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Abstract. Consider an iid sample Z,, ..., Z, with common distribution func-
tion F' on the real line, whose upper tail belongs to a parametric family {Fjp :
B € ©}. We establish local asymptotic normality (LAN) of the loglikelihood
process pertaining to the vector (Z,—i+1.n)5=1 of the upper k = k(n) —n—oo 00
order statistics in the sample, if the family {Fjs : 3 € ©} is in a neighborhood of
the family of generalized Pareto distributions. It turns out that, except in one
particular location case, the kth-largest order statistic Z,_x41.n is the central
sequence generating LAN. This implies that Z,_i+1:n is asymptotically suffi-
cient and that asymptotically optimal tests for the underlying parameter 3 can
be based on the single order statistic Z,-x+1.n. The rate at which Z,_x41:n
becomes asymptotically sufficient is however quite poor.

Key words and phrases: Extreme order statistics, local asymptotic normal-
ity, central sequence, generalized Pareto distributions, asymptotic sufficiency,
optimal tests.

1. Introduction

Let Zy,...,Z, be independent copies of a random variable (rv) Z on the real
line with distribution function (df) F. We suppose that the upper tail of ' belongs
to some parametric family, that is, we assume that

(M) F(z) = Fa(z), = 2wo(f),

where F := {Fj : 3 € ©} is a parametric family of dfs and the point zo(8) is
unknown.

Such a model for the upper tail of the underlying df is usually indispensable
if one is interested in the statistical analysis of extreme quantities of F', which are
outside the range of the given data Zi,...,Z,. Extreme quantiles F~1(1 —¢q) =
inf{t € R: F(t) > 1 — ¢} with ¢ close to zero, are for example needed if one wants
to know that height of a dike which is exceeded by the annual maximum flood Z
with probability not greater than g (cf. Dekkers and de Haan (1989)).

It is clear from the model (M) that a statistical analysis of the underlying pa-
rameter 3, which usually has to precede any further investigation, can reasonably
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be based only on large observations among the sample Zy,...,Z,. A reasonable
way is to base an analysis of 3 on the vector (Z,_;y1.,)%_; of the k largest order
statistics in the sample, where Z;.,, < --- < Z,., denote the ordered values of
Z1y.e oy Ly,

We will utilize in the present paper the order statistics approach for the in-
vestigation of the testing problem

B =08y against a sequence (=0,

of suitable (contiguous) alternatives with a particular underlying family F.

While extreme value statistic has been focussing on the estimation of the
parameter 3 in the model (M) (see for example Smith (1987), Dekkers and de
Haan (1989), Chapter 9 of Reiss (1989) and the literature cited therein), the
testing problem: has only recently received increasing attention (Castillo et al.
(1989), Hasofer and Wang (1992), Falk (1992) among others).

In particular the powerful theory of local asymptotic normality (LAN) of sta-
tistical experiments, developed by LeCam (LeCam (1960, 1986), LeCam and Yang
(1990), Strasser (1985)), has been applied to extreme value problems by now only
in a few papers (Falk (1992), Marohn (1991, 1994a, 1994b), Janssen and Marohn
(1994), Wei (1992), related papers are Janssen and Reiss (1988) and Marohn
(1995)). By this approach the derivation of asymptotically optimal level o tests
as well as the computation of their asymptotic power functions is in particular
immediate (cf. the discussion after Theorem 2.1).

This was the motivation for the present paper, in which we will prove LAN
of the loglikelihood processes pertaining to the vector (Z,_;11.,) . of the upper
order statistics in the underlying model (M) for a particular parametric family F.
It will turn out that, except in one particular location problem, the kth-largest
order statistic Z,,_ 1.0, with k = k(n) — oo but k/n — 0, is the central sequence,
generating LAN. This implies that the complete information, which is contained in
(Zn—i+1.m)1_, about the underlying parameter 3 in the testing problem 3, against
Br, is asymptotically already contained in the single order statistic Z,,_p4,.,. In
this sense we call Z,,_p1., asymptotically sufficient.

This result parallels those established in Falk (1992), where it was shown in the
peaks over threshold approach to this testing problem, that the random number of
the exceedances over a sequence of suitable high thresholds carries asymptotically
the complete information contained in (the point process of) the exceedances about
the underlying parameter 3.

Sharp upper bounds for the rate at which Z,_;. 1., becomes asymptotically
sufficient, reveal however that this rate is quite poor. The advice to simply drop
all order statistics larger than Z,_ 1.1, and to base statistical inference in the
testing problem above only on Z,, 1., can therefore be taken for small up to
moderate sample sizes only with a grain of salt.

Next we will introduce the particular parametric class of dfs which we will
consider in this paper.

A common condition on F' € F, satisfied by almost any textbook df F', is that
F is in the domain of attraction of an extreme value df Gg, f € R, denoted by
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F € D(Gp). This means that there are constants a, > 0, b, € R such that

(Zn:n - bn)/an ? Gﬁ,

where we denote by — convergence in distribution and Gy is defined by

Ga(x) == exp(—(1+ Bz)"8), if 1+ Sz >0.

Since (1 + ﬁx)_l/f’?e_m, z € R, interpret Gy as Go(z) = limg_o Gg(z) =

0
exp(—e~7"), z € R. The class Gg, # € R, contains all possible nondegenerate weak
limits of Z,., (Gnedenko (1943), see Galambos ((1987), Chapter 2)).

It was first observed by Balkema and de Haan (1974) and, independently, by
Pickands (1975) that F' € D(Gp) if and only if the upper tail of F can be approx-
imated in a suitable sense by the upper tail of a generalized Pareto distribution
(GPD) Hg, where

Hp(z) :==1+1og(Gp(z)), x>0
> 1 >
:1_(1+ﬁ$)_1/ﬁ{f0r x>0 if 8>0
for 0<z<-1/p if g<o.
Interpret Hy as Ho(z) = limpg_o Hg(z) = 1 —exp(—z), > 0. The family of GPDs
is already a rather rich one: With 3 > 0 we obtain the usual Pareto family, H_,
is the uniform distribution on (0,1) and Hy the standard exponential distribution.

In view of the results by Balkema and de Haan (1974) and Pickands (1975),
the family {Hz : 8 € R} is a natural candidate for the class F = {F3 : 8 € R}.
This would however exclude the extreme value distributions G themselves, which
have been typically assumed as underlying dfs in extreme value statistics since the
book by Gumbel (1958).

We will therefore consider Fj in certain neighborhoods of GPDs. Denote by
w(F) :=sup{t € R: F(t) < 1} € (—o0, 0] the right endpoint of the support of a
df F" and by hg the density of the GPD Hyg. Then the df F is in a 6-neighborhood
of a GPD for some § > 0, iff w(F) = w(Hp) for some 3 € R and F has a density
f on (zg,w(F)) for some zp < w(F) such that

f(@) = ha(z)(1 + O((1 — Hs(2))%))

as © — w(F). Note that G is in a §-neighborhood of Hg with § = 1. For a review
of the basic role played by é-neighborhoods of GPDs in extreme value theory we
refer to Chapter 2 of Falk et al. (1994).

The paper is organized as follows. In Section 2 we establish expansions of the
loglikelihood ratios pertaining to the vector (Z,_;y1.n)% ,, which imply LAN of the
loglikelihood processes with Z,, _j41.» being the central sequence. This is achieved
for an underlying family F in a §-neighborhood of the family {Hg : 8 € R}
of GPDs with unknown shape parameter 8 but known scale and location shift.
We then establish sharp upper bounds for the rate at which Z,_x41., becomes
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asymptotically sufficient in the sense of asymptotic sufficiency defined by LeCam
and Yang ((1990), Section 5.3, Proposition 2). These bounds reveal that Z,, _y+1.n
becomes asymptotically sufficient only at quite a poor rate.

In Section 3 we add an unknown scale ¢y > 0 and location parameter dg € R
to Hg,, and we establish again expansions of the loglikelihood ratios pertaining to
(Zn_i+1m)}:k. It turns out that, except in the case 8y # 0 with unknown location
parameter, Z,_r+1.. 18 again the central sequence generating LAN for suitable
sequences of alternatives. It turns further out that if and only if, (3., ¢a, d,) lie on
a certain hyperplane in [R{?’, then one cannot distinguish between the alternative
(Bn,cn,d,) and the hypothesis (By, cg,do). This means that the underlying shape
parameter 3 can be hidden by a scale or a location parameter.

Corresponding results for the lower extremes (Y.im)f:l in a sample Y7,...,Y,
can be deduced from the equation (Y,im)i-"zl = —(Z,,_i,Hm)f“:l, where Z; := =Y
i =1,...,n. We index expectation Ey(Z), distribution L4(Z) etc. of a rv Z by
the underlying parameter 9. By dP/d@Q we denote the density of a probability
measure P with respect to a probability measure @, if it exists.

2. LAN and bounds for the sufficiency

Suppose that the upper tail of F coincides with the upper tail of a GPD i.e.,
we begin with the model

F(z) = Hp(z), wo(f) <z <w(Hp)

for some unknown point xo(3). We will test at first § = 0 against 5 = 3, based
on the kth-largest order statistics (Zn—it1.)i;, where the sequence k = k(n)
satisfies Kk — o0, k/n — 0 as n — oo. This is a crucial condition in order to
guarantee that Z,_;,1., finally exceeds xq(3).

The shape parameter 5 = 0 is some kind of change point: If 4 < 0, then the
right endpoint w{F') of F is finite, while in case 3 > 0 the right endpoint of F' is
infinity. The null hypothesis 8 = 0 is of a different quality than a hypothetical
value 3 # 0. This is revealed by the observation established in this paper that the
rates at which contiguous alternatives 3, converge to 3 are faster in case g = 0
than in case 3 # 0 (see the definition of 3, below and before Theorem 2.3).

Choose 9 € R and define the alternatives 3, = 3,(¢) of 3 =0 by

B = 20k~Y2/log*(n/k).

This definition of the alternatives 3, is required for a nondegenerate limit of the
loglikelihood ratio in Theorem 2.1. The same applies to subsequent results. We
allow the point z¢(3,) to tend to w(Hg, ) as n increases, but not too quickly, since
we require

lim sup(z¢(3,) — log(n/k)) < 0.
Recall that w(Hg,) = —1/8, = kY% log?(n/k)/(2|9]) if ¥ < 0 and w(Hp, ) = oo if
? > 0.
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THEOREM 2.1. (LAN) Suppose that limsup,,_, . (zo(Bn) — log(n/k)) < 0.
Then we have under the hypothesis 3 =10

log{dLpg, ((Zn—i+lln)11=k)/d£0((Z‘n—i+1:n)z1=k,)}(Zn—H-l:n)}:k
= 9kY2(Zy_py1n — log(n/k)) — 9%/2 + op, (1) — N(—92/2,9?).

The preceding result reveals that the kth-largest order statistics Z,_xy1.n
is the central sequence for the loglikelihood ratio log{dLg, ((Zn—i+1:n)i—s)/
dLo((Zn—i+1m)}—;)} that is, all the information about the underlying parameter
that is contained in the vector (Z,—;+1.n);_, of the upper kth-largest order statis-
tics, is asymptotically already contained in the single order statistic Z,_k11.n. In
this sense we may call Z,,_k41., asymptotically sufficient. (For a precise definition
of asymptotic sufficiency we refer to Proposition 2 in Section 5.3 of LeCam and
Yang (1990).) Theorem 2.1 parallels Theorem 1.1 in Falk (1992), where it was
shown that the number of exceedances carries asymptotically all the information
about the underlying parameter 3, which is contained in the point process of the
exceedances over t, := log(na,) among Z1,...,Z,.

Theorem 2.1 implies in particular that the finite dimensional marginal distri-
butions of the loglikelihood process

L dﬁ,@n(ﬂ)((zn—i—i—l:n)zl:k) ] 1
(XaDhocr = (tog { ottt 7oty )

converge weakly to that of the degenerate Gaussian process

(X(9))ger = (9X — 9°/2)scr,

where X is a standard normal rv on the real line, provided limsup,,_, . (zo(8n) —
log(n/k)) < 0.

This weak form of convergence of the likelihood processes is one basic definition
in LeCam’s theory of convergence of statistical experiments. It is already sufficient
for example to imply Héjek convolution theorem as well as the Hajek-LeCam
asymptotic minimax theorem (cf. Chapter 5 of LeCam and Yang (1990)); details
will be given in a subsequent paper. To supply however at least one example of
the statistical implications of Theorem 2.1, we demonstrate in the following how
it provides asymptotic optimal tests for the hypothesis § = 0 against 3,(?J).

Denote by uq = ® (1 — a) the (1 — a)-quantile of the standard normal df ®.
By the Neyman-Pearson lemma and Theorem 2.1, the test

(pl(Zn—k+1:n) = 1('ua,oo)(k1/2(Zn—k+1:n - log(n/k)))

is an asymptotically optimal level a test based on the kth-largest order statistics
for 3, (9) with positive ¥ against 3 = 0. As it obviously does not depend on ¥ > 0,
this test is even asymptotically optimal uniformly in ¥ > 0. This is an example of
the advantages of LAN-theory: The loglikelihood ratio for testing 3,(¢) against
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Go = 0 could be calculated explicitly, but it would depend on 9. Moreover, this
result remains true, if we require Fj3 to belong to a é-neighborhood of a GPD (see
(1.5) below), without specifying its density precisely. The corresponding uniformly
asymptotic optimal test for 3, (1) with negative ¥ against 3 = 0 is

902(Zn—k+1:n) = 1(—oo.—un)(k'l/g(Zn—k+1:n - 10g(77/1€)))

The asymptotic power functions of these asymptotic optimal tests are also provided
by Theorem 2.1. By LeCam’s first and third lemma we obtain that
Cg"((Zn_.i+1:,,,)f:l) and Eo((Zn_iH;n)f:l) are contiguous distributions and that
under 3, = G,(9)

log{dﬁﬁn((Zn—i—klzn)}:k)/dﬁo((Zn—i+1:n)}:k)}(Zn—i-i»l:'n)}:k
= 9k *(Zy—k41n — log(n/k)) +92/2 + op, (1) — N(9%/2,9%).

Bn

As a consequence we obtain for the asymptotic power functions of ;

lim Eg (¢i(Zn—k+1.n)) =1 — ®(uq — |9)), 1=1,2.

PrOOF OF THEOREM 2.1. First observe that under 5 =0 with ¥ # 0
PO{Zn:n < l/|/3n|1/2}
= Po{Znn — log(n) < kM log(n/k)/(2]9])"/2 = log(n)} —n—oc 1

since Po{Zn.n — log(n) < 2} — exp(—e~%), z € R, and k/*log(n/k)/(2|9|)/? —
log(n) — oo as n — 0o0. As a consequence, we may suppose in the following that
Znen < 1/16n]Y?. From formula (1.4.8) in Reiss (1989) we obtain in this case

(21) log{d['ﬂn ((Zn—iﬁ-l:n)z;:k)/dCO((Zn—H—l:n)%:k)}(ZTI—H»l:n)}:k

fﬁ (Zn—H—l:n)} {FB (Zn—k+1:'n)}
lo = — L +(n—~K)lo —_r—
g{ fO(Zn—H—l:n) ( ) & FO(Zn—k+1:n.)

M- i

P

Hﬁ,, (Zn—k+1:n) }
HO(Zn—k+1:n) ’

14 5n
(Zn—H—l:n - / 1Og{1 + BnZn—i+1:n}>

=1

+(n— k)log{

provided Z,_i41:n > To(3,). But since Xy := k1/2(Z,n_k+1;n — log(n/k)) con-
verges in distribution under # = 0 to the standard normal distribution and
zo(Bn) — log(n/k) < —e < 0 for some ¢ > 0 and all large n, the probability
Po{Zp—k+1.n = x0{Bn)} of this event converges to one. In the following we sup-
press the index n of 3,. Recall that we suppose implicitly Z,.,, < 1/|8,|/2. The
following formula follows from the expansions log(l +¢) = ¢ —€2/2 4+ /34 O(e?)
and exp(e) =14+ +¢e2/2+ O(e®) fore — 0.

(22) Hﬂ(Zn—k+1:n)/H0(Zﬂ—k+1171) -1= Opo(kl/Q/n)'



LAN OF EXTREME ORDER STATISTICS 699
From (2.2) we obtain that

(n_ k lOg{Hﬁ n—k+1:n /HO( n— k+1:n)}
_ (n— k)kexp{—X(,/k'/?}
~n—kexp{—X/k/?}

‘<_/62721—k+1:n 5 Zn k+1:n + /3 Zn k+1:n OPO(]‘T_B/Z))

2 8 3
+ Opo(k/n).

Observe now that kﬁQZﬁ_kH:n/B converges in Py-probability to 1¥2/2, as
Zn—k+1.n/ log(n/k) converges to one. The right-hand side of the preceding equality
equals therefore

(n — k)kexp{—X()/k'/?} < BZ2 jiim n 6222—k+1:n> P

— 1).
n — kexp{—X,/k/?} 2 3 2 Ton(l)

Consequently, we obtain

H,B(Zrl—k-}-l:n) } 3 /3

(23) (” - k) 10g{HO(Zn—k+1 n) + k Zn k+1in = k= 3 Zn k+1:n

8 /32 1 — exp{—X)/k'?}
= <k§Zr?;—k+l:n —k— Z" k+1:n k ;
1- = exp{—X(k)/k‘l/z}
n
192
__—)" +0Pu(1)

4

=Xy — °/2 + op,(1).
In order to prove Theorem 2.1, it remains by (2.1) and (2.3) to show that

k

1+0
(2‘1) Z <Zn—-i+1:n - T 10%{1 + BZn,—'i-f-lzn}

8 ﬂ
Zn k+1:n 3 Zn k+1: n> :OPQ(l)'

The expansion log(1 +¢) = € —£2/2+¢3/3 + O(c?) implies that the left-hand side
of (2.4) equals

k
Z <Zn—i,+1:n

B 3
Zg—i+1:n 3 Zg i+1ln +O(/B Zi—iﬁ-l:n)}
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k-1

1

<_/3Zn~‘i+1:n

32
rara {52 -5

3 3
_gzi—k-kl:n Zn k+1:n +0P0(1)'

Zg-ﬂ'+1:n + O(/jazg——i—}—lzn)}

Under the exponential distribution, the conditional distribution of (Z,I_i+1:,l)§‘;11
given Z,_p11.n = u > 0, equals the distribution of (Wi,_1 + u)}:k_l, where
Wi Wa, oo, Wi_1 are independent and standard exponential rvs. This follows

from Theorem 1.8.1 in Reiss (1989) and elementary computations. The conditional
distribution of the right-hand side of the preceding equation given Z,, _j11., = u €
I, := [log(n/k) — e.log(n/k) + <]. equals therefore the distribution of

kol 3 3
Z (—/3’(“} +u) + 5((”",- +u)? - u?) + ?(u3 — (W + 11)3)>

i=1
k—1
BZ < (W + u) 33 (Wi 4+ u) ) +0 </33 Z(HQ + 'u,)4>

i=1
k-1

i=]

< 3(W; +u) + g((llf,-—}-’u)Q—uz))+Rn(u).
k—1 o

/jz <r1 W1 —u) + (”25 - 1)) + Ry (u),

where it is easy to see that sup,e; Po{|Rn(u)| > e} — 0asn — oo, for any € > 0
and by Tschebyscheff’s inequality that also
> e} —y—ac 0.

sup By
wel,,

This completes the proof of (2.4) and thus, also the proof of Theorem 2.1. O

k—1

Z (—/3(11',- +u) + g((ﬂ"} + u)? — uz)>

=1

The preceding result remains true, if we replace the condition that the upper
tail of F' coincides with the upper tail of a GPD by the assumption that it is in a
6-neighborhood of a GPD. To be precise, if we require that w(Fj3) = w(Hj) and

(2.5) [fs3(2)/hp(x) = 1] < C(1 = Hz(x))®. 2> a0(f)

for some fixed 6.C' > 0 and limsup,,_, . (zo(/3,) — log(n/k)) < 0, then we have
again under 5 = 0 the expansion

Iog{dcﬂ,, ((Zn—i+1:'n)}:k)/d‘CO((Zn—i+1:n)}:k)}( n—i+1: n)
= VY2 (Zy_ii1in — log(n/k)) — 092/2 + op, (1 ) (—192/2, ¥?)
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provided the sequences k = k(n) satisfies the additional assumption k(k/n)® — 0
as n — 0o. This can be shown along the lines of the preceding proof; for the sake
of a clear presentation we omit the details.

The preceding result reveals that the complete information about the under-
lying parameter, which is contained in the vector of the upper k order statistics. is
asymptotically already contained in the single order statistic Z,, _y41.,. In order
to know the consequences of this result for small up to moderate sample sizes n, we
have to know about the rate at which Z,,_j+1., becomes asymptotically sufficient.
To this end, we compare the distribution of (Zn,iﬂzn)}:k with the distribution of
(Zn—ts1:n Wiy, . Wigo1)), where Wy, - Wiy are generated in a two-step
procedure. Given Z,_x41., = u, generate k — 1 independent standard exponential
rvs Wi, ... . Wi_; and put

I/i/’m('u,) =u-+ I"Vi:k—ln 1 S 1 S k—1.
The rvs W(;, are then defined by
I'V(,‘) = H'-(i)(ank_*_l:n) = Znts1n + Win_1. 1<i<k—-1.

The motivation for the definition of this two step procedure is the fact that, if Z
follows exactly a standard exponential distribution, the conditional distribution of
(Z"—H-li”)}:k—l given Z, _p11., = u > 0 equals the distribution of (u+W5.._; )15;1

(see Theorem 1.8.1 in Reiss (1989)).

Clearly, (Z,,—k+1:n, Wiay. .. .. Wik_1)) carries only that information about the
underlying parameter J which is contained in Z,,_j,1.,. The distance between
the distributions of (Z,,,iH;n)}:,‘. and of (Z,—gs1m-Winy.o oo Wik—1y) is then an

upper bound for the lack of information in Z,,_,.1.,. compared with the complete
information contained in (Z,_;11.,)!_,. Notice that our definition of asymptotic
sufficiency is in the sense of that given in Proposition 2, Section 5.3 in the book
by LeCam and Yang (1990).

Conditionally on Z,_g11.,, we deal with iid rvs and therefore, the Hellinger
distance is the adequate distance between probability distributions to be consid-
ered here (see Section 3.3 of Reiss (1989) for details). Precisely. let Q. Q2 be
probability measures on the same measurable space and let p be any measure
dominating ¢, and @J». The Hellinger distance H{Q1.Q2) between Q, and Qs is

then defined by

R , 1/
H(Q1.Qy) = (/( 12 -;/Z)Zd,t)

where f; is a p density of Q;, i = 1,2. Note that the variational distance is
bounded by the Hellinger distance.

THEOREM 2.2. Choose k = k(n) € {1,...,n} such that k — o0, k/n — 0 as
n — 0o. Put for v € R

B i= B () = 9k~ Y2 ) log®(n/k).
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Suppose that w(Fp,) = w(Hpa,) and

(2.6) | fo. (W) /B, () = 1 S C(1 = Hp, (y))°,  y > wo(Bn)

for some C,6 > 0, where xo(8n) — log(n/k) —=,—o —00. Then

H(‘Cﬁn ((Zn—i-i-lrn)il:k)w E;Bn( n—k+1:n (U )L _11))
= O(1/log(n/k) + kY2 (k/n)® + exp(—k'/?)).

Remarks. One can show that the bound in the preceding result is sharp.
Theorem 2.2 indicates therefore that the rate at which Z,,_j4 1., becomes asymp-
totically sufficient is quite poor. The advice, to drop all the information contained
in (Zp—itim )L_ll and to work with Z, _;41., alone, which is suggested by Theorem
2.1, can therefore be taken only with a grain of salt.

PROOF. By Theorem 1.8.1 in Reiss (1989). the distribution of (Z,_;41.n)_;
can be generated by a two step procedure. First, generate Z,,_j1., = z and then

generate iid rvs Yl(z) ..... Yk(i)l with common df

FO(t) = (F(t) - F(2))/(1 = F(z)), 1> 2
The distribution of the wvector (Zn_kH;",Yl(:'z_l,...,Yk('_)lzk_l) = T(Zp—k+1:n:
Yl(') ..... Yk 1) then coincides with the distribution of (Z,l_.,-+1m)}:k. By T
R* — R* we denote that functional which maps a vector (21,...,xy) € R* onto
the vector of its ordered values (21.4....,ZTkx). Equally, we can write (Z,,_j11.,,
I’Vl) ~~~~~ H’ ) = T(Zn k41 Zn- k+1an + Wi Zne k+in + Wi )7 where
Wi, ., . W._; are independent standard exponential rvs which are also indepen-
dent of Z,I_AH_,,.

By the monotonicity theorem and the convexity theorem for the Hellinger
distance (cf. Corollary 1.4.2 and Lemma 3.1.3 in Reiss (1993)) we obtain

(27) H*(L, (Zo-ivrn)izi): L5, (Zn-srrn. Win))iZ)
/H (L3, m} ~) ﬁi’l),£/37,(z,:+I/{'l,._.,;_%u;k_l))
‘C/j,,(ZIJ—k+lill)((l:).

For the sake of a clear presentation, we will drop in the following the index n of
/371-

By using the probability integral transformation and writing Z, gi1., =
FH_I(U,,_;;H:,,), where Uy, _j41., 1s the Ath-largest order statistic in an iid sam-
ple of n uniformly on (0,1) distributed rvs, the following formula follows from
the exponential inequality given in Lemma 3.1.1 in Reiss (1989) and elementary
computations.

(2.8) Ps{|Zu-ks1:0 = log(n/k)| > K} = O(exp(=£'/?))
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for K > 0 large enough.
From (2.7) and (2.8) we obtain for large n

(29) HQ(EB((Zrl—i+]:11 )g:k)’ ‘Cﬂ(Zn—lH-l:m (VV(i) ):C:*ll))
log(n/k)+ K ) N 3
< / H(Lp(z, v YD),
1

N og(n/k)—K
Loz 2+ Wiy ooz 4 Wiee ) La(Znpsron)(d2)

+ O(exp(—k'/?))
log(n/k)+K )
<k / HY L), £a(z + W) La(Zn—is 1) (d2)
log(n/k)—K
+ O(exp(—=k'/?)),
where for z € [log(n/k) — K,log(n/k) + K] C (0,00) if n is large
H* (LY, La(z + W)

=
_ 2 22—y
= (1 - Fp(2))™" / (FY2(y+ 2)ev2 — (1 = Fy(2)/?)2e vy,
0
From condition (2.6) and elementary computations we obtain

(2.10) (1= Fa(y))/(1 = Hs(y)) — 1| < C1(1 = Ha(y))°

for y € [2o(8),w(H3)) and some constant C; > 0 not depending on 3. And this
implies

(2.11) /jﬁll/g(f;”(y + 26’2 = (1= Fy(2))V/?)%edy = O((k/n)")

uniformly for z € [log(n/k) — K, log(n/k) + K].
If we show that

k 1/|/3|1/2 1/2 /2 1/2\2 —
(2.12) W/ (fs' " (y+2)e” = (1= Fy(z)) /") e ¥dy
_ z) Jo

uniformly for z € [log(n/k) — K, log(n/k) + K|, the assertion of Theorem 2.2 then
follows from (2.7), (2.9) and (2.11) by observing that by (2.10) (1 — F(z))™! =
O(n/k) uniformly for z € [log(n/k) — K, log(n/k) + K]. It remains therefore to
prove (2.12).

By (2.6), (2.10) and the expansion log(1 + ¢) = £ — ¢2/2 + O(e®) we obtain

1/181*? 1/2 /2 2. -
/ (57w + 2)e? = (1= Fa(2))*PPe vy
0
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/1811 3
= /O {exp {g B 1;;3/ 10g(1 + ﬂ(y + :))} (1+ O((k/n)é))

2

~ exp {—% log(1 + ﬁz)} (1+O((k/m") | e vdy

= O(exp(—z))
/!m‘/2 , .
/ [O{18(¥* + 2y2) + |Bl(y + 2) + B2y + 2)3 + (k/n)’}2evdy

Olexp(=2)I3"=" + (k/m)*)) = ((k/")(/»‘_l/logg(n/k)+(k/n)%))
which implies (2.12). O

Next we will consider the case 3y # 0. For the sake of simplicity we drop in the
following the von Mises parametrization of GPD’s Hy for 3 # 0 and parametrize
this subclass instead by

Lae) 1——1?—‘3, r>1 if 3>0
€Ty =
s 1-(—2)"%. —1<z<0 ifg<0.

Fix now 3y # 0 and choose the alternatives /3, = 3, () such that
(Bo — Br)/Bo = 9k~ Y%/ log(n/k), ©eR.

For Fs(x) = Ls(x), x > 20(3), with limsup, .. |ro(3,)]?k/n < 1, we have the
following result.

THEOREM 2.3. (LAN) For By # 0 we have the expansion

log{d‘cﬁn((Zn—i+1177)}:k)/dﬁﬁ(]((ZH—H—IZH)}:I;)}(Zﬂ—i+1:n)}:k
= ﬂkl/?(ﬁo log(|Zn—ks1:m|) — log(n/k))
—v?/2+o0p, (1) — N(=0%/2,9%).

3o

Observe that if Z has df L, with 89 # 0, then Jylog(|Z|) follows the standard
exponential distribution.

The preceding result shows that also in case Jy # 0. the complete information
about the underlying parameter, which is contained in the vector of the bth-largest
order statistics in the sample, is asymptotically already contained in the kth-largest
order statistics Z,_j.41.n alone. The remarks after Theorem 2.1 on the derivation
of optimal tests and the computation of their limiting power functions from the
LAN expansion of the loglikelihood ratios carry over to Theorem 2.3.

This result gives also new insight into the problem of estimating the extreme
value index 3 with 3 > 0. Consider the subclass {Fj; : F3(x) = L, g(x) for x >



LAN OF EXTREME ORDER STATISTICS 705

vo(3), 3 > 0} of dfs, whose upper tails ultimately coincide with the upper tails of
a Pareto distribution. A popular estimator of 3 is the Hill (1975) estimator

Bn(l‘) ]‘ = 1 Zlog n—itlin) log(Zn~k+1:n,)

which can easily be motivated by maximum likelihood theory. Observe that con-
ditional on Z,_j41.n = u, (log(Zn_iH;,I/Zn,_;cﬂm))}:k_1 equals (/3Wi;k_1)f:”11 in
distribution if u is large, where Wy, Wy, ... are independent and standard expo-
nential rvs. By this argument it is readily seen that

(k'2/B)(Bn(k) - B) —*N(O 1).
But the Hill estimator is outperformed by the estimator

i)n = log(IZn—k-H:nl)/IOg(n/k)

(k2 log(n/k) /)by — B) - VO, 1).

This observation can be explained by the preceding result revealing the asymptotic
sufficiency of Z,,_gx+1.n. For the proof of asymptotic normality of Hill's (1975)
estimator under general conditions we refer to Csorgé and Mason (1985), Hall and
Welsh (1985), Smith (1987), and the literature cited therein.

Asymptotically optimal estimators of 3 > 0 under full and partial knowledge
of the slowly varying function (z) at the tail in the model F(x) = 1 — 2™y (z),
T > g, are proposed and investigated by Wei (1992). This paper provides also a
useful survey of the literature on Hill’s and related estimators of /3.

Theorem 2.3 as well as the preceding remarks remain again true, if we replace
the condition that the upper tail of Fj3 coincides with the upper tail of Lz by the
condition that it is in a §-neighborhood of Lg i.e., w(F5) = w(Lg) and

|f3(z)/lg(x) = 1| £ C(1 = Lg(x))’, x> zo(3)

for some fixed 6,C > 0, where lg denotes the density of Lj. If
limsup,,_, .. |20(B. )" k/n < 1, then we have again under 3y # 0 the expansion

lOg{dﬁgn ((Zn—i—\‘-l:n)}:k)/d‘cﬁo((Zn.—i+1:71)L‘lzk)}(Zn——H—l:n),'lzk
= ﬁkl/z(ﬂo log(|Zn—k+1:nl) - log(n/k))
—9?/2 + op, (1) =— N(—9?/2,9%),
Dy

provided the sequence k = k(n) satisfies the additional assumption k(k/n)® — 0
as n — oo. This can be shown along the lines of the preceding proof. In order not
to overload the paper with too many technicalities we omit the details.
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PRrOOF OF THEOREM 2.3. From formula (1.4.8) in Reiss (1989) we obtain

(2.13) 10g{dﬁg Zn- i+l:n)}:k)/dﬁﬁo((Zn—z'+1:n)}:k)}(Zn—H-l:n)}:k

Z Og{(/377/l30)|2n_,-+1m|Bn—ﬁn}

=1
+ (77‘ - k) 10g{L43,, (Z'Il—k+12n)/Lﬁ()(Z7?—]\’+l:71)}'v

provided Z,,_j41.n > 2o(8,). But the probability of this event converges to one by
the condition limsup, .. |zo(Bn)|?(k/n) < 1 and the fact that
EY2(3010g(| Zn—k+1:m]) — log(n/k)) = N(0,1).

0

Recall that Jglog(|Z|) follows the standard exponential distribution if Z has
df Ls,, and put

E

)rn—i—i-lzn = /30 10g(|Zn—i+l:n|)e 1< <n.

Then the df of Y,,_;. ., coincides ultimately with the df of the ith-largest order
statistics in a sample of n independent and standard exponential rvs. In particular
we have therefore

Xy = kY (YVooksiom —log(n/k)) —— N(0,1).

o

The next formula follows from the expansion exp(e)—1 = e+¢2/2+0(s3) ase — 0,
the fact that (8o — Bn)/B0 = ¥k~/2/log(n/k) and elementary computations.
Recall that we assume implicitly that Z,, _gy1., > 20(85):

(2.14) Lﬁn(Z‘n—k—H:n)/LBo(Zn—k+1:n) 1= OPu 1/2/”)

From (2.14) by Taylor expansion of exp at zero and the fact that
Y, _ki1.n/log(n/k) — 1 in Pg,-probability, we obtain the expansion

LB (Zn k+1: n)} 19[61/2
2.15 n — k)log + Y'n_ 1
( ) ( o { Lo (Zn—kt1:m) log(n/k) kel
19.‘2
=X = 5 +op,, (1)

The assertion of Theorem 2.3 follows now from (2.13) and (2.15), if we show that

VK12
(216) Zlog{ |Zn L+1nlﬁ0 } W n A+1lin = OPH“(I)

But the left-hand side of (2.16) equals

k
Bo — B ( n —/30>}
Yn—i :71,_}/;1—‘ mn +1 1+
Z{ 3 ( +1 k+1:0) + log B

=1

60 ﬁn
Bo

Z{Yn i+lin = In— 1\+1n—1}+0

=1



LAN OF EXTREME ORDER STATISTICS 707

Recall now that conditional on Y,_jy1.n = wu, the distribution of
(Y,,_,-+1:n),1:k_1 equals the distribution of (Wi.x_, + u)i:ll, where W), Ws, ...,
Wji_1 are independent and standard exponential random variables. Consequently,
conditional on Y}, _x41., = u, the right-hand side of the preceding equation equals
in distribution

ok=12

log(n/k) ¢

=1

(W; = 1) + o(1).

This implies (2.16) by conditioning on Y, _s41.n = u € [log(n/k) — £, log(n/k) +¢]
for some small € > 0. O

In the following we will establish a bound for the rate at which Zn—k+1m
becomes asymptotically sufficient. This will be done by proving a result which
parallels Theorem 2.2.

Suppose that Zy,...,Z, are iid rvs with common df Lg, 3 # 0. Then the
vector (an—i+1:n)}=k—1 given Z,_r+1.n = z. equals in distribution the vector
(I/Vi:,\._l)f‘fz_ll, where W, ..., Wi_; are iid rvs with common df

(Ls(t) = La(2))/(1 = Ls(z)) = Ls(t/]2]), 2z <t <w(Lp)

(cf. Theorem 1.8.1 in Reiss (1989)). Consequently, conditional on Z,_g4+1.n, = =,
the vector (Z,,,_i+1;,,)}:k*1 equals in distribution the vector (llei:k_l)ﬁ:ll, where
Ur,..., Uy are iid rvs with common df Lg.

We compare in the following the vector (Zn—i+1:n)i1=k with the vector
(Zn—k+1:n- V1) -, V1)), where the Vii) are generated by the following two
step procedure, which is motivated by the preceding considerations.

Given Z,_j41.n = 2z, we generate k — 1 iid rvs Vy,..., Vi_; with common df
L;,. independent of the underlying parameter /3, and define

Vin(z) = l2[Vigor, 1<i<k—1
The rvs V(1) ..., V(x-1) are then defined by
‘/(i) = ‘V(i)(Z”—k—{»lzn) = |Zn—k+1:n|‘/i:k—1, 1 S 1 S k—1.

The vector (Z,—x41:m, V1), -+, Vik—1)) contains therefore only that information
about the underlying parameter 3 which is contained in Z, ry1.,, and the
Hellinger distance

H([’ﬁ((zn—i—{-l:n)}:k)w£j3(211—k+1:nv 1/(1)~ EERR V(k—l)))

is an upper bound for the lack of information in Z,_x,1.,. Notice that this
Hellinger distance is zero if 3 = 3.

THEOREM 2.4. Choose k = k(n) € {1,...,n} such that k — oo, k/n — 0 as
n — 00. Fiz By # 0 and define for ¥ € R the sequence 3, = 5,(9) by

(Bo = Bn)/Bo = 9k~? [ log(n/k).
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Suppose that w(Fg) = w(Lg) and that Fjg ultimately has a density fz such that

(2.17) 1fs)/la(y) =1 S C(1—Ls()’, v € lxo(B),w(Fs)),

for some fired C,6 > 0, with lim,_ « |29(Br)|?°k/n = 0. Then,

H(Lp ((Zn—iv1m)i=i)s L8, (Znk+1: V1) - Viry))
= O(1/log(n/k) + kY2 (k/n)® + exp(—k/?)).

PRrROOF. Repeating the arguments in the proof of Theorem 2.3 we obtain

H (EB n i+1: n) )[:g,,( n—k+1:n, V(]) ..... V(k—l)))
/H2 (2 X X L (52 VeL L 2 Viely))

.Eﬁn (Zn—k+1:n )(d:)‘

where Xl(:), Cly X( ', are iid with common df
FE(t) = (Fp, (1) = F, (2))/(1 = Fp, (), t=>=

If z is large i.e., if z > 20(Fy), the dfF( )has denmtyf ( )= fs,()/(1=F3,(2)),
t > z. In complete analogy to the proof of (2.8) it is bhOWH that for ¢ > 0 small
enough

(2.18) Ps, {e < |Zn_ks1m|P"k/n < 1/e} =1 + O(exp(—k'/?)).

As the Hellinger distance is in general bounded by /2, we obtain from (2.18)
and Lemma 3.3.10(i) of Reiss (1989)

Hg([fd,, ((Zn—i-i—l:n)}:k)a L:H" (Zn,—k+1:71a Vil)v CIRIEEY ‘/(k—l)))
<k [ H(Lo, (X)), Lo, (1V1) £, (Zn—irrn) ()
<|z|Ank/n<l/e
+ O(exp(—k*/?)).
Now for z such that e < |z|?"k/n < 1/e we have zo(3,) < = < w(F3,) if n is large;

this follows from the condition lim,, _ |zo(8,)|?°k/n = 0. Thus we can write for
such z

H(Lp, (X{7), L, (|2]V1))
=(1- Fp, ()" /R (121 £a, (£12]) /L3, ()2 = (1 = s, (2)) 2L, (8.
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We obtain therefore from (2.17) that uniformly for z with € < [z|?"k/n < 1/¢

£52 2D .
1/2Y B 1 1/2
(2.19) /R{M ——Z%Q() (1= Fpz,(2) } lg, (t)dt

Rk 1/2
(t]z]) fal=(t]z])
_ - 1/2 /3,.
/R[" P {H( VE ) l>}
— (1~ Lg, (2))*?
_ N 2
-{1+ ((i_—fﬁé—j) —1)}} la, (t)dt

-, D el (02D

I;f(t)

AL BT
() g

2

01— Ly, <z>>6>] Lo (1)t
= (1 - L/B ( ))

/ {(gn) |t|(/3r)‘ﬁn)/2 -1
0
3 1 2 ’
+{</3—Z> |t Po=Bn)/2 4 1}0((k/n)5)J oo (t)dt

as |z|™P»/2 =1 — Lg,(2). The preceding integral equals

(2.20) /u;;[(l + OBy — By))|t|Pe=P)/2 1
+O((k/n)" (1 + |t|<‘*0—*’">/‘3))]21,30(t)dt
/R[Itl(”“ A2 14 O((k/n)®
+O({|Bn = Bol + (k/n)‘s}ltl‘”“‘ﬂ")/ )P, (t)dt.

Observe now that

/é [e]=80) — 1205, (1)dt = —(% — O(k™/ log*(n/k))

and that

/ 1170~ 1, (1)t = O(1)
R
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if n is large, since 8y — B, — 0 as n — oco. Consequently, we obtain

(2.21) /R [£]Bo=8)/2 _ 1 1 O((k/n)?)

+ O({|8n — Bol + (k/n)®}[t| P =B)12) 215 (1)dt
= O(k™*/log?(n/k) + (k/n)*).

From (2.19)-(2.21) we get
H*(Ls, (Zn-is1:n)izi)s L8, (Zn—trtms Vity - -, Vie1))
<k [ H (L5, (X)), L, (121V1) £, (Zun-ps10)(d2)
e<|z|fn (k/n)<e—?
+ O(exp(—kl/Q))

1-Lg, (2 k1 k)%
e S (s ()
e<|z|Bn (k/n)<e-t 1 — Fp,(2) log®(n/k) n

Lﬂ,, (Zn—k+1:n )(dz)

+ O(exp(—k*/?))

= O(log™*(n/k) + k(k/n)* + exp(—k'/?)).
This completes the proof of Theorem 2.4. O
3. Adding a scale and location parameter

In the following we will extend the model (M) and require
F(z) = Fp(cx +d) =: Fgcq(z) forall z>x9=xz9(5,c4d),

for some ¢ > 0, d € R with {Fj3 : 3 € O} being a parametric family of dfs. We
suppose again that zg = z¢(3, ¢, d) is unknown. Qur testing problem is now

EﬁOVCOvdD((Zn_i+1:n)'L1:k) agaillSt Eﬁnvcnvdu((Z71_7:+1:n)21:k)

where Z,,..., Z, are iid rvs with common df Fj3 . 4.

Without loss of generality we assume that ¢y = 1 and dg = 0, as this can be
achieved by the data transformation Z! := ¢Z; + dp, 1 < i < n. We consider
again the particular parametric family

Fa(z) = Ha(z) =1—(1+Bz) Y%, 0<(1+pz)" Y <1,

of GPDs in their von Mises parametrization, and we will test at first the exponen-
tial distribution # = 0. Precisely, put for 9,£,n € R

Br = Bn(9) = 20k72 ) log?(n/k),
Cn 1= cn(€) i=1— k™2 /log(n/k),
dy = dn(n) := —nk ™Y/,
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where the sequence k = k(n) € {1,...,n} satisfies k — oo but k/n — 0 as n — oo.

THEOREM 3.1. (LAN) Suppose that limsup,,_, . (o (Bn, cn, dn)
—log(n/k)) < 0. Then we have under the hypothesis (3,c,d) = (0,1,0) for any
(9,6,m) € R

IOg{d['ﬁ,, 1yl ((Zn—i—f—l:n)zl:k)/d‘CO‘l.O((Zn—i-’rl:n)}_—_k)}(Zn—i+1:n)z'1:k
= (0 + &+ Mk (Zn_kp1:n = log(n/k)) = (9 + € +1)*/2 + 0B, , (1)
— N(=(9+£+n0)2/2,(9 +E+ 1)),

Do,1.0

The preceding result reveals that the kth-largest order statistic Z,_xy1., re-
mains the central sequence for the loglikelihood processes pertaining to the vec-
tor (Zn_iH:n)f:l, if we add an unknown scale and location parameter. As in
the discussion after Theorem 2.1, asymptotically optimal tests for (J,¢,d) can
therefore be based on Z,_x4+1.,. But if 4 + & + 7 = 0, that is, if the vector
(9,€,m) € R® is on the hyperplane generated by the basis (1,—1,0), (0,—1,1),
then the preceding result shows that one cannot distinguish asymptotically be-
tween (53,(9),cn(£),dn(n)) and (0,1,0). This means that an alternative shape
parameter 53,() can be hidden by a scale and location parameter, such that hy-
pothesis and alternative cannot be separated asymptotically.

Theorem 3.1 remains again true, if we replace the condition that the upper tail
of Fj3 coincides with that of a GPD by the condition that it is in a §-neighborhood
of a GPD: If we require w(Fj3) = w(Hp) and that F3 has ultimately a density f3
with

(3.1) |f3(2)/hp() — 1] < C(L = Hp(x))®, 2 zo()

for some fixed 6,C > 0 and limsup,,_, . (zo(3,) — log(n/k)) < 0, then we have
under 4 =0, ¢ = 1, d = 0 again the expansion

log{dcﬁn.cn,d,,((Zn—i+1:n)g:k)/d‘co,l,O((Zn—i—}—l:n)ll:k)}(Zn—i—l-l:n)%:k
= (19 + E + n)kl/z(zn—k+1:n - lOg(n/k)) - (19 + 5 + 77)2/2 + OPo.x.o(l)
— N(=(V+&+n)*/2,(0+ & +1)%),

Do.1.0
provided k(k/n)® — 0 as n — oo.
PrOOF OF THEOREM 3.1. Put X = kY2(Z,_gs1.n — log(n/k)). In com-
plete analogy to the proof of (2.2) one establishes
(32) Hﬁ,,,cn,dn(Zn—k+l:n)/H0(Zn—k+1:n) -1= OP(kl/Z/n)

From now on we will drop the index n of 3, etc. As in the proof of Theorem
2.1 we have

(33) lOg{d[’ﬁ,C,d((Zn-i+1:n)'il:k)/d‘coylvo((zn—i+l:n)%:k)}(Zn—i+1:n)i1:k

1+ 0
B

+{n— k) log{HB,c,d(Zn—-k.+lrn)/HO(Zn-—k+l:n)}7

k
= (Zn—i—f-l:n - log(l + ﬂ(cZn—H-l:n + d)) - log(c))
=k

i



712 MICHAEL FALK

provided Z,_i+1:n > xo(B,c,d). But the probability of this event converges to
one as limsup,, _ .. (zo(3,¢,d) —log(n/k)) < 0 and k/?(Z, _r41.n —log(n/k)) —

0.1,0
N(0,1).
By using (3.2) and the expansion log(1l + ¢) = € + O(€?) it is elementary to
show that

(34) (I”' - k) log{HB,(',d(Zn—k+l:n)/Hﬂ(Zvl—k+1:11,)}
- k<d - (1 - C)Zn—k+1:n

; 32 .
- 'g(CZn—k+1:1z + d)2 + %—( Z71—k+1:n + d)3>

=0 +E+n)Xpx — (D+E+0)/2+0p,, (1),

By using the expansion log(1+¢) = e—£2?/2+¢3/3+0(c?) and the conditioning
technique in the proof of formula (2.1) one shows

k

1+
(35) z (Zn—H—l:n - 3 /3 Iog(l + rB(CZn—H—l:n + d)) - lOg(C))
=1 !

+ k(d - (1 - C)Zn—k+1:n

3 32 .
— %(CZ,—,_k+1;n -+ d)2 -+ %(CZn—k-H:n + d)3>

=0Py 10 (1)
The assertion of Theorem 3.1 is then immediate from (3.3)-(3.5). O

Next we will consider the case 3y # 0 with underlying tail distributions of the
form

Lpo(z) = Ly(ex) 1—(cz)_ﬁ, cxr > 1, if >0

c = T) =

Bl pLe 1 - (—Ct;‘LT)_IS, -1 <ecx <0, if 2<0

and ¢ > 0. Fix fp # 0 and choose with #,£ € R the alternatives 3, = 8,(9),
cn = cn(€) of (Bo,co) with cg =1 as

(Bo = Bn)/Bo = 9k~Y2 ) log(n/k), 1—cp,=6Ek"Y2/3.

For Fj (z) = Lg (z), x > z0(B8, ¢), with limsup,, .. [20(Bn. cn)|Pthk/n < 1 we
have the following result. Recall that 3 log(]Z|) has a standard exponential distri-
bution if Z has df Lg,. This implies the asymptotic normality of Sy log(|Z, —k+1:n])
in the following result.

The following result parallels Theorem 3.1 in the case 5y # 0. But note
that a location parameter is missing, in which case Z, _jy1.,, loses its asymptotic
sufficiency; see Theorem 3.3 below.
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THEOREM 3.2. (LAN) For By # 0 and Bn = Br(9), cn = cn(€) as defined
above we have

lOg{dcﬁmcn ((Zn—i+1:n)3:k)/d£ﬁo,1((Zn—i+1:n)z}=k)}(Zn—i+1:n)11=k
= (9 + E)EY?(B0108(| Zn—k11:nl) — log(n/k)) — (9 + £)*/2 + 0p,, , (1)
— N(=(9+£)%/2,(9 +£)*).

Bl

Theorem 3.2 remains true if we require that w(Fg) = w(Lg), Fj3 has ultimately
a density fz such that

(3.6) |fp(x)/hp(x) = 1] £ C(1 = Lg(x))’,  z > zo(B)

for some fixed 6,C > 0 with limsup,_ |To(G.)/™k/n < 1, and
lim, . k(k/n)? = 0. Note that in case 3y > 0 an additional location param-
eter can be subsumed under condition (3.6), but affecting the exponent 6. In case
8o < 0, an additional location parameter alters the right endpoint of the pertaining
dfs; see Theorem 3.3 below.

PrROOF. Put Y,_ij1n = folog(|Zn—it1n]), 1 € 7 < n and Xy =
EY (Yo pitin — log(n/k))D_’ N(0,1). The assertion of Theorem 3.2 then fol-
1

8.

lows in complete analogy to the arguments in the proof of Theorem 2.3 by the
expansions

Lﬁn,cn(Zn—k+1:n)/Ll30-1(Zn-'-k+1:ﬂ) ~-1= OPuO,l (kl/z/n)

and, by means of formula (2.16),

k

Z log {gEIZn—i-H:nVao_ﬁ"C;B" } —k (ﬂog o Yok+1in = Bn log(cn))

2781 3, i
" ( Bo — B i
_ Z {/ 0 ! (Kz—i+1:n - an—k'%—l:n) + lOg (1 + ﬁ 3 ﬂ0>}
> 5 0
k
= [)’Op" ﬂn Z{}/n~i+l:n - }/n—k+1:n - 1} + 0(1) - OPHU'I (1) .
0 =1

We complete this paper by showing that the kth-largest order statistic
Zn—ki1:n is no longer the central sequence, if we add in the model Fg.(z) =
Li(ex), > 2o(B,¢) with |#| > 2 an unknown location parameter d € R, and
consider

Fsea(z) = Lgca(z) = Lg(cx +d), wo(B,c,d) <z < (w(lg)—d)/c
Fix again 3y € R but such that |5p] > 2 and choose the alternatives

B = ﬂn(ﬂ)» Cn = C11(§)7 dn, = dn(n)
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Ofﬁg, cozl,dO:Oas

(Bo — Bn)/Bo = 9k~Y2 /log(n/k),
1—c, = kY23,
dy = =k (k)5 [ o)

where 9, £, € R. Observe that the alternative location parameter d, is of smaller
order than £~!/2 iff the hypothetical shape parameter /3, is negative.

For a family Fj.q(x) = Lgcda(), o(fie,d) < & < (w(Lg) — d)/c with
lim sup,, _. |;r.0(/3n.,cn,d,7)|/30(k/71) < 1, where k — oo, k/n — 0 as n — oo, we
have the following result.

THEOREM 3.3. (LAN) For gy € R with |3g| > 2 and 3, = 5,(V), =
cn{§), d, = d,(n) we have the expansion

log{dﬁﬁ,..(‘",d,.((zn z+1n )/dﬁdnl()(( n— 1+1n) ]\ } n~i~t—1'n),1 I8
=W+E&+0) 71/2(/301og(|Z.,,_k+1;n| (n/k)) = (0 +&+n)?/2
]\‘
. /(30 '+‘1 1
+ k1?2 < , )
! ; ,‘30 Zn—i+1:n/Zn—k+1:n
772

— 53 A o T 0Py 1
A R

— N(=(0+&+n)?/2 = n%/(250(5o + 2)).

DJQ.I.O

O+ E+0)2+152/(Bo(Bo + 2))).

Note that under Lj, the kth-largest order statistic Z,_j41., and the vec-
tor (Zn—is1:n/Zn—-k+1: ,,)I . are stochastically mdopendent The distribution of
(Zoivin) Zn—ksim) =i ; equals further that of (|Vix- 1{ o 1 where V... .. Vi_y
are iid with common df Lj,. This follows from Corollary 1.6.12 and Theorem 1.8.1
in Reiss (1989).

The central sequence in the preceding result is therefore the sum of two asymp-
totically independent terms based on  Z,_gi1.. and  the  vector
(Z,,,_,vH:n/Zn_k+1;n)}=k, with the vector (Zn_l-H:,,/Z,,_;,.H:,,)}:k carrying infor-
mation only about the location parameter d, and Z,_g11., containing all the
information about the underlying shape and scale parameters 3 and ¢ and a part
of that about d.

The regularity condition |3p] > 2 is crucial in various parts of the proof of
Theorem 3.3. In particular it ensures that the second moments of 1/V; are finite
and therefore, the central limit theorem together with the preceding considerations
imply that

k /
G+ 223 (2 1 “1) = N,

i1 ﬁU Z'n—'i+l:n/Zn—k+l:n Dag.r.o
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The limiting normal distribution in Theorem 3.3 is then a simple consequence
of normal convolution. Recall that k/2(8;log(|Z,_s1.n|) — log(n/k)) N(O 1)

as well. For a further discussion of the regularity condition |G| > 2 we 1efe1 to
Hosking and Wallis (1987).

Proor or THEOREM 3.3. First note that if |3g| > 2
(’37) Pﬁ(,.l.O{Zn—H-l:n S (4730(/jnvc77:dn) ( ( /30) - n /(’n 1<:< }‘} — o L.

By (3.7) we can suppose for the rest of the proof that Z,_;+1., € (xo(3n. Crsdp)s
(w(Lga,) —dn)/en), 1 < i < k, with underlying df Ls,. Put again Y, _p11., =
Bolog(|Zn—ks1:n]) and Xy =k 1/2 (Yi—k+1.n — log(n/k)). Then we have

(3:8) (L, .cndu(Zrnckarn) = Lag1.0(Zn-rs1:0))/Lig1.0(Zn—ky1:n)
= (|Zn.—k+l:n|_/3“ - |CnZ'n—k+l:n + dn|“ﬂ")/(1 - |an—k+1:n|_ﬁo)
~kexp(=X /k'/?)
Tk exp(—X(x)/k1/?)
(exp{—0, log(|cnZn—k+1:n + dul) + Hol0g(| Zn—ks1:n])} — 1)
=Op, ,,(k?/n),

by Taylor expansion of exp at 0 and of log at 1, the definitions of 3., c,. d, and
the facts that Z,_gs1.0/(n/k)Y? —, 1 and Y, 1.0/ log(n/k) —n_s 1 in
Py, 1,0-probability. Equally, we have with [; .4 denoting the density of Ls .4

. .
ld ¢ (Zn——H-l:n)}
3.9 log { e
( ) ; g{ lli().l.()(ZII—i+l:11)
A.
3, d,
= (2 -3, + 1)1 S
;{log (/"j0> (/ * ) °8 <‘ (nanH»l:n ‘)
Bo— B ..
- /jn log(cn) + —O—_}H—H—l:n}-
3y

By repeating the arguments in the proof of Theorem 3.2, we obtain from (3.8) and
(3.9) the expansion

(310) 1Og{d£ﬂ oy, ((Zn i+171)1:}\‘)/(15/1(),1,0((le—i+llll)}Zk)}(zll—i+12”)}:k

< ) { B ,cnady (Zn,—i+l:n) } </jU - /371 Y
= Z - — 5 {n—-Ak+1:n
— ' Bo

d[) 1. ()(Zn—H—l:n)

dn

— Fnlog(en) — Balog (‘1 +

+ (” _ k) Lﬂ,,,C”,d”(Zn—k—flzn) - L/30,1.0(Zn—k+1:n)
/ L/ju«l»U(Zn—lH-l:n)

Cn Zn—k-f—l:nv
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+k (Myn_k+1:n — Bn log(cp)

)

dn

Cn Zn—k+l:n
d,
S [
i—k CnZn—k+l:n,

) Bn +1

log (’1 + L
Bn CnZn—itlin
+ (9 + &+ kY2 X(k) — log(n/k))
—(W+E+n)?/2+0p,,, (1)

— [ log (’1-1—

+ OPAJO.I,O(l)
k

)

The following expansion can be shown by conditioning on Z,,_j41., = u, in which
case the (conditional) distribution of (Z,—i1+1.)}_;_; equals that of (Ju|V;.x_; )f:_ll,
where V1, V5, ... are iid with common df L, :

k
(3.11) /3n2{10g <}1+d4”>—ﬁ”+1 d
1=1

log (’1 "
ann—k+1:n ﬂn CnZn—H—lzn

k )
— ~_1/2 /30 + 1 1 _
- Z { Bo Z !

i1 n—i+1:n/Zn—k+1:-n

2

I/
2/30 (/30 + 2)

+ Opuo.l,o(l)

as Zn_ka1:n/(n/E)YP0 =, 1in Ly, 10-probability. The assertion of Theorem
3.3 is now a consequence of formulas (3.10) and (3.11). O

We presently do not know, whether LAN of extreme order statistics can be
established for underlying dfs. which do not belong to a -neighborhood of a GPD
such as a normal df. Various examples, which we have computed, give rise to the
conjecture that this is actually not possible.
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