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Abstract. This paper presents a unified approach for the study of the exact
distribution (probability mass function, mean, generating functions) of three
types of random variables: (a) variables related to success runs in a sequence
of Bernoulli trials (b) scan statistics, i.e. variables enumerating the moving
windows in a linearly ordered sequence of binary outcomes (success or failure)
which contain prescribed number of successes and (c) success run statistics re-
lated to several well known urn models. Our approach is based on a Markov
chain imbedding which permits the construction of probability vectors satisfy-
ing triangular recurrence relations. The results presented here cover not only
the case of identical and independently distributed Bernoulli variables, but the
non-identical case as well. An extension to models exhibiting Markov depen-
dence among the successive trials is also discussed in brief.

Key words and phrases: Success runs, scan statistics, urn models, Markov
chains, triangular multidimensional recurrence relations, distributions of order

k.

1. Introduction

It is quite common for a statistician to face problems involving experimental
trials with two possible outcomes. An educational psychologist evaluates subject’s
or material’s efficiency by examining patterns of successes or failures in a learn-
ing process. An ecologist studies the spread of a specific disease by observing
the patterns of infected or non-infected plants in a transect through a field. An
acceptance sampling specialist develops plans based on sequences of acceptable
or non-acceptable lots. A physician studies success and failure of treatments in
therapeutic trials.

The statistical analysis of such phenomena seeks criteria for detecting changes
in the underlying process generating the outcomes. Intuitively, the heavy conges-
tion of outcomes of a specific type (for example “success”) signals the occurrence
of a change in the observed process.

A reasonable and intuitively appealing criterion for the analysis of the above
mentioned situations, is the one based on the concept of (success) runs. In early
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forties it was used by Mood (1940) in the area of statistical hypothesis testing and
by Mosteller (1941} and Wolfowitz (1943) in statistical control problems. Recently
it has been successfully employed in a lot of diverse areas such as reliability (see
Chao et al. {1995) or Papastavridis and Koutras (1994)}, DNA sequencing {Arratia
and Waterman (1985), Goldstein (1990)), psvchology, ecology, radar astronomy
{Schwager {1983)) etc.

There are various ways of counting runs. Consider a sequence of n Bernoulli
trials Zy, Za, ..., Z, with success {S) probabilities p; and failure (F') probabilities
g, t = 1,2,...,n. The number of non-overlapping and recurrent success runs
of length & (k is a positive integer) was first introduced by Feller (1968) and is
usually denoted by N, ;. Another counting scheme proposed by Ling {1988} gives
rise to the number A, ;. of overlapping success runs of length k. Finally, of great
statistical importance is also the number G, ;. of success runs of length at least &
{see Gibbons {1971}). Instead of giving the mathematical definition of the above
mentioned variables, we mention the following illustrative example: if in a sequence
of n = 12 trials, the outcomes were SFSSSSFSSSFS then Nios = 3, Mi2a =5,
Gi22=2, Nio3 =2, Mi23 =3, G123 =2.

The distributions of the random variables N, ;. AL, , are known as binomial
distributions of order k and have been studied extensively by Hirano et al. {1984},
Aki (1985), Aki and Hirano (1988), Chryssaphinou et al. (1993}, Godbole (1990a,
1991), Hirano et al. (1991), Philippou and Makri (1986) etc. Manifestly, the
binomial distributions of order & = 1 coincide with the usual binomial probability,
this fact being responsible for the order & nomenclature.

A natural generalization of the success-run criteria arises by interpreting as ev-
idence of lack of randomness, the appearance of many k-tuples of consecutive trials
containing among them large number (say greater than or equal to r) of successes.
The respective random variables will be called binomial scan statistics or simply
scan. statistics. Problems leading to scan statistics may arise in the following prac-
tical context. Suppose data on the output of an assembly line is to be used for
determining whether the production of defectives is a “contagious” phenomenon.
A sample of n-units is examined and each defective (non-defective) item is marked
as success (failure). Checking the sequence of outcomes for evidence of contagion
amounts to making test for non-random clustering of S’s relative to F’s. A cri-
terion that suggests itself in this context is the following: scan the sequence with
an interval (window) of length &£ and mark all the windows containing at least
r successes {defectives). If the total number of marked windows is “too large”
reject the hypothesis that production of defectives is not contagious. Other appli-
cations of scan-statistics analysis pertain to phenomena such as clusters of disease
in time, generalized birthday proximities and the nearest neighbour problems (see
e.g. Dembo and Karlin (1992), Glaz (1989), Saperstein (1972, 1975)).

It is apparent that, several counting processes could be considered, leading
to different statistics. For example, generalising the notion of overlapping success
runs, we may denote by M,  » the number of overlapping k-tuples {i,i+1,... i+
k—1},i=1,2,...,n—k+1 which contain at least r successes. There are also two
non-overlapping analogues for M, . ». The first of them, to be denoted by Nr(:,l‘,‘,
is computed by counting from scratch each time we encounter r successes placed
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within a “window” of length at most k. Alternatively, one could start counting
anew only after the completion of a k- tuple of successive trials with at least r
successes. This gives birth to a variable N . It is evident that N(lk = NHQZ =
Npky My gk = My . To make the prev10us deﬁnltlons clear and transparent, we
mention in passing that in the sequence of outcomes SFSFFSSSFFSFFSSE we
have Nl((li) 42 = 4 N1(§)4 9 = 3 ]\4[16 4,2 = 9.

Since the variables Nr(le - NT(LQk - M, i are created by a counting process
performed in a scanning (movmg) wmdow, we use for them the name (discrete)
Scan Statistics (see also Glaz and Naus (1991) and Wallenstein et al. (1994)).
Several problems related to the continuous analogue of Scan Statistics can be

found in Huntington (1978), Naus (1982) and references therein.
Currently, except for a few special cases, the exact distributions of the statistics

N,(:,lﬂ_, ka +» My i~ are mainly unknown, especially for non-identical Bernoulli
trials. The probabilities Pr(N{!) = 0) = Pr(N') = 0) = Pr(My k. = 0) are

related to the well known generahzed birthday problem (see Saperstein (1972),
Naus (1974, 1982)), and certain quality control, queuing and reliability models
(Greenberg (1970), Saperstein (1973), Chao et al. (1995)). We mention also that
Karlin and Macken (1991) and Dembo and Karlin (1992), motivated by the study
of inhomogeneities in long DNA sequences, developed certain Poisson approxima-
tions (through the Chen-Stein method) for a class of general scan statistics; their
approximations are also applicable for the case of Bernoulli trials.

When studying finite populations, the development of randomness tests for
dichotomous characteristics, calls for the study of without-replacement sampling
schemes. Consider an urn that contains a white and b black balls. Assume that n
balls are randomly drawn, one at a time without replacement. The distribution of
the number N, of occurrences of non-overlapping consecutive k-tuples of white
balls is called hypergeometric distribution of order k and has been studied by
Panaretos and Xekalaki (1986), Aki and Hirano (1988) and Godbole (1990b). If in
the above sampling scheme, each ball is returned to the urn together with ¢ balls
of the same colour before the next drawing, the resulting distribution is called
the Polya distribution of order k. (The special case ¢ = 1 is usually referred as
negative hypergeometric distribution of order k.) An analogous random variable
might be defined by considering Friedman’s urn scheme (see Friedman (1949) or
Freedman (1965)) in which besides the ¢ balls of the same colour, we add to the
urn d balls of the opposite colour.

Recently, Fu and Koutras (1994) taking a completely different approach to
the problem of evaluating the probability mass function of the run-statistics Np .,
M, k, Gnx, used proper finite Markov chains and expressed the distribution of
the variables of interest in terms of transition probability matrices products. A
similar approach was also used by Fu (1994a, 1994b) for the study of the number
of successions in a random permutation and patterns in a sequence of multistate
trials respectively.

The purpose of the present paper is to develop a general workable framework
for the study of all statistics mentioned before. The basic tool for our approach
is a Markov chain imbedding technique. In Section 2 we introduce the concept of
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Markov chain imbeddable variables of Binomial type (M VB) and provide methods
for evaluating their distribution functions and generating functions. For indepen-
dent and identically distributed (iid) MVB’s, the double generating function is
expressed through a matrix inverse, and certain simple matrix formulae are given
for the mean and the generating function of the means.

In Sections 3 and 4, we show how the run statistics Al i, Ny &, Gk and scan
statistics M, k.o N,(l?z,.r, ]\/,(,22, can be viewed as MVB’s; as a consequence certain
properties of them are explored through the general results presented in Section 2.
Section 5 deals with the Markov chain imbedding of the urn model associated
variable N .. In Section 6 we work out some illustrative examples providing
numerical results for the exact distribution function of certain scan statistics. Fi-
nally, in Section 7 we present several concluding remarks on our approach and
discuss possible extensions to Markov dependent random variables and waiting
time problems.

2. Markov chain imbeddable variables of binomial type

Recently, Fu and Koutras (1994) studied the distribution of the most com-
mon run statistics by establishing an imbedding into a finite Markov chain and
expressed the probability distribution function of them via products of proper
transition probability matrices. The motivation of the present paper stems from
the observation that in most of the cases studied there, the transition probability
matrix can be viewed as a bidiagonal matrix with non-zero blocks appearing only
on the main diagonal and on the diagonal next to it. As a consequence, the intro-
duction of proper probability vectors describing the overall state formulation of
the observed Markovian structure at time ¢, would naturally lead to certain trian-
gular (multidimensional) recurrence relations. Let us first introduce the notion of
a Markov chain imbeddable variable, which is similar to the one used by Fu and
Koutras (1994).

Let X,, (n a non-negative integer) be an integer valued random variable and
denote by ¢, = max{xz : Pr(X,, = x) > 0} its upper end point.

DEFINITION 1. The random variable X,, will be called Markov chain imbed-
dable variable if
(i) there exists a Markov chain {Y; : ¢ > 0} defined on a state space 2,
(ii) there exists a partition {C,.z =0,1,...} on Q,
(iii) for every = =0,1,...,£, the probabilities Pr(X,, = 2) can be deduced by
considering the projection of the probability space of Y, onto C; i.e.

(2.1) Pr(X,=2)=Pr(Y,eC,), 2=0.1,....¢,.

In order to proceed to the mathematical formulation of our model, let us
introduce some additional notations and definitions. Assume first that the sets
(state subspaces) (', of the partition {C,,x = 0,1,...} have the same cardinality
s =|Cl, z =0,1,..., more specifically

C;r = {CJJOa Carly- -+ Cl‘-s‘l}'
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This can be done without loss of generality, since one can always expand the car-
dinalities of non-maximal C,’s by incorporating into them additional hypothetical
states. In most of the cases these states are inaccessible and their behaviour does
not affect the chain at all. Next, we introduce the probability (row) vectors

(2.2)  fi(x) = (Pr(Y; € co0), Pr(Y: € cz1),....Pr(Yi €ces_1)). 0<t<n

displaying the marginal probabilities in which Pr(Y; € ;) can be decomposed.
From now on we shall be using the index ¢ for the ¢-th step of the Markov chain
and n for its final stage, where the distribution of X, is attained (through Y,).

We are now ready to define the basic notion of our presentation which is the
Markov chain imbeddable variable of Binomial type (MVB).

DEFINITION 2. A non-negative integer random variable X, will be called
MVB if

(i) X, can be imbedded into a Markov chain as in Definition 1,

(ii) Pr(Y: € ¢y | Yic1 €cz) =0forall y # 2.2+ 1.

For any M VB we introduce the next two s x s transition probability matrices
A(r) = (Pr(Y: € ¢y | Yot € ¢ui)). Bi(r) = (Pr(Y: € courj | Yio1 € i)

In order to illuniinate the reasoning hidden in the above definitions, let the
term state x refer to the collection C, = {c,0,¢r1....,Cro—1} and substate of
refer to the elements c,; of C'.. Then, roughly speaking, the process described
by a MVB cannot move backwards or jump directly to a higher state. without
visiting first its next state. Regarding the matrices A,(x) and Bi(x) we may state
the following.

a. The entries of 4;(x) control the within state one-step transitions i.e. the
transitions of the Markov chain from a substate c,; to another substate ¢, ; of the
samne state ..

b. The entries of B;(x) control the between states one-step transitions i.e.
the transitions from a substate c.; to a substate ¢ 41 ;.

c. The sum A,(x) + By(x) is a stochastic matrix.

Definition 2 provides a fairly broad framework, wide enough to accommodate
a lot of diverse probability applications (for more details see next Sections). On
the other hand it permits the derivation of a number of general results which can
be subsequently applied to specific problems, providing new results and alternative
ways of proving well known results.

Let m, denote the initial probabilities of the Markov chain {Y; : t > 0}. i.e.

7. = (Pr(Yy € c0), Pr{Yy € cp1), ..., Pr(Ys € cos-1))s r>0
and 1 = (1,1,...,1) the (row) vector of R® with all its entries being 1. The next

theorem provides a method for the evaluation of the distribution function of a

MVB.
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THEOREM 2.1. The double sequence of vectors fi(x), 0 < ax < {,, 1 <t<n
satisfies the recurrence relations

(2.3a) £:(0) = £;_1(0) A (0),

(2.3b)  fi(2) = fo_1(2)An(@) + fo_ (2 — 1)By(2 — 1), 1gmgbn

with initial conditions fo(x) = 7., 0 < x < €,,. In addition the probability distri-
bution function of the MVB X, is given by

Pr(X, =z)=f,(x)l, x=0,1,...,0,.

PRrOOF. The recurrences (2.3) are immediate consequences of the total prob-
ability theorem (or Chapman-Kolmogorov equations), Definition 2 and the form of
the matrices A;(z) and By(x). The proof of the theorem is completed by observing
that

(2.4) Pr(X, = 1) = Pr(Y, € Cy) Zpl (Y, € caj)-

The use of the nomenclature “Binomial Type” is justified by the apparent
similarity of recurrences (2.3) to the following relations, satisfied by the binomial
distribution b(n,p;z) = ( )pTgn e,

b(t,p;0) = b(t — 1,p;0)q,

b(t,p;z) =b(t — 1,p;a)g +b(t — 1,p;2 — 1)p.

The generating function

ln
z) = Z Pr(X, =2x)z
r=0

of a MVB X,,, in view of (2.4), takes the form

9971 :Z<ZPI YNECJ] )

=0 \x=0

which, on introducing the vector generating functions

(25) HOED R ACES
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can be expressed as

(2.6) onl(2) = g, ()1,

In most of the applications presented here, the matrices A,(x) and B;(x) ap-
pearing in recurrences (2.3) do not depend on . In this case the vector generating
function ¢,,(z) can be expressed as a product in the following way

THEOREM 2.2. If Ay(z) = Ay, Bi(z) = By for all x = 0,1,..., then the
vector generating function of the MVB X, is given by

n
0, (2) = py(2) H Ay + 2By)
t=1

where
)= ZwIzI
r=0
is the vector generating function of the initial probabilities m,,.

PROOF. Multiplying both sides of (2.3b) by z*, summing up for all x =
£, and adding (2.3a) we obtain, for t > 1

I3 £i—1
(p,(;’): (th 1( ) >At+2<z ft 1 )
Condition (ii) of Definition 2 implies that ¢, — ¢;_; € {0,1}. If ¢; = ¢,_, we have

0, () =@, 1 (2) (A + 2By) — T, (621) By

Considering this equality for z = 1, post multiplying by 1’ and taking into account
that

1,2

g ey

o, (' =9, (N1 =1, (4 +B)1' =1
we get f;_1(¢;_1)By = 0. If ¢ = £,_1 + 1 we may write

©,(2) = @, (2)(Ar + 2By) + 2" Fi_ 1 (€) Ay

and the last term is easily checked to vanish by the same argument as before.
Therefore, in both cases

0, (2) =, (2)(Ar +2By), t2>1

and the proof of the theorem follows immediately.

We recall that for the generalized binomial distribution (number of successes
in a sequence of n non-identical independent Bernoulli trials), a similar formula
holds true for the respective (1-dimensional) generating function, namely

n

on(2) = wo(2) [[(@r +2p0),  @olz) = 1.

t=1
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It’s worth mentioning that in most of the applications we have
7o =(1.0,....,00)=€;, 7,=0=(0,0,...,0) forall =>1

which implies that ¢y(z) =75 = e;.

The rest of this section will be devoted to the presentation of some results for
the special case of homogeneous MVB, i.e. if Ay(z) = A, Bi(x) = B foralit > 1
and x > 0.

THEOREM 2.3. The double vector generating function

(z.w) E @, (z)w"

n=0

of an homogeneous MVB X, is given by
Bz, w) =y(2)[[ —w(A+2B)]"l, 0<w<l1
where I is the identity s X s matriz.

Proor. Making use of Theorem 2.2 we may write
X
Pz, w) = Z w(A+ zB)]

and under proper conditions for the series to converge (e.g. if the elements of the
matrix A+ 2B lie in the closed interval [0, 1], a condition which is usually satisfied)
we are immediately led the desired conclusion.

Notice that the sum of the entries of ®(z.w) gives the double generating
function ®(z.w) of the probabilities Pr(X, = z) i.e.

(2.7) zow) ZZPL p=a)zfw" = (2 w)l'.

For an homogeneous MVB X, let m,, = E(X,) denote the mean of X,,, and

o o]

(2.8) Mz) =Y myuw"

n=1

its generating function. Then we have

THEOREM 2.4. The means m,, and their generating function M (w) are given
by

My = Po(1) {Z(A + B)"‘l} B1’
=1
M(x) = 5 f’w%(l)u —w(A+B)]'BY.
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PROOF. Since J
my, = E(Xn) = d—;[QD,"(Z)ll]Z:I
and (see for example Pham (1962), p. 75)

d n i—1 n—1
—(A+:B) =Y (A+:zB)"'B(A+:B)

4 :
i=1

we get, in virtue of Theorem 2.2 and relation (2.6)

n

mn =¢(1) > (A+ B)'"'B(4+ B)""'1"

=1

The result follows easily by taking into account that (A4 + B)1’ = 1’. The second
conclusion of the theorem is derived immediately by substituting m, in (2.8),
interchanging the order of summation and making use of the identity 5% [w(4 +
Bl = -w(A+ B) ™"

3. Distribution of success runs
Consider a sequence of Bernoulli trials Z;, Z5, . .. with success (5) probabilities

pt = Pr(Z; = 1), and failure (F') probabilities ¢t = Pr(Z; =0) =1 —p, t > 1. If
k is a positive integer, let W, = H?:’;_l Zij,t=12,..., n—k+1and

k-1
W d We i Y Wi, =0, t=12,.
i=1

0 otherwise

(convention: Ili/} = 0 for t < 0). Then, the three success run statistics described
in Section 1 can be formally defined by

n—k+1 n—k+1

Now= 3 Wo Myp= ) W,
t=1 t=1
n—k+1

Gk = Z (1-2,_1)W, (Convention : Zy = 0).
t=1

Adopting Fu and Koutras’ (1994) approach, let us denote by x the number
of success runs (non-overlapping, overlapping or greater than) in a sequence of
Bernoulli trials and by m the number of trailing successes i.e. the number of
last consecutive successes counting backwards. For more details and illustrative
examples the reader is referred to Fu and Koutras (1994).
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3.a  Non-overlapping success runs
Let ¢,, = [n/k] and define Cy = {¢z0,¢21,---,Cak-1}, x =0,1,..., ¢, where

(3.1) i = {(z,))}, 0<i<k-1, z=0,1,...,¢,.
To introduce a proper Markov chain {Y; : ¢t > 0}, we define Y; € c;; (or
- . . . J‘IH
equivalently Y; = (x,4)) if in the first ¢ outcomes, say SFFS---F SS--. 8§, there

exist = non-overlapping success runs and m = ¢ (mod k). With this set up, the
random variable N, ;. becomes a MVB, with

_(50) (71) (12) (vk_ 1)-
gt Dt 0 . 0
0 0
Afa)=A = | * pe ,
0 0 0 2
L Gt 0 0 0 J sk
—(’ﬂo) (71) (32) (’A_l)_
0 0 0 0
Bi(z) = By = 0 0 0 0
L Dt 0 0 0 d sk

Therefore the probability mass function of the variable Ny could be succes-
sively evaluated for all t = k,k+1,...,n by making use of Theorem 2.1. This pro-
vides an alternative computation scheme to the one proposed by Fu and Koutras
(1994); its advantage lies in the fact that instead of multiplying matrices of order
(£, + 1)k x (€, + 1)k we have to deal with vector recurrences involving multiplica-
tions of & x k matrices. Another interesting feature of our approach is that in the
iid case {(p; = p, Ay = A, B, = B for all t > 1) it provides easy to apply formulae
for the evaluation of means and generating functions. For example, making use to
Theorem 2.4, we may write for m, = E(N, ),

w

- wcpo(l)[l —w(A+ B)]"'BY

Mw) = Zmnw" =

n=1

with ¢y(1) = mp = (1,0,...,0), B1’ = (0,0,...,0,p) and calculating the (1, k)
element of (I —w(A+ B))™! as

)k—l )k—l

(pw _ (pw
det(I —w(A+ B)) (1 —-w)(1- (pw)*)(1-pw)-!

we finally obtain
(pw)* (1 — pw)
(1 —w)2(1 = (pw)*)

M(w) =
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By the same reasoning, working with Theorem 2.3 and formula (2.7) we deduce
that

N _ —147 _ 1_(pw)k
®(z,w) =(1,0,...,0)[ w(A+2B)]7'1 = 0= w) + (pu)Flqw = (1= pu)]

Finally, we mention that, employing Theorem 2.2 and formula (2.6), one could
easily capture Aki and Hirano’s (1988) recurrences for the generating function
wn(z) by observing that

on(z) =p,_1(2)(A+2B)1".
Analogous recurrences could also be established for the non-iid case.

3.b  Overlapping success runs

To imbed the random variable M, ;. into a Markov chain, we set £, = n—k+1,
expand state z by incorporating into C; an additional substate ¢, _; = {(z, 1)}
and define ¥y = (z,m) if m < k—1and Y¥; = (z,-1) if m > k. Note that the
hypothetical state ¢ _; = {(0, —1)}, which is in fact inaccessible by the system is
used only for increasing cy’s cardinality from & to |c,| = £+ 1, x > 1. Definition
2 is manifestly fulfilled and

(70) (71) (72) ’ (’k_l) (7_1) |
q Dt 0o - 0 0
qt 0 Pt 0 0
At(l*) =A = : )
G 0 0 Pt 0
qt 0 0 0 0
| @ 0 o - 0 O L kernywtrrn)
~(70) (11) (72) (»k—l) ('7_1)
0
0
By(z) = B = Ok xk )
0
Pt
L O 0 0o - 0 Pt 1 (ksyx(h+1)

The double generating function of the probabilities Pr(Af,, , = x) (in the iid
case) can be now immediately derived through Theorem 2.3 and relation (2.7).

3.c  Success runs of length at least k

Using the same notation as in the overlapping case, with ¢, = [n + 1/k + 1]
instead of ¢, = n — k + 1, we introduce the Markov chain {Y; : t > 0} as follows:
For 0 < m < k — 1, we define Y; = (2, m) when there exist exactly > 0 success
runs of length at least k before the last m + 1 outcomes. If m > &k and there exist
x — 1 > 0 success runs before the last m + 1 outcomes, we define ¥; = (2, —1).
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An hypothetical (inaccessible) state, labelled as (0, —1). is also
make the cardinality of Cy equal to |C,|, @ > 1. The traunsitio
By () are given by

[(.0) (1) (~2) - (k=1) | (-1

Gt P 0 0 0
G 0 Dt 0 0
A(r) = Ay = : : . .
q 0 0 Dt 0
qQ 0 0 0 0

L 0 0 0 P

[(-.0) (1) (.2) (h=1) | (-.-1) ]
0
0
Bf(.l') = Bt = Ok:(/\ ’
0
Pt

L O 0 0 0 0 ]

added in order to
n matrices A;(r),

(k1) x (k+1)

(k+1)x (k+1)

Hence, one could benefit from the general theorems presented in Section 2
to derive results for the random variable G, ;. For example, Theorems 2.1 and
2.2 highlight easy to program numerical methods for obtaining the probability

distribution and generating function of G, . Moreover, some

routine algebraic

manipulations on Theorems™ 2.3 and 2.4 formulae immediately yield the double

generating function ®(z.w) and the means generating function Af{(w).
4. Scan statistics
Let Z1.Z>.... be a sequence of independent Bernoulli trials as in Section 3.

and r < k two positive integers. Introducing the auxiliary variables

t+hk—1
O 2 Zjzr
iz

0 otherwise

0

fort=1.2,..., n —k+1 (convention: W; =0 for ¢ < 0) and
t+a—1 t+hk—1
min < a : Z Zi>r if Z Z; >
j=t =t
Ty =
t4k—1
0, it Y Z;<
Jj=t
: 1 if », >0 and Z ﬁ,-:O
”‘} = i<tiitr;>t

otherwise

k=1
o Y if;ﬂr}_,-=0.

otherwise
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t=1,2,...,n—r+1, we may define the three scan statistics mentioned in Section 1
as follows

n—r+1 n—k+1 n—k+1

Nr(z%l?nz Z ﬁ/’t, N7(1221: Z ‘/Vt. ]\'[n,k,r: Z LVt_
t=1 t=1 t=1

Tor the establishment of a proper Markov structure we are going to employ
pairs (w;j) which keep track of the number (x) of scan counts till the ¢-th trial
and the stage of formation of the next appearance (j). The vector j is an m-tuple
i= 0172, +Jm), m <k defined by

L { 1 if the (t — m + i)-th trial is success (.5)
Ji= 0 if the (¢ —m + 4)-th trial is failure (F).

As we shall see later on in the treatment of specific counting processes, a substantial
number of j-combinations can be ruled out, a fact leading to a reduction of the
states’ cardinality.
4.a  Non-overlapping scans N,(:;‘r

Let ¢, = [n/r]. The typical element of the state space { will be represented
by a pair (2;j) where x > 0 and j = (j1, J2, . ... jx) with j; € {0,1}, Zleji <.
The event Y; = (2;j) means that

(i) in the sequence of outcomes Z;,Zs,.. ., Zi_) there appear r non-over-
lapping windows of length at most &, containing exactly r successes, i.e. Nt(i)k,k.r =

(i) Zi_pyi=gifori=1,2,... k. Ift—k+i < 0or trial ¢ — &+ falls within
a scan window that has already been counted we assume that j; = 0.

It is not difficult to check that all the requirements of Definitions 1 and 2 are
met if we define ¢, ; = {(x;j)}, * > 0 and

k
C, = {cl._j 2= (1., jx) with j; € {0.1} and Zj,« < 7'} .

=1
Obviously, the cardinality of each state €', equals
r—1
k.
s=|C] = z; (L>
1=

The transition probabilities of the Markov chain {Y; : ¢ > 0} are given as
follows: If jo + -+ jr <7 —1 then

(41)  Pr(Yr = (x:jae. ki) | Yior = (@iji. o)) = pi(1—p)' 7,

whereas for jo + - + jr =7 — 1 we have

(4.2) Pr(Y; = (@342, -, jr, 0) | Yeor = (@31, k) = qe
(4.3) Pr(Y; = (z + 1;0,...,0) | Yioy = (T3 7102 Jk)) = Dt
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To construct the s x s matrix A;(z) = A;, it suffices to fill in the transition
probabilities deduced by formulae (4.1) and (4.2). Finally, formula (4.3) provides
the only non-zero transition probabilities for matrix B;{x) = B;.

As an illustration, for the random variable Nv(f;z we obtain (the 3-tuples above

the first row represent the values of the vector j)

r{o,0,0) (0,0,1) (0,1,0) (1,0,0)7
g Dt 0 0
A = 0 0 t 0
0 0 0 Gt
L ¢ Dt 0 0
((0,0,0) (0,0,1) (0,1,0) (1,0,0)7
0 0 0 0
Bt = Pt 0 0 0 = [(I - At)]./.O,,lxg].
Dt 0 0 0
L O 0 0 0 4

Repeated application of (2.3a), (2.3b) (with initial conditions f3(0) = 7y = ey,
fo(z) = m, = 0 for all > 1), yields the sequence of probability vectors f,(2),

7

t=1,2,...,n and the distribution of N(713)2 will be given by (see Theorem 2.1)

(4.4) Pr(N), =2) =f.(x)1.  2=0.1,....0,.

Moreover, employing Theorems 2.3 and 2.4, we can easily deduce (in the iid case)
the double generating function of the probability function (4.4) and the generating
function of the means m, = FE (N,(:_.;‘Q) as

o 1 + pw + pqu?
1= qu — pg?w? — (pw)2(1 + quw)z’

n=0x=0
> 2
(pw)* 1+ quw
Mlw) = muw’ = . . )
(w) n; l—w 1-quw-—pgw?— (pw)?(1l + quw)

, NS SRR . (2)
4.b  Non-overlapping scans Nn',m.
For the study of the random variable N ,(122, we use (, = [n/k] and

C, = {(1,3) J=0U1, - g with 1 <m < k and Zji < 7'}
=1
U{(z;x)}u{(z;=1,m):r<m < k-1}.

The meaning of the event Y; = (2;j) is the same as in the treatment of N,(,fz_.,,,
the only difference being that in the beginning and after each count, we are keeping
the full description of a gradually increasing window of length m = 1,2,..., k
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containing at most 7 — 1 successes. An additional number of k£ — r + 1 states is
also employed to denote

(i) the completion of a scan count at the ¢t-th trial (state (z;*)),

(ii) the appearance of at least r successes in a window of length m = r,r +
1,...,k —1 (states (x; —1,m)).
Obviously, the cardinality of each state C., x > 0 equals

k min(r—1,4) , .

i
Col=th=r+D+3 Y ()

i=1 j=0 J

Instead of specifying the transition formulae for the general case (as a matter
of fact a number of additional transition probabilities are attached to (4.1)—(4.3),
to handle the new states of the chain) we prefer to provide the form of the ma-
trices A¢(x) = As, Bi(z) = By for the special cases N,(f%‘l and N,52§2 A careful
investigation of those matrices reveals the essence of our approach for the study
of the variables N,(lzli‘r.

e Special case k = 3, r = 1. The matrices A;(x) = A;, By(x) = B; are given

by

((*) (O) (070) (0,0,0) (—'171) (_1v2)—
0 ¢ 0 0 Pt 0
0 0 q 0 0 Pe

Ar=]0 0 0 a 0 o |,
0 0 0 gt 0 0
0 0 0 0 0 1
Lo 0 0 0 0 0

By = [(I — A)1, Ogxs).

In the iid case, making use of Theorem 2.4, we can easily compute the generating
function M (w) of m,, = E(N,(Izgl) as
o0
Mw) = Z muw™ = (
n=1
e Special case k = 3, r = 2. The matrices 4;(x) = A, Bi(xz) = B; are given
by

pw?p? = 3p+ 3+ (—p* + 3p — 2)uw|
1~ w)2[1 + pw + pw? + (—p® + 3p? — 2p)w3]

((*) ) (1) (0,0) (0,1) (1.0) (0,0,0) (0,0,1) (0,1,0) (1,0,0) (—1,2)7
0O @ m 0 0 0 0 0 0 0 0
0 0 0 @ p 0 0 0 0 0 0
o 0o 0 0 0 @ 0 0 0 pe
O 0 0 0 0 0 at pe 0 0 0
/ o 0o 0 o0 0 0 0 at 0 0
A=l 0 0 o 0 0 0 0 0 @ 0
o 0 0 0 0 0 a P 0 0 0
o 0 0 0 0 0 0 @ 0 0
o 0 0 0 0 0 0 0 g 0
o 0 0 0 0 0 gt Dt 0 0
Lo 0o o o 0 0 0 0 0 0 0o |

Bt = [(I — A)1’,011x10)-
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4.c  Qwerlapping scans M,
Let {,=n—k+1and Q= Umzo C, where

Co={(x1j)1§= (oo Ji) with j; € {0,1},1 <7 < kY.
The occurrence of the event Y; = (2:j), t > k means that
(i) in the sequence of outcomes 1,2, ... ¢ there exist x windows of length &

including at least r successes (i.e. My, = x).

(11) Zt—k+i = ]1 fori = 1,2,..., k.
It is not difficult to verify that, for the transition probabilities of the Markov chain
{Y; : t > k}. formulae (4.1), (4.2) are still valid. In addition we have

Pr(Y: = (2 + Lijo, .o g D) | Yeon = (2310000 Jxk)) = pr
T N
(45) , o ST T
Pr(Y; = (z+ 1 jo. ..., Je:0) | Yo = (e jy, o k) =

i oot i =1
Matrix A;(x) = Ay contains transitions of type (4.1) and (4.2), while B;’s non
zero entries are provided by (4.5). The computation of the probability distribu-
tion function of Af, 1, can now be easily performed by repeated application of

recurrences (2.3a), (2.3b) for t =k -+ 1,..., 7. The initial conditions required i.e.
fio(z), 2 =0.1.....0,. depend on the relationship between r and k. For example,
in the special case k = 3, r = 2 we have
£3(0) = (q19203. 19203. (1P2G3, P1G293.0.0.0,0),
£3(1) = (0.0.0,0, 1p2p3, p1q2p3. P1P243. P1P2D3),
fa(2)=0 for ax>1
and
r(0,0,0) (0,0,1) (0,1.0) (1,0,0) (0,1,1) (1,0,1) (1.1,0) (1,1,1)]
qt Dt 0 0 0 0 0 0
0 0 qt 0 0 0 0 0
0 0 0 Qi 0 0 0 0
A= qt Pt 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 qi 0 0 0 0 0
0 0 0 qr 0 0 0 0
L O 0 0 0 0 0 0
[(0.0,0) (0,0.1) (0.1.0) (L0,0) (0,1,1) (L0.1) (L1,0) (11,1)]
0 0 0 0 0 0 0 0
0 0 0 0 ! 0 0 0
0 0 0 0 0 D 0 0
B = 0 0 0 0 0 0 0 0
0 0 0 0 0 0 qr Pt
0 0 0 0 Dt 0 0 0
0 0 0 0 0 Dt 0 0
) 0 0 0 0 0 @ Dy ]
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Note that for the study of M, ., one could use an alternative Markov chain
{Y; : t > 0} defined on the extended state space

The additional states (x,*) and (2;j1,...,jm), 1 < m < k — 1 have an in-
terpretation analogous to the one used for the study of the non-overlapping scans
N® in Subsection 4.b. Their mission is to take care of the first k steps of the

n.k.r
Markov chain and gnarantee the validity of recurrence relations (2.3a), (2.3b) for
the whole range ¢ = 1,2,... (instead for ¢ > k which was the case for our first
method}).

5. Urn models

Consider a random sample of n balls drawn without replacement from an urn
containing a white and b black balls. The number N, of (non-overlapping) runs
of white balls of length A in the sample, follows an hypergeometric distribution
of order k. To achieve a Markov chain description for N} . along the lines of

Section 2, let us consider ¢, = [n/k] and
Co={(x;),y9):0<j<k-10<j+y<a}, x>0

We define Y; = (3 j.y) if and only if in the sequence of the first ¢ draws there
exist « runs of white balls of length &, j trailing white balls and y white balls not
involved in any run-or in the “current trail”. It is rather straightforward that the
transition probabilities of the Markov chain {Y; : ¢ > 0} are given by

b—(t—1—zh—y—7)
a+b—(t—1)
0<j<k-1,

(5.1)  Pr(Yi=(2;0,y+j) | Yio1 = (z1j.y) =

N

a—(zk+y+J)

'F'2 - e — ‘,:,' N ,'_ — ‘,; ,", — .
(5.2)  Pr(Yi=(aij+Ly)|Yior = (234.9) PR T

0<j<h—-1,
. , a—(rvk+y+7j)
5. (Yr = (¢ +1;0,y) | Yoy = (23,y) = :
(5.3)  Pr(Ye=(x+1:0,y) | Yeo1 = (214, y)) S T—
j=k-1
Note that, in this case, the transition probability matrices 4,(x), Bi(x) depend
on both t and r. As an illustration, consider the special case a = 4, & = 2. Then
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[(2:0,0) (£:0.1)  (xi0.2)  (2:0.3) (x:0,4) (2:1.0) (o 1.1) (i 1,2) (a1, 3)7]
Belx) 0 0 0 0 S(r) 0 0 0
0 Be(x) + 1 0 0 0 0 &r) -1 0 0
0 0 Be(r) +2 0 0 0 0 Sy — 2 0
1 0 0 0 3e(r)+ 3 0 0 0 0 &) =3
Ar(r) = —
T [} 0 0 0 1 0 0 0 0
0 de(xy+ 1 0 0 0 0 0 0 0
0 0 Be(a)+ 2 0 0 0 0 0 0
0 0 0 Be(x)+3 0 0 0 0 0
L o0 [\ s} 0 1 0 0 0 o ]
[+ 1:0,0) (r+ L0 D (r+ 10,2 (r+ L0 (r+1:04) (b= 110 (r+LLD (r+1:12) (x4 1:1.3)7]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 v 0 0 0
0 0 i 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
By(r) = —
e 0 0 0 0 0 0 0 0 0
()~ 1 0 0 0 0 0 0 [t ]
0 Sy —2 0 ] 0 0 0 0 0
0 0 Sry ~ 3 0 0 0 0 [} 0
L 0 [¥] 0 [ 0 0 8] [ 0 i

where 3, (z)=b—-t+14+2r. v =5+b—t. 8(x) =4 — 2.

The Polya distribution of order & can be embedded into a Markov chain by a
proper modification of the state space (the third entry of the state triples (x: 7, y)
varies now from 0 to (c+ 1)a — j) and the transition probabilities (5.1)-(5.3) (the
terms in parentheses are multiplied by (¢ + 1) instead of —1).

Finally we mention that in order to cover Friedman’'s urn model, ouly a slight
modification of Polya’s transition probabilities is needed whereas the state space
remains unchanged. The details are left to the reader.

6. Numerical calculations

In view of the recurrences (2.3). the memory space requirements for the nu-
merical evaluation of a MVB’s distribution function through our method, depend
mainly on the dimension s of the f;(-) vectors. Due to the special form of (2.3), the
transition from f;_1(-) to f;(-) can be performed by the use of a single vector with
(¢,, + 1) - 5 coordinates. Therefore, should our memory availability be enough to
register the (¢, + 1) - s entries of the f;(-) vector, we can proceed to the evaluation
of X, 's distribution function. This gives a rough idea how could one estimate the
range of the parameters where our method works.

As an application of the approach presented in the previous paragraphs, we
provide some numerical results for the scan statistics N,(:A)a,., N,(fk)_‘,. and M, 4 na
sequence of Bernoulli trials. Two special cases are treated. For the first one (n = 5,
k = 3, r = 2) the reader can easily repeat the calculations by hand (see Section 4
for the form of the matrices 4,(x), B¢(z)), a fact that will help him to get a better
grip on the underlying mechanism of our approach. The second, (n = 15, k = 3,
r = 2), provides a more realistic example revealing the combinatorial complexity
of the problem under consideration. Nevertheless, our approach easily succeeds;
compared to the first special case, it only requires 10 additional repetitions of the
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same recursive scheme. This remark highlights the following essential feature of
the proposed method: during the computation of the distribution function of a
specific scan statistic, say N,(ITA)“,_, the distribution functions of all Nz(,i:) 1< nare
also derived as by-products.
Three different choices for the success probabilities p; of the ¢-th trial were
considered
L pr=1/(1+1¢), t>1
I p=1-27"1 t>1
III.  py = 0.90, t > 1 (iid case).

3
3)2 N.é~:5),2 and Ms 3,2

Table 1. Exact distribution of the scan statistics N;l

pr=1+0"" pr=1-2"" pe =09
e N, N, Mssa o NUS, NG, Mssa o NiG,  NjW, Msao
0 0.63889 0.63839 0.638389 0.00601 0.00601 0.00601 0.00289 0.00289 0.00289
1 0.33889 0.36111 0.20416 0.22659 0.99398 0.03952 0.07857 0.99711 0.01863
2 0.02222 0.10833 0.76739 0.15438 0.91854 0.03807
3 0.04361 0.80008 0.94041

mean 0.38333 0.36111 0.56666 1.76138 0.99398 274856 1.91565 0.99711 2.91600

7. Concluding remarks

The Markov chain imbedding technique merits a great potential. It provides a
proper framework for developing the exact distribution of the most success run and
scan statistics encountered in the study of randomness tests and other statistical
problems related to sequences of binary outcomes. Certain run statistics arising
from well-known urn models can also be accommodated in the same set-up.

A disadvantage of Fu and Koutras’ approach is that. should one wish to work
with large sequences of Bernoulli trials (or large samples in urn models), he would
be forced to work with incredibly big matrices; as a matter of fact the dimension
of the matrices used, tends to infinity as the number n of the trials increases.
This handicap is incurred here by the consideration and study of proper proba-
bility vectors whose dintension is independent of n; the evaluation of the target
distribution is then easily performed recursively, working on (triangular) matrix
recurrence relations. Our approach takes advantage of the underlying sequential
nature of the model nnder consideration and exhibits the following useful features:

a. Computational efficiency in deriving numerical results for the exact dis-
tribution of a lot of significant statistics in both iid and non-iid cases (sequences of
independent Bernoulli trials, with not necessarily common success probabilities).
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b. Remarkable potential in developing results of theoretical interest such as
the derivation of simple and mathematically manageable formulae for generating
functions, means and generating functions for means. It is of great importance
that the evaluation of these quantities is based on the computation of certain
elements of a matrix inverse, which nowadays can be easily achieved by computer
packages performing symbolic algebra manipulations (e.g. Mathematica, Mathcad
etc.).

Tt is very essential that the Markov chain approach offers total control over the
stage of formulation of the patterns we are interested in. This provides a powerful
tool for capturing the easy way the distribution of some additional variables. As an
example we mention the waiting time problems encountered when we look for the
first (or m-th) occurrence of a specific pattern. For the waiting time distribution
of a success run, Fu and Koutras (1994) provided a formula based on their Markov
chain approach. This formula could be easily restated in terms of our triangular
binomial vector probabilities. Further results, pertaining to waiting times for a
specific scan configuration, or success run in urn models, will be presented in a
forthcoming paper.

Another interesting feature of the techniques used here is that the established
theory extends routinely to the case where the random variables Z1, Zs. .. . are gen-
erated in a Markov dependent manner. Some trivial modifications on the transition
matrices of Section 3 are enough to transfer the Bernoulli model description to the
respective Markovian structures. For example, let us consider a time-homogeneous
Markov chain {Z,,n > 0} with states labelled as 1 (Success) and 0 (Failure) and
assume that the one-step transition probabilities p;;(t) = Pr(Z; = j | Zi—1 = i)
are given by

(7.1)  pro(t) = o, . p(t) =1—ca, porl(t) =05 poolt)=1—-05, t>0.

Then, the distribution of the number of non-overlapping success runs of length &
can be analysed by making use of a Markov chain similar to the one employed in
Subsection 3.a and respective matrices

1_/3t ,df 0 . 0
At(l') = At = a't 0 L . a . )
o) 0 0 1— oy
L Cig 0 0 . 0 kexk
FL0) (D) (2 (k-1
0 0 0 0
0 0 0 0
Bi(v) = By = i ) . )
0 0 0 . 0
i 0 0 - 0 1.,

The special case a; = a, 3 = 3 for all t > 0, was considered by Rajarshi (1974)
and Hirano and Aki (1993). Quite a few of the results presented there can be
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easily derived by making use of our approach and Theorems 2.1-2.3. We mention
that Lou (1995) studied the conditional distribution of success runs given the total
number of successes in n trials, under the assumption that the trials are Markov
dependent. It goes without saying that, for Markov dependent trials, the scan
statistics of Section 4 can also be defined and subsequently studied as MVB’s. As
an illustration we mention that, for the sequence described by (7.1), the transition

probability matrices of the scan statistic N,(,Q‘Q become

((0,0,0) (0.0,1) (0,1,0) (1,0,0)7
1—p B 0 0
A.f = 0 0 Qg 0 ’
0 0 0 1—/3t
L1 -5 Bt 0 0 |
r(0,0,0) (0,0,1) (0,1,0) (1,0,0)
0 0 0 0
Bi=]|1- 0 0 0
By 0 0 0
L 0 0 0 0

Finally it’s worth noticing that, one could make the definitions and techniques
given in this paper work for variables arising from a sequence of trials with more
than two outcomes in each trial (see Schwager (1983)).
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