratic forms. Therefore, it is reasonable to believe, at least when the statistics
are based on normal samples, that we could expect good approximations for these
statistics using the Wishart density.
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768 TONU KOLLO AND DIETRICH VON ROSEN

In this paper we are going to obtain the Wishart-approximation for the density
function of a symmetric random matrix. In Section 2 basic notions and formulas
for the probabilistic characterization of a random matrix will be given. Section 3
includes a general relation between two different density functions. The obtained
relation will be utilized in Section 4 in the case when one of the two densities is
the Wishart density. In particular, the first terms of the expansion will be written
out. In Section 5 we present two applications of our results and consider the
distribution of the sample covariance matrix as well as the non-central Wishart
distribution.

2. Moments and cumulants of a random matrix

In the paper we are, systematically, going to use matrix notations. Most of
the results will be presented using notions like vec-operator, Kronecker product,
commutation matrix and matrix derivative. Readers, not very familiar with these
concepts, are referred to the book by Magnus and Neudecker (1988), for example.
Now we present those definitions of matrix derivatives which will be used in the
subsequent.

For a p x g-matrix X and a m x n-matrix ¥ = Y (X) the matrix derivative

d—’x is a mn X pg-matrix:
Y d ® vecY,
=RV
dX dX ’
where
a 0 0 0 d a 7]
dX ~ \O0Xy ' U O0Xp 90X U 0Xp U 0Xy T 90X )]
ie.
dy d
2. — = Y.
1) dX ~ dver X V¢

Higher order derivatives are defined recursively:

dy 4 4ty
dX*  dX dX*-U

(2.2)

When differentiating with respect to a symmetric matrix X we will instead of (2.1)
use

ay d
dAX — dved AX

(2.3) ® vecY,

where AX denotes the upper triangular part of X and
vecAX = (XU, X12,X22, ce ,le, PN ,pr)/.
There exists a (p? x %p(p + 1))-matrix G which is defined by the relation

G vecT = vec AT.
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Explicitly the block-diagonal matrix G is given by p x i-diagonal blocks G;;:
(2.4) Gii = (e1,€2,...,6;) 1=1,2,...,p,

where e; is the ¢-th unit vector, i.e. e; is the i-th column of I,. An important
special case of (2.3) is when ¥ = X. Replacing vec AX by G’ vec X we get by
definition (2.1) the following equality

dX

dAX = (Ip2 + Kpp — (Kpp)a)G,

where (Kpp)s stands for the commutation matrix K,, where the off-diagonal
elements have been put to 0. To shorten the expressions we shall use the notation

(25) Hp,p = ip2 + Kp,p - (KP,p)da

where the indices may be omitted, if dimensions can be understood from the text.
Hence our derivative equals the product

dX
—— = HG.
dAX
Note, that the use of HG is equivalent to the use of the duplication matrix (see
Magnus and Neudecker (1988)).
For a random p x ¢g-matrix X the characteristic function is defined as

ox(T) = Elexp(i tr(T' X)),

where T is a p x g-matrix. The characteristic function can also be presented
through the vec-operdtor;

(2.6) wx (T) = Elexp(ivec' T vec X)],

which is a useful relation for differentiating. In the case of a symmetric p x p-matrix
X the nondiagonal elements of X appear twice in the exponent and so definition
(2.6) gives us the characteristic function for X11,..., X,p, 2X12,...,2Xpp—1. How-
ever, it is more natural to present the characteristic function of a symmetric matrix
for X;;, 1 < ¢ < j, solely, which has been done for the Wishart distribution in
Muirhead (1982), for example. We shall define the characteristic function of a
symmetric p X p-matrix X, using the elements of the upper triangular part of X:

(2.7) ox(T) = pax(AT) = Elexp(ivec' AT vec AX)].

Moments my[X] and cumulants ¢ [X] of X can be found from the character-
istic function by differentiation, i.e.
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1 d*Inpx(T)

X = m =

T=0

Following Cornish and Fisher (1937) we call the function
Y (T) = Inpx(T)

the cumulative function of X.
Applying the matrix derivative (2.1) and higher order matrix derivatives, (2.2),
we get the following formulae for the moments:

m[X] = E[vec’ X],
my|X] = E[(vec X)®*"vec’ X],  k>2

where a®* stands for a @ a ® --- @ a and a®” = 1. The last statement can easily
—_—

k times
be proved using mathematical induction. In fact, the proof repeats the deduction

of an analogous result for random vectors (e.g. see Kollo (1991)). Moreover, the
following equalities are valid for the central moments my [X]:

(2.9) mp[X] = El(vee(X — E[X])®F1ved (X — E[X])]. k=12....

which can be obtained as the derivatives of the characteristic function of X — E[X].
Using (2.7), similar results can be stated for a symmetric matrix.
To shorten notations we will use the following conventions:

ck[AX] = cpvec AX].
mi[AX] = my[vec AX],
mi[AX] = my[vec AX],

as well as

E[AX] = E[vec AX],
D|AX] = D[vec AX].

Finally we note that as in the univariate case there exist relations between
cumulants and moments, and expressions for the first three will be utilized later:

c1[X] = nu[X].
e [X] = ma[X] = D[X],
e3[X] = ms[X].
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3. Relation between two densities

Results in this section are based on Taylor expansions. If g(X) is a scalar
function of a p x g-matrix X, we can present the Taylor expansion of g(X) at the
point Xy in the following form (Kollo (1991)):

(3.1) g(X) = g(X0)+Z %(vec'(X—Xo))®k_1M vec(X —Xo)+ R,

k
k=1 aX X=Xy

where R,, stands for the remainder term. For the characteristic function of X we
have from (3.1), using (2.6) and (2.8):

m ‘.k
ox(T)=1+ Z %(vec' T)Qk_lmk[X] vecT + R,,.
k=1
For the cumulative function
m 1]}‘ ;“ .
(3.2) Vy(T) = Z j(vec’ T)?" tep[X]vee T + Ry,
k=1

If X is symmetric, vecT will be changed by vec AT

m Ak
wax(AT) =1+ Z ;T'(vec’ AT =L, [AX] vec(AT) + R,
= k!
m <k
Pax(AT) = Z %(vec’ AT 1y [AX]vec(AT) + R,,.

ch=1

Let X and Y be two p x g random matrices with densities fx(X) and fy-(Y),
corresponding characteristic functions @ (T), ¢y (T) and cumulative functions
Y (T} and ¢y (T). Our aim is to present the more complicated density func-
tion, say fy(Y'), through the simpler one, fx(X). In the univariate case, the
problem was examined by Cornish and Fisher (1937) who obtained the princi-
pal solution to this problem and used it in the case when X ~ N(0,1). Finney
(1963) generalized the idea to the multivariate case and gave a general expression
of the relation between two densities. In his paper Finney applied the idea in
the univariate case, presenting one density through another. From later presen-
tations we mention McCullagh (1987) and Barndorftf-Nielsen and Cox (1989) who
with the help of tensor notations briefly consider generalized formal Edgeworth
expansions. Tan (1979) utilized Finney’s (1963) work when approximating the
non-central Wishart distribution with the Wishart distribution. One main differ-
ence between the approach in this paper and Finney (1963) and Tan (1979) is
that we use matrix representations of moments and cumulants as well as matrix
derivatives. This makes all computations much simpler and enables us to derive
results in explicit form. When comparing the approach in this paper with the
coordinate free tensor approach, this is a matter of taste which one to prefer. The
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tensor notation approach, as put forward by McCullagh (1987), gives compact ex-
pressions. However, these can sometimes be difficult to apply in real calculations
and the approximation of the inverted Wishart distribution may serve as such an
example.

To establish our results, in particular, for random symmetric matrices, we
need some properties of Fourier transforms. The basic relation is given in the next
lemma. The proof will, however, be omitted since the lemma is a direct general-
ization of a result for random vectors (e.g. see Traat (1986). or Kollo (1991)).

LeEMMA 3.1.  The density fx(X) and the characteristic function ¢x (T) of a
p X g-matriz X are connected by the following relation;

. @hk—1; : ivec’ T vec 'dk (X -
ox (T)(iveeT)# " Yived T = (=1)* /RW e Tvec X '(];%(k)d,\.

where the integral is calculated elementwise and the derivatives are supposed to
exist.
If X is symmetric, then

wax(AT)(ivec AT)@"“li vec' AT
: [ vec” . d¥ fax (AX) .
— (—1)* Jvec AT vec AX - dAX.
(=1 /Rmp+1>/2 ‘ dAX*

The lemma supplies us with the following crucial result.

COROLLARY 3.1. If X is a p x g-matriz and a s an arbitrary nonrandom
(pq)*-vector, then the Fourier transform (inverse transform) of the product
(.l/ (1 vece T)@kgra_\' (T) @quals

, dF fa (X ' b e e v
(—=1)*a’ vec %——) = (27r)_’”’/ ox (T)a' (i vec T)Ekemivee Tvee X gp
- Rra

If X is symmetric and a an arbitrary (%p(p + 1))*-vector, then

~ d* fax (AX)
—1Ya v -
(=l vee = A xx
= (2m) 7/ / pax(AT)a (ivec AT) K emivee ATVee AN GAT,
Rip+1)/2

PROOF. Lemma 3.1 states that ¢y (T)(ivecT)?*~livec' T is the Fourier

K - ‘ .. . ey
transform of (—1)ki{—{fx&ﬁ. After vectorizing kwe get that o (T)(ivecT)?* is
the Fourier transform of the vector (—1)* vec %\_) Then the inverse Fourier

transform is given by

8 dk Y ‘X' . " e . ’ e A
(=1)* vec _—g}(k ) _ (Qw)—l"l/ px (T)(ivecT)Pkemivee TyeeNgr,
|, Rerq
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Premultiplying this equality with o’ gives the statement of the corollary. The
symmetric case is treated similarly. O

Now we are able to present the main result of the section.

THEOREM 3.1. Let _f'_(\fc)(‘Y) denote the k-th derivative %)‘((;\\—) IfY and X
are two random p x g-matrices the density fy(X) can be presented through the
density fx(X) by the following formal equality:

Fr(X) = fx(X) = (E[Y) = B[X])' vec f{(X)
+ %vec’{D[Y] DX + (EY] - EX))E]Y] - E[X])'} vee £O(X)
— L ved/(eslY] - slX]) + Bvec(DIY] - D)) & (E[Y] - FIX])
+ (E[Y] = E[X]))®*} vec £ (X) +

PrROOF. Using the expansion {3.2) of the cumulative function we have

N.

Yy (T) —¥x(T) = Z X (vec' T Ok_l(Cl,- (Y] — c[X]) vee T

and thus
0y { H {—(z vec' T)28Hex[Y] — cx[X])i vecT} :

By using series expansion of the exponential function we obtain, after ordering the
terms according to i*, the following equality

oy (T) = c,o_\-(T){l +i(e1[Y] — e1[X]) vec T

)

+ %vec’ T{c:Y] — ca| X]
+ (e1[Y]) = e[ XD (er[Y] = e1[X])} vec T

W

%(vec T®2{e3[Y] — e3[X] + (cl[Y] — e1[X])
O (c1[Y] = a1 [ X)) (@1 [Y] = e1[X])} vee T

+3(e1[Y] — 1 [X]) vec T ved T
X (ea2[Y] — o[ X]) vecT) + - - }

Repeatedly applying the equality

vec(ABC) = (C' © A)vec B
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we obtain

o (D) = px(M{ 1+ il - afX]) vee T

+ % vec'{ca[Y] — e2[X]
+(@fY] = alX]) (alY] - a[X])} (vec T)®?

+ 2 e (@ly] - clx)

-

+3vec(ea[V] - e2[ X)) @ (e1[Y] = 1 [X))
+ (e1[Y] = e1[X)®3) (vec T3 + - }
This equality can be inverted by applying the inverse Fourier transform given in

Corollary 3.1. The characteristic functions turn then into density functions and
taking into account that ¢;[-] = E[] and cz[-] = D[] the theorem is established. O

For symmetric matrices we can rephrase the theorem in the following way:.

COROLLARY 3.2. IfY and X are symmetric random p x p-matrices, then the
density fay (AX) can be presented through the density fax(AX) by the following
formal equality:

(3.3)  fay(AX) = fax(AX) - (E[AY] — E[AX]) vec f{L(AX)
1
+ 3 vec'{ D[AY] — D[AX] + (E[AY] - E[AX])
x (E[AY] = E[AX])'} vec fRY (AX)
1
a E{VGC'(@ [AY] = ca[AX])
+ 3vecd'(D[AY] — D|AX]) ® (E[AY] — E[AX])
+ (E[AY] — E[AX]))®3} vee fOL(AX) +-- .

In the following we shall use the notation
fx(X) = fax(AX)

for the density function of a symmetric random matrix X analogously to the
characteristic function in (2.7).
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4. On Wishart approximation

If in Theorem 3.1 fx\(X) is a normal density we shall get, as a special case,
a matrix Edgeworth expansion of the density function fy(X). We shall, however,
not deal with the Edgeworth expansion in this paper. For us the starting point
is Corollary 3.2 and we are going to assume that X is Wishart distributed. To
get an expansion for fay (AX) we have to replace the derivatives and cumulants
for X with the explicit expressions for moments and cumulants of the Wishart
distribution.

Let W be a p x p Wishart distributed matrix with n degrees of freedom,
W~ W, (X, n). If £ >0, the matrix W has the density function

|u/l(n—p—l)/26— tr(z-‘ur’)/'z’ W >0

y n n
(A1) fur(W) = { 22T, () I5)"/2

0. otherwise

where the multivariate gamma function I', (%) takes the value

Ly (g) = gpP=1/4 ]_j[lf (%(n-k 1-— Z)) :

The characteristic function of the nonrepeated elements of 1V equals (e.g. see
Muirhead (1982))

(4.2) ow (T) = |1, — iM(T)S| "2,

where
I\I(T) = Z tljj((jie; + EJ'G:-),
ijel

e; is the é-th column of I, and I = {i,5;1 < i < j < p}. Furthermore, we need
the first derivatives of the Wishart density. Straightforward calculationus yield

d* fiy- (W)

LEMMA 4.1.  The derivative SATE

is of the form
dk fux ( W )

(4:3) dAW*

= (-DFL, (V. D) fi (W),  k=0.1,2,...

where fu-(1V) is the density of the Wishart distribution W,(X,n). Fork =0.1.2,3
the matrices Li(W,X) are of the form
Lo(W, %) =1,
1 .
(4.4) Ly(W.E) = - vecd' (s~ - "HHG,

(4.5) Ly(W, %) = —%G’H{S(W‘l oW
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1 —1 -1 1yt —1 -1
~ 5 vec(sW™' — X7 )ved'(sW™ — Z"H}HG,

1 1
(46) Lg(u/’, E) = §(HG ® HG)/{ <§{V€C(S”"_1 — Zfl) @ [pg

+ I @ vec(sW ™! — 71}
~ (I, ® Kpp ® L){(Ly2 © vec W 1)

1 1
~ 3 vec{ 5 vee(sW ™! — 7 vec/(sW™ 1 — 71

—s(W o n'—l)} vec (s — 2—1)}HG.

where s =n —p—1. K, , is the commutation matriz and G and H are defined by
(2.4) and (2.5), respectively.

In order to apply Corollary 3.2 to the Wishart distribution we need also expres-
sions for the first three cumulants of the Wishart distribution. These matrices can
be found by differentiating the cumulative function vy (1) where W~ W ,(Z,n).
From (4.2) we obtain

(4.7) Uy (T) = —g In|I, — iM(T)E).
The expectation and covariance of W are well known and equal

(4.8) E[AW] = nvec AZ.
(4.9) DIAW] = nG'(Lz + K, ,)(E & £)G.

To find the third order cumulant of AW we have to take the third order derivative

from the cumulative function (4.7). It follows from (2.5) and the definition of
A{T) in (4.2) that

dM(T)

dAT

and then after some calculations we obtain

= (I +K),,)G

(4.10) 3| AW =n(G' (I + K, ) 0 GYI, 3 K, @ 1,)
X(E@XoveeX+vecX©X0X) ([ +K,,)G.

A minor complication with the Wishart approximation is that the derivatives of
the density of a Wishart distributed matrix increase with n. If the differences
between cumulants are small this will not matter. However, in the general case,
it seems wise to adjust the expansion so that derivatives decrease with n. Indeed,
some authors have not observed this negative property of the Wishart distribution.
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One way to overcome the problem is to translate the Wishart matrix so that a
centred version is obtained, i.e.

V=W--—nX.
From (4.1) it follows that the matrix V has the density function

1
NGRS

(411) A (V) = i
x]V+nE](”_P_1)/2e_“(E (\/+nE))/2‘ V4+nt >0

0, otherwise.

The first cumulant of V' equals zero and the other cumulants are identical to the
corresponding cumulants of the Wishart distribution. In particular, the second
and third order cumulants are equal to those given by (4.9) and (4.10).

In Theorem 4.1 given below we are going to present the density function fy-(X)
through the centred Wishart density fi-(.X') on the basis of Corollary 3.2. Once
again it follows that expressions for the first derivatives are needed. The derivatives
of f1-(X) can easily be obtained by simple transformations of L;(X.X) if we take
into account the expressions of the densities (4.1) and (4.11). Analogously to
Lemma 4.1 we have

LEMMA 4.2, Let V =W —nX where W ~ W,(X.n). Then

d* fi-(V)

2 2 (f‘.) /Y =
(4.12) fPw) = =

= (V) LLV.D) (V).

where
Ly (V.2) = Ly(V + nX, X)), k=0,1,2...

The matrices Li.(V,X), k =1,2,3 are given by (4.4)—(4.6) and forn > p

1
(4.13) Li(V,2) =~ ~5 vec'(B))HG,

1
(4.14) LYV, E) ~ — 1?G’HB2HG - FG”H vec(B1) vec (B1)HG,
7 7

2
where

-1
B1 — E—lvl/'.? <lv'l/‘22—-1‘/1/‘2 + Ip) ‘/1/22—1‘
7

By=(V/n+Z) e (V/mn+5)"h

For k = 3,4,... the matriz L}(V, %) is of order p(k=1)
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ProoF. The first statement of the lemma follows directly from (4.3) in
Lemma 4.1 if we replace W~ with the expression V + nX¥ since W = V + n¥.

For L1(W,X) we have

LI(V.E) = —% vec'{(n —p—1)(V+nE) ! = S"NHG

1 n—p—1
= 5 vec! {”—B—(V/n, S 2—1} HG.

n

If n > p we have
LI(V.X) = —% vec {(V/n+2)' ~ "N HG
and using the matrix equality (e.g. see Srivastava and Khatri (1979), p. 7)
(A+ BEB)Y '=A'-A'B(BA™'B+ E~Y)'B'A7!,
where A and F are positive definite matrices of orders p and q. respectively. and

B is a p x g-matrix, we get that

n

—1
LI(V.Z) ~ L e {zlvl/? <lvl/‘22—1vl/2 + 1,,) V”Zz—l} G.

Hence, (4.13) has been proved.
For k& = 2 we obtain in a similar way (s =n —p —1)

B~
o+
i

It

1
—;G’H{S(V + ) e (V4 ny)T!
1 . -1 -1
—;vec(s(\/%—'nE) -7

x vec' (s(V +n8) ! — E‘I)}HG’

&2

1
—()—G’H(V/n + ) e (Vin+ )T HG
n
1
4n?

G’ H(vec By vec’ B1)HG.

Thus relation (4.14) is established.

To complete the proof we remark that from (4.6) we have, with the help of
(4.13) and (4.14), that L3(V, ) is of order n=2. From the recursive definition of
the matrix derivative the last statement of the lemma is established. O

Now we shall formulate the result about representation of a density fy (XX')
through the Wishart distribution W,(3,n).
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THEOREM 4.1. Let W, Y and V be p x p random symmetric matrices with
W~ Wy,E,n) and V =W —nX. Then for the density fy (X) the following formal
expansion holds:

(4.15) fr-(X) = fy(X){l + E[AY] vec L}(X. %)

+ %vec’(D[AY] — D[AV]
+ E[AY]E[AY)) vee L3(X. %)
+ = (vec'(¢3[AY] — e3[AV])

+ 3vec (D[AY] — D[AV]) @ E[AY]'

| =

+ E[AY]®3) vec L3(X.3) + -- } X >0.

Proor. The theorem follows directly from (3.3) if applying Lemma 4.2. O
5. Applications

In the following we are going to utilize Theorem 4.1 when considering an ap-
proximation of the density of the matrix n.S by the density of a centred Wishart
distribution, where S is the sample covariance matrix. The possibility of ap-
proximating the distribution of the sample covariance matrix with the Wishart
distribution was probably first noted by Tan (1980). but he did not present ex-
plicit expressions in general. Only in the two-dimensional case formulas for the
approximation were derived.

THEOREM 5.1. Let Z = Zi....,Z, be a sample of size n from « p-dimen-
sional population with E[Z;] = u. D|Z;] = T and finite central moments: my[Z;] <
oo, k= 3.4....; let S denote the sample covariance matric. Then the density
function fs-(X) of S* = n(S — X) has the following representation through the
centred Wishart density fi-(X), where V =1 —nZ and W ~ W,(X.n):

(5.1)  fs-(X)= f\r(X){l - ivec'(G’{ﬁz_; [Z;] — vec Eved' &

~ (L2 + K,,)(22E)}G)
x vec(G'H(V/n+ ) e (V/n+ )" HHG)

1
+O<—>} X >0.
n
where G and H are defined by (2.4) and (2.5), respectively.

PROOF. To obtain (5.1) we have to insert the expressions of L (X, ¥) and
cumulants ¢x[AS*] and ¢, [AV] in (4.15) and examine the result. At first let us
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remark that ¢;[AS*] = 0 and in (4.15) all terms including E[AY] vanish. By Kollo
and Neudecker ((1993), Appendix I)

1
D[v/nvec S| = my[Z;] — vec Tvec’ T + —(I 2+ N, ) (2@ E)
n—

1
= my[Z;] — vecZved L+ O (—) :

n
Hence. by the definition of G, we have
(5.2) D[AS*] = nG'(m4[Z;] — vec T vec’ £)G + O(1).
In Lemma 4.2 we have shown that for n > p, L3(X. £) is of order n~! and in the

approximation we can neglect the second term in (4.14). Multiplying vectors in
(4.15) and using (4.9), (4.14) and (5.2) give us

vec'(D[AS*] — D[AV]) vec L5(X, ¥)

B | —

1
=-1 vec (G'{my[Z;] — vecTved' T — (1,2 + K, ,)(E @ %)}G)

x vec(G'H((V/n+¥) "o (V/n+ X))~ )HG)+O<%>.
7

To complete the proof we have to show that in (4.15) the remaining part of the sum
within curly brackets is O(%) Let us first show that the term including L}(X, X)
in (4.15) is of order n~!. From Lemma 4.2 we have that L%(X, X) is of order n=2.
From (4.10) it follows that the cumulant ¢3[AV] is of order n. Traat (1984) has
found a matrix A3, which is independent of n, such that

c3(vee S) = n"2My + O(n3).

Therefore

c3[AS*] = nk3 + O(1),

where the matrix A’y is independent of n. Thus, the difference of the third order
cumulants is of order n and multiplying it with vec L{( X, £) gives that the product
is O(n=1).

All the other terms in (4.15) are scalar products of vectors which dimension-
ality does not depend on n. Thus, when examining the order of these terms
it is sufficient to consider products of L} (X,¥) and differences of cumulants
ck[AS*] = cx[AV]. Remember that it was shown in Lemma 4.2 that L} (X, ),
k >4 is of order n=**!. Furthermore, from (4.7) and properties of sample cunmu-
lants of k-statistics it follows that the differences ¢x[AS*] — ¢, [AV], k > 2 are of
order n. Then from the construction of the formal expansion (3.3) we have that for
k=2p.p=2.3,..., , the term including L} (X, ), is of order n? x n=2+1 = p=rt1,
where the main term of the cumulant differences is the term where the second or-
der cumulants have been multiplied p times. Hence, the L} (X, X)-term, i.e. the
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expression including L} (X, ¥) and the product of D[AS*] — D[AV] with itself, is
O(n™1), the L§(X, X)-term is O(n=2), etc.

For k =2p+1, p=2,3,... the order of the L{(X, ¥)-term is determined by
the product of L; (X, X) and the (p — 1) products of the differences of the second
order cumulants and a difference of the third order cumulants. So the order of the
Li(X,Z)-term (k= 2p+1) is n™ 2P x n?~! x n = n~P. Thus, the L%(X,T)-term
is O(n™2), the L*(X,¥)-term is O(n~3) and so on. The presented arguments
complete the proof. O

Our second application is about the non-central Wishart distribution. It turns
out that Theorem 4.1 gives a very convenient way to describe the non-central
Wishart density. Previously the approximation of the non-central Wishart distri-
bution by the Wishart distributions has, among others, been considered by Steyn
and Roux (1972) and Tan (1979). Both Steyn and Roux (1972) and Tan (1979)
perturbed the covariance matrix in the Wishart distribution so that moments of
the Wishart distribution and the non-central Wishart distribution should be close
to each other. Moreover, Tan (1979) based his approximation on Finney’s (1963)
approach but never explicitly calculated the derivatives of the density. It was not
considered that the density is dependent of n. Although our approach is a matrix
version of Finney’s there is a fundamental difference with the approach in Steyn
and Roux (1972) and Tan (1979). Instead of perturbing the covariance matrix we
use the idea of centring the non-central Wishart distribution. Indeed, as shown
below, this will also simplify the calculations because we are now able to describe
the difference between the cumulants in a convenient way, instead of treating the
cumulants of the Wishart distribution and non-central Wishart distribution sepa-
rately.

Let ¥ ~ W,(X,n,u), i.e. the non-central Wishart distribution with a non-
centrality parameter S~ !y’ If ¥ > 0 the matrix Y has the characteristic function
(see Muirhead (1982))

(53) Oy (T) = oW (T)e_ tr(E_1;t,u')/QCtr(Z‘l/m’(I,,~i1\[(T)$)_ ! )/‘2‘
where M (T') and ow (T), the characteristic function of W ~ 17,(£.n), are given
by (4.2).

We shall consider centred versions of ¥ and 1" again, where W ~ W ,(X.n).
Let Z=Y —nY¥ —puu’ and V = W —n3. Since we are interested in the differences
ck[Z]—er[V], k =1,2,3,... we can, by the similarity of the characteristic functions
wz(T) and oy (T), obtain by (5.3) the difference of the cumulative functions

1 1 ,
bz(T) =y (T) = — 5 (7 ') — i3 er{ M (T’ }
+ %m-{z—lw'(f —IM(T)Z) ™}

After expanding the matrix (I — iAM(T)X)~! we have

(5.4) Yz(T) — v (T) =

NN

> e {ST ! (M(T)TY
j=2
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From (5.4) it follows that ¢1[Z] —¢;[V] = 0, which, of course, must be true because
E[Z]) = E[V] = 0. In order to obtain the difference of the second order cumulants
we have to differentiate (5.4) and obtain

1 d*tr{pp/ M(T)TM(T))

2 dAT?
=G (L, o 'S + I, @ Spup' ) (L2 + Kp p)G.

(5.5) e2Z] = V] =

Moreover,

(56) C3[Z] - C3[V] = (G’([ -+ pr p) N C )( p & I\I, p > Il,)(IpAt -+ ]\'p'z‘],'z)
x{ZeTevecuu + (T O pp + pp' @) © vee T}
X ([pz + I(p_p)G.

Hence the next theorem will easily follow.

THEOREM 5.2. Let Z =Y —n¥ — pp', where Y ~ W,(E,n,u) and V =
W —nX, where W ~ W,(X,n). Then

- 1 ' ’ — 1 -
(5.7)  fz(X)= f\”(X){l + 9 vec {(Ip @ ppX + I, @ Xpup )(Ip2 + [\p.p)}
x (G®G)vee L3( X, 5)
+ évec'(c,g [AZ] — e3]AV])

x vec L3(X.X) + 0(72_2)} X >0,

where LT(X,E), k = 2,3 are given by (4.14), (4.6) and (4.12), (c3[AZ] — c3[AV])
is determined by (5.6) and G is defined by (2.4).

PrOOF. The proof follows from (4.15) if we replace the difference of the
second order cumulants by (5.5) and take into account that by Lemma 4.2 L7 (X, )
is of order n=**!, k& > 3, and that the differences of cumulants c;[AZ] — ¢, [AV]
do not depend on n. O

For an approximation of order n™" we get from Theorem 5.2 the following
COROLLARY 5.1.
fz(X {1 - —ved{(I, & p'S + I, & Spp' ) (L + Kp )}
(GG'H © GG'H)

x vec((V/n+¥)" 1o (V/77-+-E)'1)+0<%>} X >0.

Proor. The statement follows from (5.7) if we omit the L3(X, X)-term,
which is of order n=2 and use the n™! term from (4.14) for L3(X,X). O
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