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A b s t r a c t .  This paper presents a unified approach for the study of the exact 
distribution (probability mass function, mean, generating functions) of three 
types of random variables: (a) variables related to success runs in a sequence 
of Bernoulli trials (b) scan statistics, i.e. variables enumerating the moving 
windows in a linearly ordered sequence of binary outcomes (success or failure) 
which contain prescribed nmnber of successes and (c) success run statistics re- 
lated to several well known urn models. Our approach is based on a Markov 
chain imbedding which permits the construction of probability vectors satisfy- 
ing triangular recurrence relations. The results presented here cover not only 
the case of identical and independently distributed Bernoulli variables, but the 
non-identical case as well. An extension to models exhibiting Markov depen- 
dence among the successive trials is also discussed in brief. 

Key 'words and phrases: Success runs, scan statistics, urn models, Markov 
clmins, triangular nmltidimensional recurrence relations, distributions of order 
/,.. 

1. Introduction 

It is quite common for a statist ician to face problems involving experimental 
trials with two possible outcomes. An educational  psychologist evaluates subject 's  
or material ' s  efficiency by examining pat terns  of successes or failures in a learn- 
ing process. An ecologist studies the spread of a specific disease by observing 
the pat terns  of infected or non-infected plants in a transect  through a field. An 
acceptance sampling specialist develops plans based on sequences of acceptable 
or non-acceptable  lots. A physician studies success and failure of t reatments  in 

therapeut ic  trials. 
The statistical analysis of such phenomena  seeks criteria for detecting changes 

in the underlying process generating the outcomes. Intuitively, the heavy conges- 
tion of outcomes of a specific type (for example "success") signals the occurrence 
of a change in the observed process. 

A reasonable and intuitively appealing criterion for the analysis of the above 
mentioned situations, is the one based on the concept of (success) runs. In early 
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forties it was used by Mood (1940) in the area of statistical hypothesis testing and 
by" Mosteller (1941) and Wolfowitz (1943) in statistical control problems. Recently 
it has been successfully employed in a lot of diverse areas such as reliability (see 
Chao et at. (1995) or Papastavridis and Koutras (1994)), DNA sequencing (Arratia 
and Waterman (1985), Goldstein (1990)), psycholoD~, ecology, radar astronomy 
(Schwager (1983)) etc. 

There are various ways of counting runs. Consider a sequence of n Bernoulli 
trials Z1, Z 2 , . . . ,  Z ,  with success (S) probabilities Pt and failure (F) probabilities 
qt, t = 1,2,. . . ,7z. The number of non-overlapping and recurrent success runs 
of length k (/c is a positive integer) was first introduced by Feller (1968) and is 
usually denoted by N.,~:. Another counting scheme proposed by Ling (1988) gives 
rise to the number ]~f,~.~. of overlapping success runs of length k. Finally, of great 
statistical importance is also the nmnber G,,x. of success runs of length at least ~: 
(see Gibbons (1971)). Instead of giving the mathematical definition of the above 
mentioned variables, we mention the following illustrative exmnple: if in a sequence 
of .r7 = 12 trials, the outcomes were SFSSb\qFSSSFS  then N12,2 = 3, M12.2 = 5, 
G12,_~ = 2, N:_~,a = 2, Al:~,a = 3, G12,3 = 2. 

The distributions of the random variables Nnx-, M~,,.k are known as binomial 
dist.r~b.tttio~,s of  order k and have been studied extensively by Hirano et aI. (1984), 
Aki (1985), Aki and Hirano (1988), Chryssaphinou et al. (1993), Godbole (1990a, 
1991), Hirano et al. (1991), Philippou and Makri (1986) etc. Manifestly, the 
binomial distributions of order k = 1 coincide with the usual binomial probability. 
this fact being responsible for the order k nomenclature. 

A natural generalization of the success-run criteria arises by interpreting as ev- 
idence of lack of randomness, the appearance of many k-tuples of consecutive trials 
containing among them large number (say greater than or equal to r) of successes. 
The respective random variables will be called binomial scan statistics or simply 
scan statistics. Problems leading t.o scan statistics may arise in the following prac- 
tical context. Suppose data on the output of an assembly line is to be used for 
determining whether the production of defectives is a "contagious" phenomenon. 
A sample of n-units is examined and each defective (non-defective) item is marked 
as success (failure). Checking the sequence of outcomes for evidence of contagion 
amounts to making test for non-random clustering of S's relative to F's.  A cri- 
terion that  suggests itself in this context is the following: scan the sequence with 
an interval (window) of length k and mark all the windows containing at lea.st 
r successes (defectives). If the total number of marked windows is "too large" 
reject the hypothesis that  production of defectives is not contagious. Other appli- 
cations of scan-statistics analysis pertain to phenomena such as clusters of disease 
in time, generalized birthday proximities and the nearest neighbour problems (see 
e.g. Dembo and Karlin (1992), Glaz (1989), Saperstein (1972, 1975)). 

It is apparent that, several counting processes could be considered, leading 
to different statistics. For example, generalising the notion of overlapping success 
runs, we may denote by 2~f,,k,r the number of overlapping k-tuples {i, i + 1 . . . . .  i + 
k - 1}, i = 1, 2 . . . .  , n - k + 1 which contain at least 7" successes. There are also two 

non-overlapping analogues for gI,,..k,,.. The first of then:, to be denoted by ,, n,A:,,., 
is computed by counting from scratch each time we encounter r successes placed 
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within a "window" of length at most k. Alternatively, one could start counting 
anew only after the completion of a k-tuple of successive trials with at least r 

~(1) = N(2) successes. This gives birth to a variable ~(2) It is evident that .. ~.,k,k n.k,k 
Nn.k, M~,a,a = M~:,k. To make the previous definitions clear and transparent, we 
mention in passing that  in the sequence of outcomes SFSFFSSSFFSFFSSF we 
have At(l) = 4 ,  ) v ( 2 )  --- 3,  J~J16,4,2 = 9. �9 16,4,2 ~ ' 16,4,2 

Since the variables N (1) N (2) Mi, k,r are created by a counting process ~ , k , r '  n ~ k , r ,  , 

performed in a scanning (moving) window, we use for them the name (discrete) 
Scan Statistics (see also Glaz and Naus (1991) and Wallenstein et al. (1994)). 
Several problems related to the continuous analogue of Scan Statistics can be 
found in Huntington (1978), Naus (1982) and references therein. 

Currently, except for a few special cases, the exact distributions of the statistics 

N(1) ~r(2) Aln,k,,- are mainly unknown, especially for non-identical Bernoulli 

trials. The probabilities PI"(N~(t,~x = 0) = Pt'(N}~2~,~ = 0) = Pt'(M~,k,,. = 0) are 
related to the well known generalized birthday problem (see Saperstein (1972), 
Naus (1974, 1982)), and certain quality control, queuing and reliability models 
(Greenberg (1970), Saperstein (1973), Chao et al. (1995)). We mention also that 
Karlin and Macken (1991) and Dembo and Karlin (1992), motivated by the study 
of inhomogeneities in long DNA sequences, developed certain Poisson approxima- 
tions (through the Chen-Stein method) for a class of general scan statistics; their 
approximations are also applicable for the case of Bernoulli trials. 

When studying finite populations, the development of randomness tests for 
dichotomous characteristics, calls for the study of without-replacement sampling 
schemes. Consider an urn that contains a white and b black balls. Assume that n 
balls are randomly drawn, one at a time without replacement. The distribution of 
the number N,~,k of occurrences of non-overlapping consecutive k-tuples of white 
balls is called hypergeornetric distribution of order k and has been studied by 
Panaretos and Xekalaki (1986), Aki and Hirano (1988) and Godbole (1990b). If in 
the above sampling scheme, each ball is returned to the urn together with c balls 
of the same colour before the next drawing, the resulting distribution is called 
the Polya distribution of order k. (The special case c = 1 is usually referred as 
negative hypergeornetric distribution of order k.) An analogous random variable 
might be defined by considering Fl"iedrnan's urn scheme (see Friedman (1949) or 
l~'eedman (1965)) in which besides the c balls of the same colour, we add to the 
urn d balls of the opposite colour. 

Recently, Fu and Koutras (1994) taking a completely different approach to 
the problem of evaluating the probability mass function of the run-statistics N~,~., 
M,,,k, G~,,k, used proper finite Markov chains and expressed the distribution of 
the variables of interest in terms of transition probability matrices products. A 
similar approach was also used by Fu (1994a, 1994b) for the study of the number 
of successions in a random permutation and patterns in a sequence of multistate 
trials respectively. 

The purpose of the present paper is to develop a general workable framework 
for the study of all statistics mentioned before. The basic tool for our approach 
is a Markov chain imbedding technique. In Section 2 we introduce the concept of 
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Markov chain imbeddable  variables of Binomial type  ( M V B )  and provide methods  
for evahmting their  dis tr ibut ion flmctions and generat ing functions. For indepen- 
dent  and identically dis t r ibuted (lid) MVB's ,  the double generat ing function is 
expressed th rough  a mat r ix  inverse, and certain simple mat r ix  formulae are given 
for the mean and the generat ing function of the means. 

In Sections 3 and 4, we show how the run statist ics il/,,.~., N,~.k, G,,,k and scan 

statistics i l l ,  k.,- N C]~ N ('21 ,,,~.,r, ,,,k,,. can be viewed as MVB's;  as a consequence certain 
propert ies  of them are explored through the general results presented in Section 2. 
Section 5 deals with the Markov chain imbedding of the urn model associated 
variable N,*,, k. In Section 6 we work out  some il lustrative examples providing 
numerical  results for the exact  dis t r ibut ion function of certain scan statistics. Fi- 
nally, in Section 7 we present several concluding remarks on our approach and 
discuss possible extensions to Markov dependent  random variables and waiting 
t ime problems. 

2. Markov chain imbeddable variables of binomial type 

Recently, Fu and Kout ras  (1994) s tudied the dis t r ibut ion of the most con> 
mon run statist ics by establishing an imbedding into a finite Markov chain and 
expressed the probabi l i ty  dis tr ibut ion flmction of them via produc ts  of proper  
t ransi t ion probabi l i ty  matrices. The  mot ivat ion of the present  paper  s tems from 
the observat ion tha t  in most  of the cases studied there,  the t ransi t ion probabi l i ty  
mat r ix  can be viewed as a bidiagonal mat r ix  with non-zero blocks appear ing only 
on the main diagonal and on the diagonal next  to it. As a consequence, the intro- 
duct ion of proper  probabi l i t y  vec tor s  describing the overall state .[oT-m~Llatior~, of 
the observed Markovian s t ruc ture  at t ime t, would na tura l ly  lead to certain trian- 
gular (mult idimensional)  recurrence relations. Let  us first in t roduce the notion of 
a Markov chaiT~, imbeddable vaT"iable, which is similar to the one used by Fu and 
Kout ras  (1994). 

Let  X,~ (.~. a non-negat ive integer) be an integer valued random variable and 
denote  by ~n = max{:r : Pr(A',~ = a') > 0} its upper  end point.  

DEFINITION 1. The  random variable X,, will be called Markov chain imbed- 
dable variable if 

(i) there  exists a Markov chain {lq : t > 0} defined on a s ta te  space f~, 
(ii) there  exists a par t i t ion  {C:~., z = 0, 1 . . . .  } on ft, 

(iii) for every z = 0, 1 , . . . ,  g,, the probabili t ies Pr(X,~ = z) can be deduced by 
considering the project ion of the probabi l i ty  space of Y,~ onto C ,  i.e. 

(2.1) Pr(X,~ = a:) = Pr(Y,, E C,,,), z = 0, 1 , . . . ,  g,,. 

In order  to proceed to the mathemat ica l  fornmlat ion of our model,  let us 
in t roduce some addit ional  notat ions  and definitions. Assume first tha t  the sets 
(state subspaces) Cx of the par t i t ion  {C, ,  z = 0, 1 , . . . }  have the same cardinal i ty  
s = ]C, I, .r = 0, 1 , . . . ,  more specifically 

C x =- { C x o , C x l , . . . , C x , s _ l } .  
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This can be done wi thout  loss of generality, since one can always expand the car- 
dinalities of non-maximal  C,:'s by incorporat ing into them addit ional  hypothet ical  
states. In most of the cases these s tates  are inaccessible and their  behaviour  does 
not affect the chain at all. Next,  we introduce the probabi l i t y  (row) vec tors  

(2.2) f t (z)  = ( P r ( t l  E c.~,0), Pr(Yt E c~.~) . . . .  , P r ( } t  E c.T,~-~)), 0 < t < ~z 

displaying the marginal  probabili t ies in which Pr(Yt E C~) can be decomposed.  
From now on we shall be using the index t for the t- th step of the Markov chain 
and 7~ for its final stage, where the dis tr ibut ion of X,, is a t ta ined ( through },,). 

We are now ready to define the basic notion of our presentat ion which is the 
Markov chain imbeddable  variable of Binomial type (MVB) .  

DEFINITION 2. A non-negative integer random variable X,~ will be called 
M V B  if 

(i) X,~ can be imbedded into a Markov chain as in Definition 1, 
(ii) Pr(!~) E cuj l}~-1 E c:~i) = 0  for a l l y r  

For any MVB we introduce the next  two s x s t ransi t ion probabil i ty matrices 

A,(.r) = (Pr(})  E c,u I }')-1 E c:~-i)), Bt(.r) = (Pr()~ E c~-+l.j ~ c;~,~)). 

In order to i l luminate the reasoning hidden in the above definitions, let the 
te rm state z refer to the collection C~. = {c:ro,c:,.1 . . . . .  c.,...~-1} and s'abstate of :r 
refer to the elements cxi of C r. Then,  roughly speaking, the process described 
by a MI/'B cannot  fi~ove backwards or j ump  direct ly to a higher state,  without  
visiting first its next  state.  R.egarding the matrices At(:r) and Bt(:r) we may s ta te  
the following. 

a. The  entries of At(:r) control  the within state one-step transit ions i.e. the 
t ransi t ions of the Markov chain from a substa te  <,.i to another  substate  c:,.j of the 
s a n l e  state ./:. 

b. The  entries of Bt(:r) control the betweeTz states one-step transit ions i.e. 
the t ransi t ions fl'om a substa te  czi to a substate  c,.+~.j. 

c. The  sum At(:r) + Bt(:c) is a stochastic matrix.  
Definition 2 provides a fairly })road framework, wide enough to accommodate  

a lot of diverse probabi l i ty  applications (for more details see next  Sections). On 
the other  hand it pernfi ts  the derivation of a number  of general results which (:an 
be subsequent ly  applied to specific problems, providing new results and al ternat ive 
ways of proving well known results. 

Let  ~rr denote  the initial probabili t ies of the Markov chain {}) : t _> 0}, i.e. 

~r:~. = (Pr(Y0 E c.~.0), Pr(Y0 E c.~.1),..., Pr(}}) E c~:,.~-1)), z >_ 0 

and 1 = (1, 1 , . . . ,  1) the (row) vector of R '~ with all its entries being 1. The  next  
theorem provides a method  for the evaluation of the distr ibution function of a 
M V B .  
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THEOREM 2.1. The double .sequence of vectors f t (x ) ,  0 < x _< C,, 1 < t < n 
satisfies the recuTwence relations 

(2.3a) f , ( 0 )  = 

t = 1,2 . . . . .  n 

(2.3b) ft(x) = f t_ l (x )At (x )  + f t - , ( a : -  1)Bt(a" - 1), 1 < x < g,, 

with initial conditions fo(x)  = lr , . ,  0 <_ x < ~,~. In. addition, the probability distri- 
bution function of the M V B  X,, is given by 

Pr(X, ,  = x ) =  f~,(x)l ' ,  x = 0, 1 , . . . ,e ,~.  

PROOF. The recurrences (2.3) are immediate  consequences of the total  prob- 
ability theorem (o1" Chapman-Kohnogorov  equations),  Definition 2 and the form of 
the matrices At(x) a.nd Be(x).  The proof of the theorem is completed by observing 
that  

(2.4) 
s--1 

Pr(X,,  = x) = Pr(Y~ e G )  = E Pr(Y,, �9 Cxd). 
d=0 

The use of the nomenclature  "Binomial Type" is justified by the apparent  
similarity of recurrences (2.3) to the following relations, satisfied by the binomial 

71 X Yl - -  ~: distr ibut ion b(TLp;x) = (.~,)p q ", 

b(t,p;O) = b(t - 1,p; 0)q, 

b(t ,p;x)  = b(t - 1 , p ; x ) q + b ( t  - 1,p ;x  - 1)p. 

l < t < n  

The generating function 

~ n  

= P r ( X .  = : , : )z  

, r = 0  

of a M V B  X,, ,  in view of (2.4), takes the form 

~ = E Pr(Y,, e Cxj)Z x 
j=O x=O 

which, on introducing the v e c t o r  g e n e r a t i n g  f u n c t i o n s  

:l:~O 
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can be expressed as 

(2.6) ~ , ( z )  = ~ , ( z ) l ' .  

In most of the applications presented here, the matrices At(x) and Bt(x) ap- 
pearing in recm'rences (2.3) do not depend on x. In this case the vector generating 
flmction ~n(Z) can be expressed as a product  in the following way 

THEOREM 9.9. If  At(x) = At, Bt(x) = Bt for all x = 0, 1 , . . . ,  then the 
vector generating function of the MVB X~ is given by 

where 

r t  

~, (z )  = ~o(Z) 1-I(At + zBt) 
t=l 

x : 0  

.is the vector generating function of th.e initial probabilities 7rz. 

PROOF. Multiplying both sides of (2.3b) by z x, summing up for all x = 
1,2 . . . . .  gt and adding (2.3a) we obtain, for t _> 1 

~ot(z) = ( ~ f t _ l ( l O z : r ' ~  At q- z (g~-~lft_l(&.)Ex) B t. 
\ x = O  \ x=O 

Condit ion (ii) of Definition 2 implies tha t  t't - et-~ E {0, 1}. If gt = e t - i  we have 

~Ot(.7. ) = qOt_l(Z)(At q- 2Bt) - ; .-6- '+lft_l(t ' t_l)Bt 

Considering this equality for z = 1, post multiplying by 1' and taking into account 
tha t  

~6(1)1' = ~ot_1(1)1' = 1, (At + B t ) I '  = 1' 

we get f t_ l (~t_l )Bt  = O. If Ct = gt-1 + 1 we may write 

qOt(z ) : qOt_l(Z)(A t + zBt)  + zGf t - l ( ( t )A t  

and the last term is easily checked to vanish by the same argument  as before. 
Therefore, in both  c~ses 

= +  Bt), t > 1 

and the proof of the theorem follows immediately. 

We recall tha t  for the generalized binomial distr ibution (number of successes 
in a sequence of n non-identical independent Bernoulli trials), a similar formula 
holds true for the respective (l-dimensional) generating function, namely 

FI 

9~n(z) = ~Oo(Z) I I (q t  + zpt), 9~o(z) = 1. 
t=l 
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I t ' s  wor th  ment ioning  tha t  in most  of the appl ica t ions  we have 

w0 = (1,0 . . . . .  O) = e l ,  7 r x = O = ( O , O , . . . , O )  for all a t >  1 

which implies t ha t  ~Oo(Z ) = ~r0 = e l .  
The  rest of this section will be devoted  to the presen ta t ion  of some results  for 

the special  case of homogeneous  M V B ,  i.e. if A~(x) = A, B t (x )  = B for all t _> 1 
and x > O. 

THEOREM 2.3. The double vector generating flm, ction 

o c  

(=, u,) = ~_, ~o,, (z)w" 

of a.n homogeneous M V B  X,, 'is given by 

�9 ( : ,  w) = ~o0(:)[1 - u,(A + zB)]  -~ ,  

wh.ere I is the identity s x s matrix. 

0 < w < 1 

PROOF. Making  use of T h e o r e m  2.2 we may  write 

DO 

�9 (:, . ,)  = ~'o(:) ~ [ < A  + :.m)]" 
7 l = 0  

and under  p roper  condit ions for the series to converge (e.g. if the e lements  of the 
inatr ix  A + z B  lie in the closed interval [0, 1], a condit ion which is usually satisfied) 
we are immedia te ly  led the desired conclusion. 

Notice tha t  the sum of the entries of @(z ,w)  gives the double  genera t ing  
funct ion r w) of the probabi l i t ies  Pr(X, ,  = x) i.e. 

(2.7) �9 (z, w) = Pr(X, ,  = x)zXu/ '  = ,I ,(: ,  u , ) l ' .  
n = 0  x = 0  

For an homogeneous  M V B  X,, let m,, = E(X , , )  denote  the mean  of X,,, and 

(2.s) M(x) = ~ m.,,w" 
n = i 

its genera t ing  function. Then  we have 

by 
THEOREM 2.4. The means 7n,, and their generating.fim, ction Al  ( u,) a.re given 

m,, = ~oo(I ) A + B) ~-I 131' 

's 
AI(x)  - 1 -'u, ~ ~ 1 7 6  -w(A + B ) ] - I B 1  '. 
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PROOF. Since 
d ! 

m n =  E(Xn)  : ~z [~~ ]z=1 

and (see for example P h a m  (1962), p. 75) 

d 
D 

~z(A  + zB) ~ = ~-'~(A + z B ) i - I B ( A  + zB) '~-i 
i=1 

we get, in vir tue of Theorem 2.2 and relation (2.6) 

II 

,n... = ~Oo(1 ) ~-~(A + B ) i - I B ( A  + B) .... il ' .  
i=1 

The  result follows easily by taking into account  tha t  (A + / 3 ) 1 '  = 1'. The  second 
conclusion of the theorem is derived immediate ly  by subst i tu t ing m,, in (2.8), 
interchanging the order of summat ion  and making use of the identi ty y-~,~=~ [w(A + 
B)]  = [z - w ( A  + B)]  

3. Distribution of success runs 

Consider a sequence of Bernoulli  trials Z1, Z g , . . .  with success (S) probabilit ies 
pt = Pr(Zt  = 1), and failure (F)  probabili t ies qt = Pr (Zt  = 0) = 1 - p t ,  t > 1. If 

l- i t  +/,-- 1 k is a positive integer, let 1.1,') = 1 l.i=t Z j, t = 1, 2 . . . . .  n - k + 1 and 

i=  1 

0 otherwise 

t = 1 , 2  . . . .  

(convention: 1.~.'~ = 0 for t < 0). Then,  the three success run statistics described 
in Section 1 can be formally defined by 

n - k + l  

t = l  

n - k + l  

O,,.~. = ~ (1 - Z, -1)Wt 
t = l  

n - k + l  

wt, 
t = l  

(Convention : Zo = 0). 

Adopt ing Fu and Koutras '  (1994) approach,  let us denote  by x the number  
of success runs (non-overlapping, overlapping or greater  than) in a sequence of 
Bernoulli  trials and by m the nmnber  of trailing successes i.e. the number  of 
last consecutive successes counting backwards. For more details and il lustrative 
examples the reader is referred to Fu and Kout ras  (1994). 
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3.a Non-overlapping success runs 
Let g,, = [n/k] and define Cz = {C~,o, Cxl , . . . ,cx,A,-1},  x = O, 1 . . . .  ,gn where 

(3.1) C x i = { ( x , i ) } ,  O < i < k - 1 ,  x = O, 1 , . . . , g , .  

To introduce a proper  Markov chain {}~ : t _> 0}, we define Yt E c.~:i (or 
TI~ 

equivalently Yt = (x , i ) )  if in the first t outcomes,  say S F F S . . .  F S S . . .  S, there 
exist x non-overlapping success runs and m = i (rood k). Wi th  this set up, the 
random variable N, ,k  becomes a M V B ,  with 

At (x )  = At = 

Bt(x) = Bt = 

[ (.,0) ( . , 1 ) ( . , 2 )  ( . , k - l )  
qq Pt 0 0 

t 0 Pt 0 

L qt 0 0 Pt 
qt 0 0 0 

[(.~0) (.,1) (.,2) ( . , k - l ) .  00 00 00 

Pt 0 0 0 

k x k  

k x k  

Therefore the probabil i ty  mass function of the variable Nck  could be succes- 
sively evaluated for all t = k, k + 1 , . . . ,  n by making use of Theorem 2.1. This pro- 
vides an al ternative computa t ion  scheme to the one proposed by Pu and Koutras  
(1994); its advantage lies in the fact tha t  instead of mult iplying matrices of order 
(g,~ + 1)k x (G  + 1)k we have to deal with vector recurrences involving multiplica- 
tions of k x k matrices. Another  interesting feature of our approach is tha t  in the 
iid case (Pt = P, At = A, Bt = B for all t > 1) it provides easy to apply formulae 
for the evaluation of means and generating functions. For example, making use to 
Theorem 2.4, we may write for m n =  E(NT~,k), 

~G 
'U; 

Al(w) = Z mnu,"  -- 1 - w ~p~ w ( A  + B ) ] - I B 1  ' 
n:l 

with qo0(1 ) = 7r0 = ( 1 , 0 , . . . , 0 ) ,  B I '  = ( 0 , 0 , . . . , 0 ,  p) and calculating the (1,k) 
element of ( I  - w ( A  + B))  -1 as 

(pW) k - 1  (pw)  k -1  

d e t ( I  - w ( A  + B) )  (1 - w)(1 - (pu@)(1 - pw) -I 

we finally obtain 
( p w ? ( 1  - p w )  

M ( w )  : 
(1 - w)2(1 - ( p w ) k )  
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By the same reasoning, working with T h e o r e m  2.3 and formula  (2.7) we deduce 
that 

d2(z,w) = ( 1 , 0 , . . .  , 0 ) [ I  - w ( A  + z B ) ] - 1 1  ' = 1 - (pw) k 
(1 - w) + ( p w ) k [ q w -  z(1 - pw)]" 

Finally, we ment ion  tha t ,  employing  T h e o r e m  2.2 and formula  (2.6), one could 
easily cap tu re  Aki and Hi rano ' s  (1988) recurrences for the genera t ing function 
p~(z)  by observing t ha t  

~n(z) = ~o,~_~ (z ) (A  + zB)l ' .  

Analogous  recurrences could also be establ ished for the non-iid case. 

3.b Overlapping success runs 
To imbed the r a n d o m  variable A,ln,k into a Markov chain, we set g,~ = n - k  + 1, 

expand  s ta te  x by incorpora t ing  into Cx an addi t ional  subs ta te  cx,- t  = { ( x , - 1 ) }  
and def ine}~ = ( x , m )  i f m  < k - 1  and Yt = ( x , - 1 )  i f m  > k. Note  tha t  the 
hypothe t ica l  s ta te  c0,-1 = { ( 0 , - 1 ) } ,  which is in fact inaccessible by the sys tem is 
used only for increasing c0's cardinal i ty  from k to Ic~l = k + 1, x _> 1. Definition 
2 is manifes t ly  fulfilled and 

At (x) = At = 

B t  (x )  = B ,  = 

( , 0 )  (. ,1) (. ,2) 

qt Pt 0 
qt 0 Pt 

qt 0 0 
qt 0 0 

(. ,k-l) 
0 
0 

Pt 
0 

qt 0 0 0 

"(.,0) (. ,1) (. ,2) ( - , k - l )  

Okxk 

0 0 0 0 

(., -1) 
0 
0 

0 
0 
0 

(., - 1 )  
0 
0 

0 

Pt 
Pt 

(k+l)• 

(k+l)x(k+l)  

The  double genera t ing  function of the probabil i t ies  Pr(Mn,k = x) (in the iid 
case) can be now immedia te ly  derived th rough  T h e o r e m  2.3 and relat ion (2.7). 

3.c Success runs of length at least k 
Using the same nota t ion  as in the over lapping case, with g,, = [n + 1/k + 1] 

instead of gn = n - k + 1, we introduce the Markov chain {}% : t _> 0} e,s follows: 
For 0 _< m < k - 1, we define Yt = (x, m)  when there exist exact ly  x > 0 success 
runs of length at  least k before the last m + 1 outcomes.  If  rn _> k and there exist 
x - 1 _> 0 success runs  before the last m + 1 outcomes,  we define }% = ( x , - 1 ) � 9  
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An hypothetical (inaccessible) state, labelled as (0 , -1 ) ,  is also added in order to 
make the cardinality of Co equal to [C.,.[, x _> 1. The transition matrices At(x), 
Bt (x) are given t) 3, 

-(.,0) (.,1) (..2) ( . , k - l )  ( . , - 1 )  
qr Pt 0 0 0 

qt 0 Pt 0 0 
At(x) = At = 

qt 0 0 Pt 0 
qt 0 0 0 0 

qt 0 0 0 Pt ( # + 1 )  x ( # + l )  

-(.,0) (.,1) (.,2) ( . , k -  1) ( . . - 1 )  
0 

0 

B~(x) = Bt = 0~,xk 
0 

pt 
0 0 0 0 (k+l)x(h.+l) 

Hence, one could benefit fi'om the general theorems presented in Section 2 
to derive results for the random variable G,,,~,. For example, Theorems 2.1 and 
2.'2 highlight easy to program numerical methods fox" obtaining the probability 
distribution and generating function of G,,,k. Moreover, some routine algebraic 
manipulations on Theorems' 2.3 and 2.4 formulae immediately yield the double 
generating function ~(z, u,) and the means generating function M(w).  

4. Scan statistics 

Let Z1, Z2 . . . .  be a sequence of independent Bernoulli trials as in Section 3, 
and v <_ k two positive integers. Introducing the auxiliary va.riables 

t+kzl I 
l i t  = 1 if Zj_> r , I , i )  = II't 

j=t 
0 otherwise 0 

k - 1  

if ~ I i ) _ s = 0  
i=1  

otherwise 

for t = 1,2 . . . . .  7~ - k + 1 (convention: l'i,) = 0 for t < 0) and 

rain { a :  

0, 

\ 
t + o  - -  1 | 

Z j _ > r  / ' 
j = t  

'F t 

1 if v t > 0 and 

0 otherwise 

~:~~ = { 

t+k-1 
if Z z j > , .  

j=t 
t + k - 1  

if E Zj < ' r  
j=t 

iKt:i+r~>t 
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t = 1, 2 . . . .  , n - - r +  l, we m a y  define the  three  scan s ta t i s t ics  men t ioned  in Sect ion 1 

as follows 

n - - r + l  n - - k + l  n - k + l  

N ( 1 )  - N ( 2 )  E ,,k,-- Z vv, ,   1o,k. = Z w,  
t = l  t = l  t = l  

For the  e s t ab l i shmen t  of  a p rope r  Markov  s t r u c t u r e  we are going to employ  
pairs  (x ; j )  which  keep t r ack  of  the  n u m b e r  (x) of  scan counts  till the  t - th  tr ial  
and  the  s tage  of  f o rma t ion  of the  next  a p p e a r a n c e  (j). T h e  vec tor  j is an 'm.-tuple 
j = ( j : , j 2 , . . . , j , , , ) ,  m. < k defined by 

1 if the  (t - m, + i ) - th  trial  is success (S) 

j i =  0 if the  (t - m + i ) - th  tr ial  is failure (F) .  

As we shall  see later  on in the  t r e a t m e n t  of  specific coun t ing  processes,  a subs tan t i a l  
n u m b e r  of  j - c o m b i n a t i o n s  can be ruled out ,  a fact  leading to a r educ t ion  of the  

s t a t e s '  cardinMity.  

4 .a  N o n - o v e r l a p p i n g  s c a n s  N ( : ) 
Let  C,, = In / r ] .  T h e  typica l  e lement  of  the  s ta te  space ft will be represen ted  

~- �9 E i = I  Ji < F. by a pair  (x ; j )  where  x _> 0 and  j ( j l , j 2  . . . .  j k )  with  j i  E {0, 1}, k . 

T h e  event  t% = (x ; j )  means  t h a t  
(i) in the  sequence  of  o u t c o m e s  Z : , Z 2  . . . . .  Z t - k  there  appea r  x non-over-  

l app ing  windows  of  length  at mos t  k, con ta in ing  exactly, r successes, i.e. N (1)t_k,k,r ---- 

(ii) Z t - k + i  ---- j i  for i = 1, 2 , . . . ,  k. If  t - k + i _< 0 or trial  t - k + i falls wi th in  

a scan window t h a t  has  a l ready  been  c oun t ed  we assume t h a t  Ji = O. 
I t  is no t  difficult "to check t h a t  all the  requ i rements  of Defini t ions 1 and  2 are 

me t  if we define Cx,j = { ( : t ' ; j ) } ,  22 _~ 0 and  

C ~ . =  c r , j : j = ( j l  . . . .  , j a : ) w i t h j i E { 0 , 1 }  and  j i < r  . 
i=1  

Obviously ,  the  ca rd ina l i ty  of each s ta te  C.,. equals  

r - -1  

,--,c..,-- z 
i=0 

T h e  tl 'ansit ioll  probabi l i t ies  of  the  Markov  chail: {]~t " t _> 0} are given as 

follows: If  j2 + ' " + J~. < r - 1 then  

(4.1) Pr(}'~ = (:r; j.? . . . . .  j k , J )  I } ) -1  = ( x ; j l  . . . .  , j~,)) = p{(1 - p t )  l - j ,  

whereas  for j2 + " '" + Jr- = '1" - 1 we have 

(4.2) Pr(Yt = ( x ; j 2 , . . .  , j t , ,0)  l i ' t - 1  = ( x ; j l , . . . , j k ) ) =  qt 

(4.3) Pr(Yt = (x + 1 ; 0 , . . .  ,0) I Yt-1 = ( x ; j l  . . . .  , jk ) )  = Pt. 

j = 0 , 1  
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To construct the s x s matr ix  A t ( x )  = A t ,  it suffices to fill in the transi t ion 
probabilities deduced by formulae (4.1) and (4.2). Finally, formula (4.3) provides 
the only non-zero transit ion probabilities for matr ix  Bt(x) = B~. 

As an illustration, for the random variable At(l) �9 " , .3.2 we obtain (the 3-tuples above 
the first row represent the values of the vector j) 

A t 

B t = 

(0,0,0) ( 0 , 0 , 1 ) ( 0 , 1 , 0 ) ( 1 , 0 ,  
q~ Pt 0 0 
0 0 qt 0 
0 0 0 qt 
qt Pt 0 0 

(0,0,0) (0,0,1) (0,1,0) (1,0, 
0 0 0 0 

Pt 0 0 0 
Pt 0 0 0 
0 0 0 0 

0)- 

[ ( I  = - A t ) l  , 0 . 1 x a ] .  

Repeated application of (2.3a), (2.3b) (with initial conditions f0(0) = lr0 = el ,  
fo(x) = rr,. = 0 for all x _> 1), yields the sequence of probabili ty vectors ft(x), 

t = 1 2 7~ and the distr ibution of At(l) will be given by (see Theorem 2.1) 
' ~ . . . .  ~ " n , 3 , 2  

(4.4) P r ( N ~ l J  = x )  = f , , ( x ) l ' ,  a, = 0 . 1 ,  C,, 

Moreover, employing Theorems 2.3 and 2.4, we can easily deduce (in the iid case) 
the double generating function of the probabili ty function (4.4) and the generating 

f u n c t i o n  of the m e a n s  m,,  = E(N~,I:~.2) as 

t , ,  
1 + p w  + p q w  2 

: Z Z er (N  ( ' ) ,  = = 
1 - q w  - vq%, a - (pw)'-'(1 + qw) :"  

71=0 a?:O 

(p'W) 2 1 + qw 
M ( ' w )  = m , , ' w "  = - -  

1 - w 1 - q w  - p q 2 w 3  - (pw)2(1 + q w ) "  
* 1 : ]  

4.t) N o n - o v e r l a p p i n g  scans  N (2) n ,~J" 

For the s tudy of the random variable N(9),,A:,,. we use [,, = [7~/Ji:] and 

C .  = s } x; j )  : j  = (jl . . . . .  j,,,) with 1 _< m. <_ k and Ji < r 

i = 1  

U { ( x ; * ) }  U { ( x ; - 1 , m )  : r _< ',n _< k - 1} .  

The nmaning of the event 7~f = (x;j)  is the same as in the t rea tnmnt  of N (I) 
o , k , r '  

the only difference being tha t  in the beginning and after each count, we are keeping 
the full description of a gradually increasing window of length 'm = 1 , 2 , . . . ,  k 
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c o n t a i n i n g  a t  m o s t  r - 1 successes.  An add i t iona l  n u m b e r  of  k - r + 1 s t a t e s  is 
also e m p l o y e d  to  d e n o t e  

(i) the  c o m p l e t i o n  of a scan  coun t  a t  the  t - th  t r ia l  ( s t a t e  (x; *)), 
(ii) the  a p p e a r a n c e  of a t  least  r successes  in a w indow of l eng th  rn = r, r + 

1 , . . . , k -  1 ( s ta tes  ( x ; - 1 , m ) ) .  
Obvious ly ,  the  ca rd ina l i t y  of  each  s t a t e  C~, x _> 0 equals  

k m i n ( r - l ' i )  ( i )  

i=1 j = 0  

I n s t e a d  of spec i fy ing  the  t r ans i t i on  fo rnmlae  for the  genera l  case (as a m a t t e r  
of  fact  a n u m b e r  of  add i t i ona l  t r ans i t i on  p robab i l i t i e s  are  a t t a c h e d  to (4.1) (4.3), 
to  hand le  the  new s t a t e s  of the  chain)  we prefer  to  p rov ide  the  fo rm of the  m a -  

. ( 2 )  ~r(2) 
t r ices  A t ( x )  = At,  B t ( x )  = Bt for the  specia l  cases  /v~.3, t and  A careful  ' n,3,2" 
i nves t iga t ion  of those  m a t r i c e s  reveals  the  essence  of our  a p p r o a c h  for the  s t u d y  

of the  va r iab les  N (2) tz, ~':, T" 

�9 Specia l  case k = 3, r = 
by  

(,) (0) 

A t = 

1. T h e  m a t r i c e s  At (x )  

(o, o) (o, o, o) (-1, 
0 qt 0 0 Pt 
0 0 qt 0 0 
0 0 0 qt 0 
0 0 0 qt 0 
0 0 0 0 0 
0 0 0 0 0 

= Ae, B t ( x )  = Bt are  given 

1) ( - 1 ,  2)" 

0 

Pt 
0 , 
0 
1 

0 

(0,0) (0,1) (1,0) (0 ,0 ,0)  (0 ,0 ,1)  (0 ,1 ,0)  ( 1 , 0 , 0 ) ( - 1 , 2 ) "  

0 0 0 0 0 0 0 0 

qt pt 0 0 0 0 0 0 

0 0 qt 0 0 0 0 pt 

0 0 0 qt pt 0 0 0 

0 0 0 0 0 qt 0 0 

0 0 0 0 0 0 qt 0 

0 0 0 qt pt 0 0 0 

0 0 0 0 0 qt 0 0 

0 0 0 0 0 0 qt 0 

0 0 0 qt pc 0 0 0 

0 0 0 0 0 0 0 0 

1 •  

by 
(,) (o) (1) 

0 qt Pt 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
A t  = 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

B t  = [(I - A t ) l ' , 0 1  

pu, a[p 2 - 3p + 3 + ( _ p 2  + 3p - 2 ) w ]  
"llT, n ' l l l  n 

(1 - w)2[1 + p w  +p'u, 2 + ( _ p a  + Sp2  _ 2 p ) w a ]  �9 

k = 3, r = 2. T h e  ma t r i c e s  A t ( x )  = At, B t ( x )  = Be are  given 

oo  

M(,L,) : Z 
n: I 

�9 Specia l  case 

- A t ) l  , 06• Bt = [ (I  

In  the  iid case,  m a k i n g  use of  T h e o r e m  2.4, we can  easi ly  c o m p u t e  the  g e n e r a t i n g  
�9 E~ N (2) func t ion  k l ( w )  of rn,,, = ~- ~,,3,1} as 
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4.c Over lapp ing  scans  -M,,.k.,. 

Let  f,, = ~ 7 -  k + 1 a n d  f~ = U.~-20 Cx where  

C r = { (x ; j )  : j = ( j l  . . . . . .  Jk) wi th  Ji E {0, 1}, 1 < i < k}. 

T h e  o c c u r r e n c e  of the  event  Y) = (a ' ; j ) ,  t > k m e a n s  t h a t  
(i) in the  sequence  of o u t c o m e s  1, 2 . . . . .  t t he re  exis t  :7" w indows  of l eng th  k 

inc lud ing  a t  leas t  r successes  (i.e. Mr.l,.,,. = x),  
(ii) Z t - k + i = j i  f o r i =  1 , 2 , . . . , k .  

I t  is no t  difficult  to verif3; t h a t ,  for the  t r a n s i t i o n  p robab i l i t i e s  of  the  M a r k o v  chain  
{Y) : t  _> k}, f o rmu lae  (4.1), (4.2) are  still  valid.  In add i t i on  we have  

Pr(Y) = (x + 1 ; j2 , .  . . . .  jk, 1) ] } i - t  = ( : r ; . j l , . . .  , j k ) )  = t)~ 

if .j2 + " "  +.ja- - - - r  - 1, 
(4.5) 

Pr(}}  = (.r + 1;j2 . . . . .  jA.,0) [ 7t~-t = ( : r ; j l  . . . . . .  j~-)) = qt 

i f  j2 + " "  +.j~.  = r. 

M a t r i x  A~(:r) = A t  con ta in s  t r a n s i t i o n s  of  t y p e  (4.1) and  (4.2), while  B , ' s  non  
zero ent r ies  are  p rov ided  by  (4.5). T h e  c o m p u t a t i o n  of the  p r o b a b i l i t y  d i s t r ibu-  
t ion  func t ion  of M,,.A.,,. can  now be  eas i ly  p e r f o r m e d  by  r e p e a t e d  a p p l i c a t i o n  of 
r ecu r r ences  (2.3a),  (2.3b) for t = k + 1 . . . . .  'n. T h e  ini t ia l  cond i t ions  r equ i red  i.e. 
fa.(z), x = 0 .1  . . . . .  g,,, d e p e n d  on the  r e l a t i onsh ip  b e t w e e n  r and  k. For  e x a m p l e ,  
in the  specia l  case k = 3, r = 2 we have  

f3(0) = (qlq2q3, qlq2P3, qlP2q3, Plq2q3,0 ,  0, 0, 0), 

f3(1) = (0, 0, 0, 0, qlP2P3,Plq2P:3,PlP2q:~,PlP2P:~), 

f 3 ( z ) = 0  for 3"> 1 

A t 

B t 

and  

(0,0,0)  (0,0,1)  (0,1,0)  (1,0,0) (0,1,1)  (1,0,1)  (1,1,0)  (1,1,1)  
q~ Pt 0 0 0 0 0 0 

0 0 qt 0 0 0 0 0 

0 0 0 qt 0 0 0 0 

qt Pt 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 qt 0 0 0 0 0 

0 0 0 qt 0 0 0 0 

0 0 0 0 0 0 0 0 

(0,0,0) (0,0,1)  ( 0 , 1 , 0 ) ( 1 , 0 , 0 )  (0,1,1)  (1,0,1)  (1,1,0)  ( 1 , 1 , 1 )  
0 0 0 0 0 0 0 0 

0 0 0 0 Pt 0 0 0 

0 0 0 0 0 Pt 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 qt Pt 

0 0 0 0 t)~ 0 0 0 

0 0 0 0 0 pt 0 0 

0 0 0 0 0 0 qt Pt 
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Note tha t  for the s tudy  of M,,.j,.,,. one could use an a l te rnat ive  Markov chain 
{}) : t  _> 0} defined on the extended s ta te  space 

/ 
w = {(x,,)} u f ~ u  { U  {(.~:;j,,. 

/ 

\;~_>o 
�9 , j , , , ) :  l_<m_< k -  1 } )  . 

The  addi t ional  s ta tes  ( x , , )  and ( x ; j l , . . . , j m ) ,  1 < m < k -  1 have a n  in- 
t e rp re t a t ion  analogous to the one used for the s tudy  of the non-over lapping scans 

N(2),,.k,,- in Subsect ion 4.1). The i r  nfission is to take care of the first k steps of the 
Markov  chain and guaran tee  the validity of recurrence relat ions (2.3a), (2.3b) for 
the whole range t = 1, 2 . . . .  ( instead for t _> /~: which was the case for our first 
method) .  

5. Urn models 

Consider  a r andom  sample  of 7~ balls drawn wi thout  rep lacement  from an urn 
containing a white  and b black balls. The  number  N,~.a. of (non-overlapping)  runs 
of white  balls of length k in the sample,  follows an hypergeomet r ic  dis t r ibut ion 
of order k. To achieve a Markov chain descript ion for N* along the lines of tl,k 
Section 2, let us consider ~,, = [n/k] and 

C : , . = { ( x ; j , y ) : O < j < k - l , O < _ j + y < a } ,  x_>0 .  

We define }) = (:r; j, y) if and only if in the sequence of the first t draws there 
exist x runs of white  balls of length/~', j trai l ing white balls and y white balls not 
involved in any run 'or in the "current  trail".  It  is ra ther  s t ra ight forward  tha t  the 
t rans i t ion probabi l i t ies  of the Markov chain {}t : t _> 0} are given by 

(5.1) 

(5.2) 

(5.3) 

Pr(Yt = (x;0,!]  + j )  I })_1 = (x ; j , y ) )  = 

Pr(Yt = ( x : j  + 1.:~j) I })-1 = (.r;j, :~)) = 

Pr(Tq = ( x +  l ' 0 ,  y) I ) t - ~  = ( x ; j , y ) )  = 

b -  ( t -  1 - x k - y - j )  

a + b - ( t - 1 )  ' 
O < _ j < _ k - 1 ,  

a -  ( z l , . + y + j )  

a + b - ( t - 1 )  

a. - (a,]~ + y + j )  

a + b - ( t - 1 )  ' 

0 < j < k - 1 ,  

j = k -  1. 

Note  tha t ,  in this case. the t ransi t ion probabi l i ty  matr ices  At (x), Bt (x) depend 
on bo th  t and x. As an i l lustration, consider the special case a = 4, k = 2. Then  
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1 
A t  { . r )  = - -  

1 
B t { a - )  = - -  

", t 

- { ~ r ; 0 , 0 }  ( . r ; 0 , 1 )  { z ; 0 , 2 )  { . r ; 0 , 3 }  ( m : 0 , . l )  ( m : l , { I }  ( m ; l , l )  ( r e ; l , 2 )  ( . r ; I , 3 ) "  

AJ t { x ) 0 0 0 {J ~*~ ( .r } 1} (J 0 

0 f3t { . r )  + 1 0 {} 0 0 6 { . r )  - 1 t) 0 

0 0 d t  ( . r )  + 2 0 0 t) {} ~,(:r) -- 2 0 

0 0 f} '~l {J ')  ~, 2~ 0 0 0 0 (~'(.r) -- :;~ 

0 0 0 0 1 {} {} 1} t) 

0 ~Jl (a-} + 1 {} 0 D 0 {} 0 (} 

0 0 ~ t  (a ' )  + 2 0 t) l) 0 0 0 

{} 11 0 d r ( . r )  ~ 3 {I l} (} i }  0 

{1 t} 0 l) 1 (} 0 0 {} 

z +  I : 0 , 0 )  ( z +  1 ; 0 , 1 )  { . r +  I : { } , 2 )  ( . r +  1 : 0 , 3 )  ( . r +  1 : 0 , - t )  ( . r *  I : l , 0 )  ( . r +  1; 1 , 1 )  ( x +  I ; 1 , 7 )  { . r §  1 ; 1 , : ~ ) "  

0 0 0 I1 0 0 0 0 

0 O O 0 I1 I1 O 0 

0 0 O I1 0 0 O 0 

1] I) 0 0 {I 0 l] 0 

0 0 0 () t) i) I} [) 

6{:r  ) -- 1 t) I) 1) 0 0 11 0 

{} ~ ( . r )  - -  2 {} 1) 1} I} 0 1) 

1} (I 3 { " r )  - -  ;t 0 0 0 {1 0 

0 I} () II II 0 l} I t  

w h e r e f i t ( x ) = b - t + l + 2 m , ~ ' t  = 5 + b -  t. f ( x )  = 4 - 2:r. 

The  Polya  dis tr ibut ion of order k can be embedded  into a Markov chain by a 
proper  modification of the s ta te  space (the third ent ry  of the s ta te  triples (:r;j ,  y) 
varies now from 0 to (c + 1 ) a -  j )  and the t ransi t ion probabili t ies (5.1)-(5.3) (the 
terms in parentheses are nmltiplied by (c + 1) instead of - 1 ) .  

Finally we mention tha t  in order to cover Fr iedman 's  urn model,  only a slight 
modification of Polya 's  t ransi t ion probabili t ies is needed wherea~s the s ta te  space 
remains unchanged.  The  details are left. to the reader. 

6. Numerical  calculat ions  

In view of the recurrences (2.3), the memory  space requirements  for the nu- 
merical evaluat ion of a M V B ' s  dist r ibut ion flmction through our method,  depend 
mainly on the dimension s of the It( ') vectors. Due to the special form of (2.3), the 
t ransi t ion from ft-1 (') to it(.) can be performed by the use of a single vector with 
(~,, + 1) �9 s coordinates.  Therefore,  should our memory  availability be enough to 
register the (& + 1). s entries of the ft( ' )  vector, we can proceed to the evaluat ion 
of X,~'s dis t r ibut ion function. This  gives a rough idea how could one es t imate  the 
range of the parameters  where our me thod  works. 

As an applicat ion of the approach presented in the previous paragraphs,  we 

provide some numerical  results for the scan statist ics N (t) N/2/ and M,,,i.,,,. in a n,k , r~  ~,/,',r 
sequence of Bernoulli  trials. Two special causes are t reated.  For the first; one (~ = 5, 
k = 3, r = 2) the reader  can easily repeat  the calculations by hand (see Section 4 
for the form of the matr ices A t ( z ) ,  B t ( x ) ) ,  a fact tha t  will help him to get a be t t e r  
grip on the under lying mechanism of our approach.  The  second, (n = 15, k = 3, 
r = 2), provides a more realistic example revealing the combinator ia l  complexi ty  
of the problem under  consideration.  Nevertheless,  our approach easily succeeds; 
compared  to the first special case, it only requires 10 addit ional  repet i t ions of the 
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same recursive scheme. This remark highlights the following essential feature of 
the proposed method: during the computation of the distribution function of a 

specific scan statistic, say ~(1) the distribution functions of all N (1) t < n are 
also derived as by-products. 

Three different choices for the success probabilities Pt of the t-th trial were 
considered 

I. pt = 1 / ( 1 + t ) ,  t_> 1 

II. p~ = 1 - 2  - t ,  t_> 1 

III. pt = 0.90, * _> 1 (iid case). 

(1) ~r(2) and AI5 3 2. Table 1. Exac t  d i s t r ibu t ion  of the scan s ta t i s t ics  N5,3, 2, ev5,3, 2 . . 

p t  = ( 1  + 1 )  - 1  p t  = 1 -  2 - t  Pt = 0.9 

"r(~') N (2) AI5 3 '~ N (1) /V(2) AI5 '~ o N (1) N (2) AI5 3,2 
.72 1v5,3, 2 5 , 3 , 2  ' ' -  5 , 3 , 2  " " 5 , 3 , 2  . . . . .  5 , 3 . 2  5 , 3 , 2  ' 

0 0.63889 0.63889 0.6;5/889 0.00601 0.00601 0.00601 0.00289 0.00289 0.00289 

1 0.33889 0.36111 0.20416 0.22659 0.99398 0.03952 0.07857 0.99711 0.01863 

'2 0.0'22'22 0.10833 0.76739 0.15438 0.91854 0.03807 

3 0.04861 0.80008 0.940,11 

mcan  0.38333 0.36111 0.56666 1.76138 0.99398 2.74856 1.91565 0.99711 2.91600 

7. Concluding remarks 

The Markov chain imbedding technique merits a great potential. It provides a 
proper fl'amework for developing the exact distribution of the most success run and 
scan statistics encountered in the study of randomness tests and other statistical 
pl'oblems related to sequences of binary outcomes. Certain run statistics arising 
fl'om well-known urn models can also be accommodated in the same set-up. 

A disadvantage of Fu and Koutras'  approach is that, should one wish to work 
with large sequences of Bernoulli trials (or large samples in urn models), he would 
be forced to work with incredibly big matrices: as a matter  of fact the dimension 
of the matrices used, tends to infinity as the number n of the trials increases. 
This handicap is incurred here t)3." the consideration and study of proper proba- 
bilit.y vectors whose dimension is independent of n: the evaluation of the target 
distribution is then easily perforlned recursively, working on (triangular) matrix 
recurrence relations. Our approach takes advantage of the underlying sequential 
nature of the model under consideration and exhibits the following useflfl features: 

a. Computational efficiency in deriving numerical results for the exact dis- 
t.ribution of a lot of significant statistics in both iid and non-lid cases (sequences of 
independent Bernoulli trials, with not necessarily common success probabilities). 
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b. Remarkable  potent ia l  in developing results of theoret ical  interest  such as 
the derivat ion of simple and mathemat ica l ly  manageable  fornmlae for generat ing 
flmctions, means and generat ing fimctions for means. It is of great  impor tance  
tha t  the evaluation of these quanti t ies  is based on the computa t ion  of certain 
elements of a mat r ix  inverse, which nowadays can be easily achieved by computer  
packages performing symbolic algebra manipulat ions  (e.g. Mathemat ica ,  Mathcad  
etc.). 

It  is very essential tha t  the Markov chain approach offers total  control over the 
stage of formulat ion of the pa t te rns  we are interested in. This provides a powerfifl 
tool for captur ing the easy way the dis tr ibut ion of some addit ional  variables. As an 
example we ment ion the waiting t ime problems encountered when we look for the 
first (or m- th)  occurrence of a specific pat tern .  For the waiting t ime dis tr ibut ion 
of a success run, Fu and Kout ras  (1994) provided a formula based on their  Markov 
chain approach.  This formula could be easily res ta ted in terms of our t r iangular  
binomial vector probabilit ies.  Fur ther  results, per ta ining to waiting times for a 
specific scan configuration, or success run in urn models, will be presented in a 
for thcoming paper.  

Another  interesting feature of the techniques used here is tha t  the established 
theory  extends  rout inely to the case where the random variables Z1, Zo . . . .  are gen- 
era ted in a Markov dependent  manner.  Some trivial modifications on the transi t ion 
matr ices  of Section 3 are enough to transfer  the Bernoulli model description to the 
respective Markovian structures�9 For example,  let us consider a t ime-homogeneous 
Markov chain {Z,,, 7~ > 0} with states labelled ~-~s 1 (Success) and 0 (Failure) and 
assume tha t  the one-step t ransi t ion probabili t ies P i j ( t )  = Pr(Zt  = j I Z t - 1  = i) 

are given by 

(7.1) Plo(t,) = a t ,  Pl I ( t )  -= 1 -- a t ,  POl(t~) = ,,'3t, Poo(t) = 1 --3~, t >_ O. 

Then,  the dis t r ibut ion of the number  of non-overlapping success runs of length k 
can be analysed by making use of a Markov chain similar to the one employed in 
Subsection 3.a and respective matrices 

A t ( x )  = A t  = 

(.,o) (.,1) (.,2) ( . , k - l )  
1 - / 3 t  ,3t 0 0 

at  0 1 - ctt 0 

a t  0 0 1 - a t  

ctt 0 O 0 

(.,0) (.,1) (.,2) (.,~:-- 1)]  
0 0 0 u 

l 0 0 0 0 

0 0 0 0 
1 - at  0 0 0 

k x k  

/ ,-xk 

The  special case at  = a,  /3t = / 3  for all t > 0, was considered by Rajarshi  (1974) 
and Hirano and Aki (1993). Quite a f~w of the results presented there Call be 
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eas i ly  d e r i v e d  b y  m a k i n g  use of  ou r  a p p r o a c h  a n d  T h e o r e m s  2 .1-2 .3 .  W e  m e n t i o n  

t h a t  L o u  (1995) s t u d i e d  t h e  c o n d i t i o n a l  d i s t r i b u t i o n  of  success  r u n s  g iven  t h e  t o t a l  

n u m b e r  of  successes  in n t r i a l s ,  u n d e r  t h e  a s s m n p t i o n  t h a t  t h e  t r i a l s  a r e  M a r k o v  

d e p e n d e n t .  I t  goes  w i t h o u t  s a y i n g  t h a t ,  for M a r k o v  d e p e n d e n t  t r i a l s ,  t h e  s can  

s t a t i s t i c s  of  S e c t i o n  4 can  a lso  be  de f ined  a n d  s u b s e q u e n t l y  s t u d i e d  as  M V B ' s .  As 

an  i l l u s t r a t i o n  we m e n t i o n  t h a t ,  for t h e  s e q u e n c e  d e s c r i b e d  by  (7.1),  t h e  t r a n s i t i o n  

p r o b a b i l i t y  m a t r i c e s  of  t h e  scan  s t a t i s t i c  N (~) b e c o m e  �9 n,3,2 

At = 

S t ~ -  

(0,0,0) (0,0, I)(0, i,0)(i,0,0)] 
i - / 3 t  3t 0 0 [ 

0 0 ch u , 

1 0 0 0 1 -- /~t 
1 - 3t /3t 0 0 

( 0 , 0 , 0 )  ( 0 , 0 , 1 )  ( 0 , 1 , 0 ) ( 1 , 0 , 0 ) 1  

0 0 0 0 

J 1 - ctt 0 0 0 . 

/3t 0 0 0 

0 0 0 0 

F i n a l l y  i t ' s  w o r t h  n o t i c i n g  t h a t ,  one  c o u l d  m a k e  the  d e f i n i t i o n s  a n d  t e c h n i q u e s  

g iven  in th i s  p a p e r  w o r k  for v a r i a b l e s  a r i s i ng  f rom a s e q u e n c e  of  t r i a l s  w i t h  m o r e  

t h a n  two  o u t c o m e s  in each  t r i a l  (see S c h w a g e r  (1983)) .  

A c k n o w l e d g e m e n t s  

T h e  a u t h o r s  w o u l d  l ike to  t h a n k  t h e  referees  for t h e i r  v a l u a b l e  c o m m e n t s .  T h e  

s e c o n d  a u t h o r  has  been  p a r t i a l l y  s u p p o r t e d  by  t h e  G r e e k  S c h o l a r s h i p  F o u n d a t i o n .  
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