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A b s t r a c t .  Consider an iid sample Z1 , . . . ,  Z,~ with common distribution func- 
tion F on the real line, whose upper tail belongs to a parametric family {FZ : 
/3 E O}. We establish local asymptotic normality (LAN) of the loglikelihood 

Z k process pertaining to the vector ( ,,-i+1:,~)i=1 of the upper k = k(n) ----~,~ co 
order statistics in the sample, if the family {Fo :/3 E (~} is in a neighborhood of 
the family of generalized Pareto distributions. It turns out that, except in one 
particular location case, the kth-largest order statistic Z,~-k+l:,~ is the central 
sequence generating LAN. This implies that  Z,~-k+~:n is asymptotically suffi- 
cient and that  asymptotically optimal tests for the underlying parameter/3 can 
be based on the single order statistic Z,~-k+~:,~. The rate at which Zn-k+l:n 
becomes asymptotically sufficient is however quite poor. 

Key words and phrases: Extreme order statistics, local asymptotic normal- 
ity, central sequence, generalized Pareto distributions, asymptotic sufficiency, 
optimal tests. 

1. Introduction 

Let  Z1 . . . .  , Z,. be independent  copies of a r a n d o m  variable (rv) Z on the real 
line wi th  d is t r ibut ion function (df) F .  We suppose  tha t  the upper  tail of F belongs 
to some pa rame t r i c  family, tha t  is, we assume tha t  

(M) F(~) =Fg(~), x k z0(9), 

where 9 r := {F~ : /3 E @} is a pa ramet r i c  family of dfs and the point  x0(/~) is 

'u~kno'wn. 
Such a model  for the uppe r  tail of the under ly ing df is usually indispensable  

if one is interested in the s ta t is t ical  analysis  of ex t reme  quant i t ies  of F ,  which are 
outside the range of the  given da t a  Z 1 , . . . ,  Z~. E x t r e m e  quanti les F - l ( 1  - q )  = 
inf{t  E [R : F ( t )  > 1 - q} wi th  q close to zero, are for example  needed if one wants  
to know tha t  height of a dike which is exceeded by the annual  m a x i m u m  flood Z 
with probabi l i ty  not grea ter  than  q (cf. Dekkers  and  de Haan  (1989)). 

I t  is clear from the model  (M) tha t  a s ta t is t ical  analysis of the under ly ing pa- 
r ame te r  ~, which usually has to precede any  fur ther  investigation,  can reasonably  
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be based only on large observations among the sample Z1 , . . . ,  Z~. A reasonable 
way is to base an analysis of/3 on the vector (Z~_i+I k :-,)i=1 of the k largest order 
statistics in the sample, where ZI:~ < .-. _< Z~:~ denote the ordered values of 
Zl,...,Zn. 

We will utilize in the present paper the order statistics approach for the in- 
vestigation of the testing problem 

/3 =/30 against a sequence /3 =/3,~ 

of suitable (contiguous) alternatives with a particular underlying family 5 .  
While extreme value statistic has been focussing on the estimation of the 

parameter /3 in the model (M) (see for example Smith (1987), Dekkers and de 
Haan (1989), Chapter 9 of Reiss (1989) and the literature cited therein), the 
testing problem has only recently received increasing attention (Castillo et al. 
(1989), Hasofer and Wang (1992), Falk (1992) among others). 

In particular the powerful theory of local asymptotic normality (LAN) of sta- 
tistical experiments, developed by LeCam (LeCam (1960, 1986), LeCam and Yang 
(1990), Strasser (1985)), has been applied to extreme value problems by now only 
in a few papers (Falk (1992), Marohn (1991, 1994a, 1994b), Janssen and Marohn 
(1994), Wei (1992), related papers are Janssen and Reiss (1988) and Marohn 
(1995)). By this approach the derivation of asymptotically optimal level a tests 
as well as the computation of their asymptotic power functions is in particular 
immediate (cf. the discussion after Theorem 2.1). 

This was the motivation for the present paper, in which we will prove LAN 
of the loglikelihood processes pertaining to the vector (Z..-i+l:~)~=k of the upper 
order statistics in the underlying model (M) for a particular parametric family ~-. 
It will turn out that, except in one pm%icular location problem, the kth-largest 
order statistic Zn-k+l:~,, with k -- k(n) --~ ec but k / n  -* O, is the central sequence, 
generating LAN. This implies that the complete information, which is contained in 
(Z,,-~+l:~)~=k about the underlying parameter/3 in the testing problem/30 against 
/3,., is asymptotically already contained in the single order statistic Z,,_~+a:,~. In 
this sense we call Z~-k+l:,~ asymptotically sufficient. 

This result parallels those established in Falk (1992), where it was shown in the 
peaks over threshold approach to this testing problem, that  the random number of 
the exceedances over a sequence of suitable high thresholds carries asymptotically 
the complete information contained in (the point process of) the exceedances about 
the underlying parameter/3. 

Sharp upper bounds for the rate at which Z,~-k+l:~ becomes asymptotically 
sufficient, reveal however that  this rate is quite poor. The advice to simply drop 
all order statistics larger than Z~-k+l:~ and to base statistical inference in the 
testing problem above only on Z,.-k+l:,~, can therefore be taken for small up to 
moderate sample sizes only with a grain of salt. 

Next we will introduce the particular parametric class of dfs which we will 
consider in this paper. 

A common condition on F E 3 c, satisfied by almost any textbook df F,  is that 
F is in the domain of attraction of an eztreme value df Gr /3 ~ N, denoted by 
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F E 7:)(GZ). This means that  there are constants an > 0, bn E ~ such that  

(Zn:~  - b,~)/a,~ , G Z ,  
2:) 

where we denote by ~ convergence in distribution and GZ is defined by 
50 

~ ( x )  : =  exp(--(1 Jr- /3X)--I/N), if 1 -t- /3X > 0. 

Since (1 +/3x) -~/~ , e -x,  x E ~, interpret Go as Go(x) := limz~0G~(x) = 
~0 

exp(-e-X),  x E N. The class G#,/3 E N, contains all possible nondegenerate weak 
limits of Z~:~ (Gnedenko (1943), see Galambos ((1987), Chapter 2)). 

It was first observed by Balkema and de Haan (1974) and, independently, by 
Pickands (1975) that F E 7:)(G/3) if and only if the upper tail of F can be approx- 
imated in a suitable sense by the upper tail of a generalized Pareto distribution 
(GPD) HZ, where 

Ha(x ) :-- 1 + log(G~(x)), x > 0 

for x_>0 if / 3 > 0  

= 1 - ( 1 + / 3 x )  -1/~ for 0 < x < - 1 / / 3  if / 3<0 .  

Interpret H0 as Ho(z) = limz__.0 HZ(x) = 1 - e x p ( - x ) ,  x > 0. The family of GPDs 
is already a rather rich one: With/3 > 0 we obtain the usual Pareto family, H-z 
is the uniform distribution on (0,1) and H0 the standard exponential distribution. 

In view of the results by Balkema and de Haan (1974) and Pickands (1975), 
the family {H~ : /3 E. N} is a natural candidate for the class 5 r- = {Fz : /3 E [~}. 
This would however exclude the extreme value distributions G~ themselves, which 
have been typically assumed as underlying dfs in extreme value statistics since the 
book by Gumbel (1958). 

We will therefore consider FZ in certain neighborhoods of GPDs. Denote by 
co(F) := sup{t E N : F(t) < 1} E (-oo,  oo] the right endpoint of the support of a 
df F and by hz the density of the GPD HZ. Then the df F is in a 6-neighborhood 
of a GPD for some 6 > 0, iff co(F) = w(H~) for some/3 E [~ and F has a density 
f on (Xo,co(F)) for some x0 < co(F) such that  

f (x )  = ha(x)(1 + O((1 - Hl~(x))6)) 

as x + co(F). Note that  G~ is in a 6-neighborhood of H~ with 6 = 1. For a review 
of the basic role played by 6-neighborhoods of GPDs in extreme value theory we 
refer to Chapter 2 of Falk et al. (1994). 

The paper is organized as follows. In Section 2 we establish expansions of the 
k loglikelihood ratios pertaining to the vector (Z,~ _ i+ l:n) i= 1, which imply LAN of the 

loglikelihood processes with Zn-k+l:,~ being the central sequence. This is achieved 
for an underlying family Y in a 6-neighborhood of the family {H~ : /3 E N} 
of GPDs with unknown shape parameter /3 but known scale and location shift. 
We then establish sharp upper bounds for the rate at which Z~-k+l:~ becomes 
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asymptot ical ly  sufficient in the sense of asymptot ic  sufficiency defined by LeCam 
and Yang ((1990), Section 5.3, Proposit ion 2). These bounds reveal tha t  Zn-k+l:, ,  
becomes asymptot ical ly  sufficient only at quite a poor rate. 

In Section 3 we add an unknown scale Co > 0 and location parameter  do E 
to H~o , and we establish again expansions of the loglikelihood ratios pertaining to 
(Z,~_i+~:,~)~=k. It turns out that ,  except in the case/30 r 0 with unknown location 
parameter ,  Z,~-k+l:,  is again the central sequence generating LAN for suitable 
sequences of alternatives. It turns further out tha t  if and only if, (/3,,, c,,, d , )  lie on 
a certain hyperplane in No, then one cannot  distinguish between the alternative 
(/3,,, c~, d,~) and the hypothesis (/3o, c0, do). This means tha t  the underlying shape 
parameter /3  can be hidden by a scale or a location parameter .  

(Y %" in a sample Y1 �9 y.n Corresponding results for the lower extremes ~ i:, Ji=l . . . . .  
can be deduced from the equation ~: Z k (g i :n) i=l  = - (  n-i+l:n)i=l, where Zi := -Y, ,  
i = 1 , . . .  ,n.  \age index expectat ion Eo(Z) ,  distr ibution &~(Z) etc. of a rv Z by 
the underlying parameter  v~. By d P / d Q  we denote the density of a probabili ty 
measure P with respect to a probabili ty measure Q, if it exists. 

2. LAN and bounds for the sufficiency 

Suppose tha t  the upper tail of F coincides with the upper tail of a GPD i.e., 
we begin with the model 

= < x < 

for some unknown point x0(/3). We will test at first /3 = 0 against /3  =/3,, based 
on the kth-largest order statistics 1 (Z,~-i+l:,,)i=k, where the sequence k = k(n) 
satisfies k --, oc, k /n  --+ 0 as n. --+ co. This is a crucial condition in order to 
guarantee tha t  Z.-~-+I:~ finally exceeds xo(/3). 

The shape parameter /3  = 0 is some kind of change point: If/3 < 0, then the 
right endpoint  w(F)  of F is finite, while in case/3 > 0 the right endpoint  of F is 
infinity. The null hypothesis /3 = 0 is of a different quali ty than  a hypothetical  
value/3 r 0. This is revealed by the observation established in this paper tha t  the 
rates at which contiguous alternatives /3,, converge to /3  are faster in case /3 = 0 
than  in case/3 r 0 (see the definition of/3,~ below and before Theorem 2.3). 

Choose ~9 E R and define the alternatives/3~ =/3,,(t9) of/3 = 0 by 

/3n := 2tgk-~/2/ log2(n/k)  �9 

This definition of the alternatives/3,~ is required for a nondegenerate linfit of the 
loglikelihood ratio in Theorem 2.1. The same applies to subsequent results. We 
allow the point x0(/3,~) to tend to w(H/3,, ) as n increases, but  not too quickly, since 
we require 

limsup(xo(/3~) - log(7~/k))  < 0. 

Recall tha t  w(H~, )  = -1//3,~ = k 1/2 log2(n/k)/(21Ol) if t9 < 0 and a~(H~,~) = co if 
0 > 0 .  
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THEOREM 2.1. (LAN) Suppose that limsup,~__,o~(x0(/3,~ ) - l o g ( n / k ) )  < O. 
Then we have under the hypothesis/3 = 0 

log{dE/3n ( ( Zn- i+ l:n )~=k ) / ds ( Zn- i+ l:n )~=k ) }( Zn_i+ l:n)~=k 

= OkU2(Z~_k+l:n - log(n/k))  - v92/2 + Ogo(1 ) ~ o  N ( - 0 2 / 2 '  02)" 

The preceding result reveals that the kth-largest order statistics Z~-k+l:,~ 
is the central sequence for the loglikelihood ratio log{ds 
ds that is, all the information about the underlying parameter 

Z 1 that is contained in the vector ( n--i+l:n)i=k of the upper kth-largest order statis- 
tics, is asymptotically already contained in the single order statistic Z~-k+l:~. In 
this sense we may call Zn-k+l:,~ asymptotically sufficient. (For a precise definition 
of asymptotic sufficiency we refer to Proposition 2 in Section 5.3 of LeCam and 
Yang (1990).) Theorem 2.1 parallels Theorem 1.1 in Falk (1992), where it was 
shown that the number of ezceedances carries asymptotically all the information 
about the underlying parameter/3, which is contained in the point process of the 
exceedances over t,~ := log(nan) among Z1 , . . . ,  Zn. 

Theorem 2.1 implies in particular that the finite dimensional marginal distri- 
butions of the loglikelihood process 

Z 1 (Xn(O)),OER:=(log{ d12o~(~ (Zn_i+l:n)i=k)l 
d/2o((Zn-i+l:~)~=k) j 0ca 

converge weakly to that of the degenerate Gaussian process 

(x(zg))oe  := (Ox -z92/2)oeR, 

where X is a standard normal rv on the real line, provided lim sup,~__,~(z0(,t3, 0 - 
log(n/k)) < 0. 

This weak form of convergence of the likelihood processes is one basic definition 
in LeCam's theory of convergence of statistical experiments. It is already sufficient 
for example to imply Ht~jek convolution theorem as well as the Hhjek-LeCam 
asymptotic minimax theorem (cf. Chapter 5 of LeCam and Yang (1990)); details 
will be given in a subsequent paper. To supply however at least one example of 
the statistical implications of Theorem 2.1, we demonstrate in the following how 
it provides asymptotic optimal tests for the hypothesis/3 = 0 against/3,~(0). 

Denote by u~ = (b-l(1 - a) the (1 - a)-quantile of the standard normal df ~. 
By the Neyman-Pearson lemma and Theorem 2.1, the test 

:= - l o g ( n / k ) ) )  

is an asymptotically optimal level c~ test based on the kth-largest order statistics 
for/3n(v ~) with positive v ~ against/3 = 0. As it obviously does not depend on v ~ > 0, 
this test is even asymptotically optimal uniformly in v~ > 0. This is an example of 
the advantages of LAN-theory: The loglikelihood ratio for testing/3n(~) against 
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/5o = 0 could be calculated explicitly, but  it would depend on 0. Moreover, this 
result remains true, if we require FZ to belong to a &neighborhood of a GPD (see 
(1.5) below), without specifying its density precisely. The corresponding uniformly 
asymptot ic  optimal test for/5,,(19) with negative 19 against /5  = 0 is 

)92(Zn_k+l:n) := l(_~o,_u,,)(kl/2(Zn_k+lm - -  log(n/k))) .  

The asymptot ic  power functions of these asymptot ic  optimal tests are also provided 
by Theorem 2.1. By LeCam's  first and third lemma we obtain tha t  
s ( (Zn- i+l:n)k-1)  and s a" ((Zn-i+l:,~)i=l) are contiguous distr ibutions and tha t  
under/5,,  =/5~(v 9) 

l o g { d s  ((Zn_i+l:,~)~=k)/ds 1 (Z.- i+l:n)i=k)}  1 (Z,,_i+>,,)i=~, 
~- 1 9 k 1 / 2 ( g n _ k + h n  - -  log(n/k))  -1- 192/2 + op,,,, (1) ~ N(v~'2/2,192). 

As a consequence we obtain for the asymptot ic  power functions of cpi 

lim Ee, ,(r  = 1 - q~(u~ -[191), i = 1,2. 
7 l ~ O O  

PROOF OF THEOREM 2.1. First observe tha t  under /3  = 0 with ~9 7~ 0 

P0{Z.: .  < ]./I/3,,I 1/2} 
= P0{g,,:~ - log(m) < k ~/a log(n/k)/(21~l) */2 - log(m)} --+,,,-o~ 1 

since P0{Z~:~ - log(n) < x} ---+ exp( -e -X) ,  x E ~, and k 1/4 log(./k)/(21191)~/2 - 
log(n) --+ oo as n --+ oo. As a consequence, we may suppose in the following tha t  
Z,,:~ < 1/I/5,,] 1/2. D o m  formula (1.4.8) in Reiss (1989) we obtain in this case 

(2.1) log{ds 1 1 Z 1 ( ( Zn - i+  l:n)i=k) / d s  ( Z .... i+ hn )i=h.) } ( n- i+ l:n )i=# 
k 

~=1 fo(&-~§ + ( n -  k) log f0(Z~-k+~:,~) 

k (  1 +/5,, ) 
---- Z Z,~-i+l:~ - -  log{1 + / s n Z T , - i + l m }  

i=1 /5n 

+ (m_ k) l og{  H;3'' (Zn-k+lm)  } 
H0(Z,-k+a: , , )  ' 

provided Z,~-k+a:,~ _> xo(/sn). But  since X(k) := k l /2 (Z , , -k+>, ,  - log(n/k))  con- 
verges in distr ibution under .3 = 0 to the s tandard  normal distr ibution and 
xo(/5~) - log(n /k )  < - c  < 0 for some c > 0 and all large n, the probabili ty 
P0{Z~-k+l:~ > x0(/5,)} of this event converges to one. In the following we sup- 
press the index n of/sn.  Recall tha t  we suppose implicitly ZT,:,~ < 1/[/5,,I 1/2. The 
following formula follows from the expansions log(1 + c) = c - c2/2 + c3/3 + O(c 4) 
and exp(c) = 1 + c + c2/2 + O(c 3) for c ---* 0. 

(2.2) H ~ ( Z . _ k + I : n ) I H o ( Z . _ k + , : . )  - 1 = OPo(kW~-Im).  
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From (2.2) we obtain that  

(11- k)log{H/3(Zn-k+l:,,)/Ho(Zr,_k+l:n)} 
(11,- k)kexp{-X(k)/k 1/2 } 

n -- k e x p { - X ( k ) / k x / 2 }  

2 2 4 
�9 / ~ Z n - k + l : n  /3 Z n _ k + l :  n nU 

2 8 

+ OPo (k/n). 

2 3 /3 Z,~_k+l:n. 
+ Oeo(k-a/")) 

Observe now that  2 4 k/~ Zn_k+l:n/8 converges in P0-probability to "02/2, as 
Z,~-a-+l:. / log(n/k) converges to one. The r ight-hand side of the preceding equality 
equals therefore 

(TZ -- k)k e x p { - X ( k ) / k  1/2} ( 2 a ,~ .09 / ~ Z # - k + l : n  q_ /3 Z n _ k + l :  n 
2 3 ) - -2- + ~176 

Consequently, we obtain 

)" Ha(Z,,-k+l:,~) kl3z9 ~_ Z2_/.+l:, ' (2.3) (n - k) log I. ~ } + -2 n-k+l:n - -  k 2 

= ( k ~ Z ~ _ k + , : . , , - k / 3 2 Z  a ) 1--~ exp{-X(k)/kU2} 
' T  n - k + h n  1 - " exp{-X(kl/k 1/2 } 

11, 
02 

2 

= ~OX(k) - 02/2 + OPo(1). 

- - -  + op,(1) 

In order to prove Theorein 2.1, it remains by" (2.1) and (2.3) to show that  

(2.4) 
( i + ,3 

Z ,  _ i + I: n r~ 
/ a  

i=1 
- - -  log{1 +/3Z, ,- i+l : , ,}  

,8 Z2 / 3e a "~ 
, , -k+l  .... + T Z , , - k + l : , ,  / 

= opu(1 ). 

The expansion log(1 + c) = e -  c9/2 + ca/3 + O(e 4) implies that  the left-hand side 
of (2.4) equals 

k 

~' (Z .... i+l:,, 
i = 1  

- (1 + /3)  Z,~-i+l:r~ - 2 Z ~ _ i + l : .  + 3 ,,-~+1:,~ + ~;J , , - i+l: .J  

/3 ,, /3 ~ Z3 ,~) 
~ Z ~ - k + l : .  + ~ -  n-k+1: 
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k - 1  

= ~ (-l~Z.-i+l:,, 
i=1 

+ (1 +/3) ~Z,,_i+l: . 3 - +  : + 0(/3 , ,- i+1:,)  

a . ,~2z3 "] 2Zg-k+l:r ,  ~- ~ n-k+ l :n ]  -~- Opo(1)" 

Under the exponential distribution, the conditional distribution of (Z,,-i+l:n)i=1~'-1 
given Zn_k+i : , ,  = 'll [:> O, equals the distr ibution of (I,17i:k_1 + u)}=k_t, where 
1.'1"1,IV2,...,1'1~._1 are independent and s tandard  exponential  rvs. This follows 
fl'om Theorem 1.8.1 in Reiss (1989) and elementary computat ions.  The conditional 
distr ibution of the r ight-hand side of tile preceding equation given Zn-t.+l:,, = u E 
I,, := [log0~/k) - g, log07/k) + e], equals therefore tile distr ibution of 

a--1 13 1I . -~3(u ' ,  + . , , )+  97(( + .~,.)2 _ . , / , )+  ( s  _ (~.~:~ + .~,)3) 
i : l  

+,:3 z (m +.)~- T(.~ +~)~ +o /3~Z(u:~ +,..)~ 
i = I  i=1 

k - 1  

i = l  

= / 3 E  ( l - I I ~ i ) ( l - u ) +  \ 2 - 1 +B,,(u), 
i=l 

where it is easy to s e e  t h a t  s u p , , E l ,  ' P 0 { I R n ( ' / t ) l  > E} ---+ 0 a s  11 ~ <x3~ f o r  a l l y  g > 0 

and by Tschebyscheff 's inequality tha t  also 

sup Po -/3(1,1:, + u.) + -~((1,I':, + u) 2 -u 2) > e ---+ . . . .  ~ 0. 
. E l , ,  i=1 

This completes the proof of (2.4) and thus, also the proof of Theorem 2.1. [] 

The preceding result remains true. if we replace the condition tha t  the upper 
tail of F coincides with the upper tail of a G P D  by the assumption tha t  it is in a 

6-r~eighborhood of a G P D .  To be precise, if we require tha t  co(F~) = co(H,~) and 

(2.5) [.f,~(:r)/h~(:r) - 11 _< C(1 - H/~(:r)) a, x > x0(/3) 

for some fixed & C  > 0 a n d  l imsup , , _=~ . (Xo( /3 , , )  - l o g ( ~ / k ) )  < 0, then we have 
again under /3  = 0 the expansion 

Iog{(mt,,, ( ( Z , , - i+~: , , )L~) Id&(  ( Z,,- i+~:,,)Lk ) }( e,,- i+~:,,)Lk 
= 0k' /2(Z, ,_k+l: , ,  - log(n/k))  - g9/2 + oPo(1 ) ~ , ,  N ( - O 2 / 2 ,  g2), 
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provided the sequences k = k(n)  satisfies the addit ional  assumption k ( k / n )  ~ ---+ 0 
as n ---+ oc. This can be shown along the lines of the preceding proof; for the sake 
of a clear presentat ion we omit  the details. 

The  preceding result reveals tha t  the complete information about  the under- 
lying parameter ,  which is contained in the vector of the upper  k order statistics, is 
asymptot ica l ly  already contained in the single order statist ic Z,,-~.+I:,. In order 
to know the consequences of this result for small up to modera te  sample sizes 7t, we 
have to know about  the rate at which Z,,-k+l:,~ becomes asymptot ical ly  sufficient. 
To this end, we compare  the dis tr ibut ion of (Z,~ i+1:,)~=~, with the distr ibution of 
(Zn-h.+l:,~, I,I<(1),..., ~/I,~/,._l)), where I,I,~l),.. . ,  I'[(k_l) are generated in a two-step 
procedure.  Given Z , , -k+l : ,  = u, generate k -  1 independent  s tandard  exponential  
rvs W 1 , . . . ,  W~,_I and put  

W(i)('u.) := u + I.l'i:a-_~, 1 < i < k - 1. 

The  rvs H'(i) are then defined by 

IV(i) := I4"(/)(Z,~ ~.+1:,,) = Z , , -k+l : ,  + Wi:~._,. 1 < i < k - 1. 

The  motivat ion for the definition of this two step procedure  is the fact that ,  if Z 
follows exact ly a s tandard  exponential  distr ibution,  the conditional distr ibution of 
(Z,-i+I:, ,)}=~:_I given Z,,-k+l:,~ = 'u > 0 eq'uals the distr ibution of (u+II ' i :k-1 )i=1/"-1 
(see Theorem 1.8.1 in fleiss (1989)). 

Clearly, (Z,,_ a.+ 1:~,, I1,'( 1 / . . . . .  W( a.- 1 / ) carries only that  information about  the 
underlying paramete r  /3 which is contained in Z~,-~.+I:,,. The  distance between 

Z 1 the distr ibut ions of ( .... i+ l : , , ) i=k  and of ( Z , - k + t  ..... 117(1) . . . . .  IV(~,--ll) is then an 
upper  bound for the lack of information in Z,,-a.+l .... compared with the complete 
infornlat ion contained in (Z .... i+I:,,)~=A,- Notice that  our definition of asymptot ic  
sufficiency is in the sense of tha t  given in Proposi t ion 2, Section 5.3 in the book 
by LeCam and "x%ng (1990). 

Condit ional ly on Z,,-a-+l .... we deal with iid rvs and therefore, the Hellinger 
distance is the adequate  distance between probabil i ty  distr ibutions to be consid- 
ered here (see Section a.a of Fleiss (1989) for details). Precisely, let Q1, Q2 be 
probabil i ty  measures on the same measurable space and let p. be any measure 
dominat ing  Q1 and @2. The  Hellinger distance H(Q1,  Q2) between Q1 and Q2 is 
then defined by 

H ( Q 1 , Q 2 )  := ( , / ( J ' ~ 1 2 -  ]'~12)2dlt) 1/2 

where f i  is a i t density of Qi, i = 1,2. Note tha t  tile variational distance is 
bounded  by the Hellinger distance. 

THEOREM 2.2.  Choose k = k('n) E {1 . . . .  , 'n} such, th, at k ---+ .~,  k / n  ---+ 0 as 
'tz ~ oc. Put  for" '�9 E g~ 

/3n :=/:~,,('9) := ' 0k -1 /2 / log2(n /k ) .  
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Suppose  that w(Fa,,  ) = w(H/~. ) and 

(2.6) [ . f&( 'q) /h ,&(y)  - 11 _< C(1 - H~,,('.q)) ~, y >_ a:0(/3,~) 

f o r  some  C, 6 > O, where Zo(/3,,) - log(n/k)  - -+n-~  - o c .  Then  

H(s 1 q l"  ~k-1  ( ( Z n - i + l : n ) i = k ) , ~ - - ' ~ , , ( Z n - k + l m ,  ~" ( i ) ) i= l  )) 

= O ( 1 / 1 o g ( 7 1 / / r  ~- /~:1/2(~/ ' /1 , )6 -}'- exp( -kU2) ) .  

Remarks .  One can show tha t  the bound in the preceding result is sharp. 
Theorem 2.2 indicates therefore tha t  the rate at which Z,,-~.+I:, becomes asymp- 
totically sufficient is quite poor. Tile advice, to drop all the information contained 
in (Z,, k - 1  -i+1:,,)i=1 and to work with Z,,-k+l:,,  alone, which is suggested by Theorem 
2.1, can therefore be taken only with a grain of salt. 

PROOF. By Theorem 1.8.1 in Reiss (1989), the distr ibution of (Zn_i+l:,~)~=k 
can be generated by a two step procedure. First,  generate Z , t _ k + l : , ,  = Z and then 

generate lid rvs Y1 (=) . . . .  Y(=) with common df 
' k - I  

F(=)(t)  := ( F ( t )  - F ( z ) ) / ( 1  - F(z)), t > z 

The distr ibution of the vector (Z,,-A-+I .... Y()l:k-1," ' ' ~ / ~ 2 1 : k - 1 )  = T ( Z , t - L + I  .... 

Y1(),...,}~!_)1) then  coincides with the dis t r ibut ion of (Z , , - i+ l : , ) ]=k.  By T " 

N t" --+ N k we denote tha t  functional which maps a vector ( . r l , . . . ,  at.) C Nk onto 
the vector of its ordered values (Z l :k , . . . ,  zt.:t.). Equally, we can write (Z,~-~-+I:,,, 
H ' ) I ) , . . . ,  l'l'(t._l)) = T(Z, -~ .+I  .... Z,~-k+>, + W 1 , . . . ,  Z,,-t~+l:,, + Wk-1), where 
11"1 . . . .  ,11~,_1 are independent  s tandard  exponential  rvs which are also indepen- 
dent of Z,,-t-+l:,-,. 

By the monotonici ty theorem and the convexity theorem for the Hellinger 
distance (cf. Corollary 1.4.2 and Lemma 3.1.3 in Reiss (1993)) we obtain 

(_9.7) H2(s ((Z,, 1 q'V ~k-1 - i+ l :n ) i : l~ ' ) , ~ -~ /3 , , (Zn -k+ l  .... k " (i))i:] )) 

< [ H2(s Y(:) ' s - -  , l  '" "" ' k - - l ) '  Z3, , ( '2 ,  C q -  1 " t ' 1 , . .  , z + I , l % _ ~ ) )  

s (Z._k+~:.)(dz). 

For the sake of a clear presentation, we will drop ill tile following the index 'n of 

By using the probabili ty integral t ransformat ion and writing Z,~ k+l:,, = 
F~-I(U,,_~-+I:,,), where Un-~-+l:,, is the kth-largest order statistic in an iid san> 
ple of n uniformly on (0, 1) distr ibuted rvs, the following fornmla follows from 
the exponential  inequality given in Lemma 3.1.1 in Reiss (1989) and elementary 
computat ions.  

(2.s) Pj3{Iz,,-k+x .... - logO~Ik)l > K} = O(e• 
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for K > 0 large enough. 
From (2.7) and (2.8) we obtain for large n 

(2.9) H2 ( s  ( Z, ,_i+ l:, )~=~:), s  Z , ,_k  + n,~, v"W (i) }i=l~k-1) ) 

log(n /k )+ K H 2 Y1 (~) 
<_ ( c , ,  ( ~ , , . . . , ~ !  2 ,  ) , 

Jlog(n/k)-K 

s  z + W~ . . . . .  z + l ,~:_,) )&~(Z, ,_,~+n, , ) (dz)  

§ O ( e x p ( - k l / 2 ) )  

flog(n/a:)+K Hm(E~(YI(Z))  , s + }V1))s .... k+l :n)(dz)  
<_ k J log(n/k) -K 

+ O ( e x p ( - k t / 2 ) ) ,  

where for z E [ log(n /k)  - I f ,  log(n/k)  + It'] C (0, oo) if n is large 

H2/,~ ry(:) ~J--,Jt 1 ) , s  

= (I -Fi3(z))-tj['o~(fj~/2(y + z ) e  y/2 - (1 - F l a ( z ) ) l / 2 ) 2 e - t J d y .  

From condition (2.6) and elementary computa t ions  we obtain 

(2.10) l(1 - Fj3(y))/(1 - Hj~(y)) - 11 < C1(1 - H,j(9)) a 

for y E [x0(/3),co(Ht3)) and some constant  C1 > 0 not depending on/3.  And this 
implies 

(2.11) (])~/2(y § Z)gy/2 __ (1 -- FL~(z))l/2)2c-ydy : O ( ( k / n )  3) 

uniformly for z E [log(n/k) - K, l o g ( n / k )  + K]. 
If we show that  

(2.12) k / 1/I;31~/~ (.fy~' (y + z )e  u/~" - (1 - Ff~(z))m/2)2e-Ydy 
1 - F ~ 3 ( ~ )  o o  

= o log-' ~/k) + k(U'n)26 

uniformly for z E [ log(n /k)  - K ,  l o g ( n / k )  + K], the assertion of Theorem 2.2 then 
follows Dora (2.7), (2.9) and (2.11) by observing that  by (2.10) (1 - F ~ ( z ) )  -1 = 
O ( n / k )  uniformly for z E [log(n/k) - K ,  l o g ( n / k )  + Ix]. It remains therefore to 
prove (2.12). 

By (2.6), (2.10) and the expansion log(1 + r = e - r + O(e 3) we obtain 

fo 1/2 [f~ (y + z )e  ~/2 - (1 - F~3(z)) l /2]2e-Ydy 
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= ,~1/l/3"/~ [exp { 2 

= O(exp(-:)) 

12/3 +/3 log(1 +/3(y + z))}  (1 

{ 1 log(l+/3z)}(l - exp - 

+ o((w,,.) 's)) 

'2 

+ o((U~.)~))] e-:'av 

1 / I j ' l  1/2 

" [ [O{I.~I(U2 + 2Uz) + 1/31(~, + .:) + 9"(Y + "-? + (W",)~}]2e-:'d'~ 
d o  

-_ O(exp(-z)(i/312z 2 + (/,:/,z)25)) = O((k/ .n)(k-1/ log2(n/k)  + (k/n)'~)) 

which implies (2.12). [] 

Next. we will consider the case/30 # 0. For the sake of simplicity we drop in the 
following the yon Mises parametrization of GPD's H a for ,8 r 0 and parametrize 
this subclass instead by 

l - a :  -~3 x >  1 if / 3 > 0  
L,3(a:) : =  ' - 

1 - ( - x )  -~, - l _ < x _ < 0  if /3<0. 

Fix now/30 # 0 and choose the alternatives/3,, =/3,, (tg) such that  

(fl0 - 3 , ) / / 3 0  = ~ k - u - ' / l o g ( , ~ / k ) ,  0 c ~ .  

For F,3(.r) = L~j(x), x _> Xo(/3), with l imsup , ,_~  1:~,o(/3,,)l~J,,a,/,,,. < 1, we have the 
following result. 

THEOREM 2.3. (LAN) For ~o r 0 "we have the expansion 

log{,~,G ,, ((z,,-,+,:,,)L,.)la<~o((z,,-,+, :,, )L,,.)} ( z ,,_~+,:,, ),=,.' 

= ~/,~r log(IZ,_~,.+,:,, l) - logb~. /k) )  
- 02/2  + op,, o(1) < N ( - 0 2 / 2 , 0 2 ) .  

Observe that if Z has df Lt~ o with/30 # O, then/30 log(IZ[) follows tt~e standard 
exponential distribution. 

The preceding result shows that  also in case/3o # O, the complete information 
about the underlying parameter, which is contained in the vector of the kth-largest 
order statistics in the sample, is asymptotically already contained in the kth-largest 
order statistics Z,~-k+l:,, alone. The remarks after Theorem 2.1 on the derivation 
of optimal tests and the computation of their limiting power flmctions from the 
LAN expansion of the loglikelihood ratios carry over to Theorem 2.3. 

This result gives also new insight into the problem of estimating the extreme 
value index/3 with ,/3 > 0. Consider the subclass {F/j : F~(x) = L1//~(x) for x _> 
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x0(~),/3 > 0} of dfs, whose upper tails ultimately coincide with the upper tails of 
a Pareto distribution. A popular estimator of ~ is the Hill (1975) estimator 

k-1  

/)n (]r :=  (/~ -- 1) -1 ~ l o g ( Z n - i + l : n )  - l o g ( Z n - k + h n )  
i=1 

which can easily be motivated by maximum likelihood theory. Observe that con- 
ditional on Z~-k+l:n = u, (l~ li=k-1 equals (/3Wi:k-1)i=lk-1 in 
distribution if u is large, where W1, We, . . .  are independent and standard expo- 
nential rvs. By this argument it is readily seen that 

(k~/2/~)( / ) , ,  (k) - Z) ---, N(0 ,  1). 
"D3 

But the Hill estimator is outperformed by the estimator 

b,, :=  log( lZ,~_,~-+l : , , l ) / log(n/k)  

as 
(k '/'~ log(.,-~/k)/9)(/,,~ - /3)  ~ N(0, 1). 

This observation can be explained by the preceding result revealing the asymptotic 
sufficiency of Zn-k+m~. For the proof of asymptotic normality of Hill's (1975) 
estimator under general conditions we refer to CsSrg5 and Mason (1985), Hall and 
Welsh (1985), Smith (1987), and the literature cited therein. 

Asymptotically optimal estimators of/3 > 0 under flfll and partial knowledge 
of the slowly varying function ~,(x) at the tail in the model F(x) = 1 - x-/~'~,(x), 
x > x0, are proposed and investigated by Wei (1992). This paper provides also a 
useful survey of the literature on Hill's and related estimators of/3. 

Theorem 2.3 as well as the preceding remarks remain again true, if we replace 
the condition that  the upper tail of FZ coincides with the upper tail of L,~ by the 
condition that it is in a 5-neighborhood of L~ i.e., a~(F~) = a3(L~) and 

II,~(x)/l~(x) - 11 < C ( 1  - L t ~ ( x ) )  ~, x > Xo(9 )  

for some fixed ~,C > 0, where l~ denotes the density of L,.3. 
l i m s u p n ~  rXo(/3,~)lt~ok/7~ < 1, then we have again under ,8o r 0 the expansion 

log{ds ((Zn-i+l:n)~=k)/ds ( (Z  .... i+l:, ,) l i=k)}(Z,~_i+l:, ,) i=kl 
= ' 0 k l / 2 ( / 3 o  log(IZ,,-k+l:,, [) - log(n/k)) 

- ~'~/2 + OR~o(1) -r163 

If 

provided the sequence k = k(n) satisfies the additional assumption k (k /n )  ~ ~ 0 
as n ---* oc. This can be shown along the lines of the preceding proof. In order not 
to overload the paper with too many technicalities we omit the details. 
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PROOF OF THEOREM 2.3. From formula (1.4.8) in Reiss (1989) we obtain 

(2.13) log{dlZo,, ((Z,,-i+i:,,)i=k)/dl2& 1 ( (Zn_i+ l :n ) i=k)1  }(g.t,_i+l:n )i=k 1 
k 

= y ]  log{(/3,,/9o)lZ,,-~+~:~,l e~ } 
i=1 

+ (77 - k) log{La, ' (Z.,,-k+i:,,)/Lao (Z,,-~.+i:,,)}, 

provided Z~-~:+l:,, _> x0(/3,,). But tile probability of this event converges to one by 
tile condition lira sup,~_oo [.Vo(/3, )]~o (k/n) < 1 and tile fact. that 
t~71/2 (,~0 log(lg,,-k+,:,, I) - l o g 0 ~ / k ) )  ~ N ( 0 ,  1). 

"DO' 
Recall that/3o log(IZI) follows the standard exponential distribution if Z has 

df L~o, and put 

Y,,-i+i:,, :=/30 log(lZ,,-i+l:nl), 1 < i < ~. 

Then the df of 1~;,_i+1:,, coincides ultimately with the df of the ith-largest order 
statistics in a sample of n independent and standard exponential rvs. In particular 
we have therefore 

X(~.) := ki/2()~_k+l:,~ - log(n/k)) ~ N(O, 1). 

The next formula follows from the expansion exp(e) -1  = e + e 2 / 2 + O ( c  a) as c --+ 0, 
tile fact that ( /3o-  /3,,)//3o = 'Ok-1/2/log(n/k) and elementary computations. 
Recall that we assume implicitly that Z,,-k+l:,, > Zo(/3,,): 

(2.14) Le,,(Z,,_~.+l:,,)/L,~o(Zn_k+l:,, ) - 1 = Opt% (kl /2/7 , , ) .  

From (2.14) by Taylor expansion of exp at zero and the fact that 
15,-~:+1:,/log(n/k) --+ 1 in P/~o-probability, we obtain the expansion 

{ } O k~/" L.L3,, ( Z n - k + l : , , )  -[- _ _  ]Tn_k+l: n 
(2.15) ( n -  k) log L/3o(Z,,-k+a:,,) log(n/k) 

0 2 
= aX(k )  - y + oe , , , ,  (i).  

The assertion of Theorem 2.3 follows now from (2.13) and (2.15), if we show that 

k 

i=1 log(n/k) 

But tile left-hand side of (2.16) equals 

Y,~-A-+t:,, ----- op,~o (1).  

Z s '( , , _ i + l : n - - Y T , _ k + l = , , ) + l o g  1 +  /~o 
i=1 

k 
_ 90 - 9 , ,  ~- -~{r , ,_~+l: , ,  - r ~ _ k + l : , , -  1} + o (1 ) .  s 

i=1 



LAN O F  E X T R E M E  O R D E R  S T A T I S T I C S  707 

Recall now tha t  condit ional  on Y..-k+l: .  = u, the distr ibution of 
y 1 ( , , - i+l: . ) i=k-1 equals the distr ibution of (14"/:k-1 + 'u) k-1 where W1, W2 

i = 1  ~ ~ �9 �9 �9 

I'I,~._i are independent  and s tandard  exponential  r andom variables. Consequently,  
condit ional on Y._~:+l:,~ = u, the r ight-hand side of the preceding equat ion equals 
in dis tr ibut ion 

k - 1  

f ) k - ' / 2  ~-~(l~Vi - i) + o(1). 
log(n /k )  i=1 

This implies (2.16) by condit ioning on l~_a.+i: ,  = u E [log(n/k) - ~ ,  log(n /k )  + e] 
for some small e > 0. [] 

In the following we will establish a bound for the rate  at which Z,-k+l: ,~ 
becomes asymptot ica l ly  sufficient. This will be clone by proving a result which 
parallels Theorem 2.2. 

Suppose tha t  Z 1 , . . .  Z ,  are lid rvs with common df LZ, /3 r O. Then  the 
v e c t o r  (Zn_i+l:n)i=l,:_ 1 1  given Z,-~+I:,~ -- z, equals in distr ibution the vector 

k - 1  
( l " I ' i : k - 1 ) i = l  , where W1 . . . .  , ~l'~:-i are lid rvs with common df 

( L z ( t )  - L , ~ ( = ) ) / ( 1  - L , ~ ( : ) )  = L ~ ( t / l z l ) ,  z < t < ~ ( L z )  

(cf. Theo rem 1.8.1 in Reiss (1989)). Consequently,  conditional on Z, , -k+l: ,  = z, 
the vector ( Z , - i + I : ,  1 )i=A--1 equals in distr ibution the vector (IzlUi:k_ 1 k-1 )i=z, where 
U 1 , . . . ,  Uk are lid rvs with common df L#. 

We compare  in the following the vector (Z,-i+I: ,)~=~. with the vector 
(Z,-A.+z:,,, V(~) . . . .  ,V(k-~)), where the V(~) are generated by the following two 
step procedure,  which is mot iva ted  by the preceding considerations. 

Given Z , , -k+l : ,  =~ z, we generate k - 1 lid rvs V1 , . . . ,  Vk-1 with common df 
L/~ 0` independent  of the underlying parameter /3 ,  and define 

li/y V(i)(z) := Izl i:k-1, 1 < i < k - 1 .  

The  rvs V(1 ) . . . . .  V(k_l) are then defined by 

~/(i) := V ( i ) ( Z n - k + l : n )  : IZ.-k+~:.lV,:k-1, 1 < i < k - 1. 

The  vector ( Z , - k + i : , ,  V( t ) , . . . ,  V(~,_I)) contains therefore only that  information 
about  the underlying parameter  /3 which is contained in Z , - k + l  ..... and the 
Hellinger distance 

1 H(C~( (Z , ,_~+~: , , )~=k) ,  z ; ,3 (z ._k+~:n ,  v(~/ . . . .  , v(~_~)))  

is an upper  bound for the lack of information in Z,,-k+l:,~. Notice tha t  this 
Hellinger distance is zero if/3 =/3o. 

THEOREM 2.4. Choose k = k(n)  E { 1 , . . . , n }  such that k ---* oo, k / n  --* 0 as 
7~ ~ oo. Fix [3o ~ 0 and define for  '9 E ff~ th.e sequence/3,~ = ~,~(~) by 

(/3o - j3,, ) l l ;o  = , o k -  ~/~ l log(,,/k). 



708 M I C H A E L  F A L K  

Suppose that w(F~) = w(L2) and that F;~ ultimately has a density ft~ such that 

(2.17) If~(y)/I/3(y) - 11 _< C(1 - L3(y)) 6, y e [xo(fl),w(F,3)), 

for some fixed C, 6 > O, with. lim n _ ~  [Xo(fl.)[a~ = O. Th.en, 

( (Zn- i+lm)i=k) ,  s ( Z ; , ] - k + l : n ,  V(1) . . . .  , V ( k ) ) )  H(s 1 

= 0 ( 1 / l o g ( n / k )  + kU2(k /n )  6 + e x p ( - k l / 2 ) ) .  

PROOF. Repeat ing  the arguments  in the proof  of Theorem 2.3 we obta in  

9 1 
H ' ( s  ( (Zn_i+l:n) i :k)  , ~-.fl,, (Zn_k+l:n, ~/(1) . . . .  , l / ( k - I ) ) )  

_< / H ~ ( < ~ .  (.~, X } : ) , . . . ,  X~2,)_ , z;~,, (: ,  I~'IV~, �9 �9 �9 I~lX4-z))  

�9 s  (Z  .... #+n,,)(dz),  

where X } : ) , . . . ,  X}.=_) 1 are iid with common df 

F~:)(t) :-- (Fl~,, (t) - FZ, ' (z ) ) / (1  -FZ , ,  (z)); t >  z. 

I f z  is large i.e., i f z  > x0(f l , ) ,  the d f F  (~) has density f(z) - /3. 9 .  (t) -- f,3., ( t ) / ( 1  - F j , ,  ( z ) ) ,  
t > z. In complete  analogy to the proof  of (2.8) it is shown tha t  for r > 0 small 
enough 

(2.18) P3,,{c < lZ,,_1,-+1:,,I/a"k/n < I / c }  = 1 4- O(exp(-kU2)). 

As the Hellinger distance is in general bounded  by ,/2, we obta in  from (2.18) 
and Le m ma  3.3.10(i) of Reiss (1989) 

((Zn-i+l:n)i=k),Cf3, , (Zn-k+l .... V ( 1 ) , . . . ;  l ~ ( k _ l ) ) )  

< k f H2(s (X}=)), s (IZlVa))s (Z ._k+ , : . ) (d : . )  
Yc <[z[ lJ,, k/n<l/e 

+ O(exp ( - k l / 2 ) ) .  

Now for z such tha t  r < IzV3"k/n < 1/e we have x0(fl,,) < z < w(F/3,,) i f n  is large; 
this follows fi'om the condit ion l i m , , ~ .  IXo(fl,,)lt3~ = O. Thus  we can write for 
such z 

H2 ( s ( X[Z)), g~,, (Iz[V1)) 

1 oo = (1 - F , . ( z ) )  -1 [(Izl.f,,,(tlzl)/l~o(t)) 1/2 - (1 - F/~,,(z)) /']-l~o(t)dt. 
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We ob ta in  therefore  f rom (2.17) t h a t  un i fo rmly  for z wi th  c < Izl~"k/n < 1/~ 

1/2 (I -- F,,,(z)) 1/2 l;~o(t)dt 
bo (t) 

_- izl~/2 /3,, (t l=l) f~!2(t]zl) 
11/2 I + 1 

- (1 - L/~,, (z)) 1/2 

1 Lfl,,(z) l~~ 

11/2 / ( t i l l )  
= J~ I:.l 1/~ ~ ) (1 - r~,, (~.))'/~ 

+ { Izll/2 l~!,2(tlzl) } 
l ~ 2 ( t  ) + ( 1 - L ~ . ( z ) )  ' / 2  

�9 O((1  - L~,,(z)) ~) loo(t)dt 

= (i - L/j,, (~)) 

+ \ ~ /  Itl ('3o-9-)/2 + 1 0 ( ( k / n )  ~) l~o(t)dt 

as Iz] -3T'/2 = 1 - L~, (z). T h e  p reced ing  integral  equals  

(2.20) ~[(1 + 0( /3 ,~  - flo))ltl (~~ - 1 

+ O ( ( U ~ ) ~ ( 1  + Itl(~o-~")/2))]2Z~o(t)dt 
= s176 - 1 + O((k / ,~)  6) 

+ 0( { I /~ , , - /301 + (k/,O~}ltlC'3~ 
Observe now t h a t  

~[I tl (tJ,,-~,,) _ 112/ ;3o (t)dt - (flo - & ) 2  

,& (& - /3 .  ) 
- O(k -1 / log2(n /k ) )  

and  t h a t  

L ltl~~ = 0 ( 1 )  
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if n is large, since 3o - / 3 n  ~ 0 as n ---+ ce. Consequently,  we obtain 

(2.21) L [ltl ( ~ ~  - 1 + O((k/n) ~) 

+ O ( { 1 3 ~  - 3ol  + (k/n)6}ltl(~~ 
= O ( k - ' / l o g 2 ( n / k ) - t - ( k / n ) 2 ~ ) .  

From (2.19)-(2.21) we get 

H 2 ( Z ; 9 .  ((Zn-i+l:n)i=k), ~13,, (Zn-k+l:n, V ( 1 ) ,  �9 �9 - , V k - 1 ) )  

f 
<_ k -_.L-<I.~IO, ~ (k/,,)<e-' 

+ O ( e x p ( - k l / ~ ) )  

-< k J(<l.~l~,, (Wn)<c_~ 

H~(s (x~(=)), ~,, (IzlV~))s (Zn-k-t-lm)(dz) 

1 -  L~,, (Z) o I k-~ 
1 F~,, (z) ~ , l o g ~ / k )  

+ O(exp(-k l /2) )  
= O(log-2(n/k.) + k (k /n )  ')5 + e x p ( - k l / 2 ) ) .  

This  completes the proof  of Theorem 2.4. [] 

+ 

L~,, (Z,,-k+,:,,)(d~) 

3. Adding a scale and location parameter 

In the following we will ex tend  the model  (M) and require 

F ( x ) = F ~ ( c x + d ) = : F ~ , c , d ( X )  for all x > _ x o = x o ( ~ , c , d ) ,  

for some c > 0, d C R with {F/3 : /3 E 0 }  being a paramet r ic  family of dfs. We 
suppose again tha t  x0 = x0(/3, c, d) is unknown. Our test ing problem is now 

1 1 s against s 

where Z 1 , . . . ,  Z~ are iid rvs with common df F~,c,d. 
Withou t  loss of general i ty we assume tha t  co = 1 and do = 0, as this can be 

achieved by the da ta  t ransformat ion  Z~ := coZi + do, 1 <_ i <_ n. We consider 
again the par t icular  paramet r ic  family 

F~(x) = H~(x) = 1 - (1 + ~x) - i /~,  0 < (1 -I- [3x) - ' /~  < 1, 

of GPDs  in their  von Mises parametr iza t ion ,  and we will test  at first the exponen-  
tim dis t r ibut ion/3  = 0. Precisely, put  for ~, {, r / E R 

~n := /3n(vg) := 2~k-1 /2 / log2(n /h : ) ,  

Cn := cn(~) := 1 - ~k-X/2/ log(n/k) ,  

dn := dn(rl) := - r / k  -1/2, 
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where the sequence k = k ( n )  C { 1 , . . . ,  n} satisfies k ---, oc but k / n  -~ 0 as n ~ oo. 

THEOREM 3.1. (LAN) Suppose  that lira s u p , ~ ( x 0 ( / 3 , ~ ,  c,., d~) 
- log(~/k))  < 0. Then  we have u n d e r  the hypothes is  (/3, c, d) = (0, 1, 0) f o r  any  

log{ds ~ d,, ( 1 1 1 , , (Zn-i+l:n)i=k)/ds ) i=k 

= (t9 + ~ + ~ ) k l / 2 ( Z n _ k + : : n  - l o g ( n / k ) )  - (~9 + ~ + r/)2/2 + oeo,,.o(1 ) 

, + + + + 
"Do. :.o 

The preceding result reveals tha t  the kth-largest order statistic Z~-k+l:, ,  re- 
mains the central sequence for the loglikelihood processes pertaining to the vec- 

k tor ( Z , - i + : : n ) i = l ,  if we add an unknown scale and location parameter.  As in 
the discussion after Theorem 2.1, asymptot ical ly optimal tests for (/3, c,d) can 
therefore be based on Z._k+: :~.  But  if ~) + ~ + fl = 0, tha t  is, if the vector 
(v~,{,r]) E IR 3 is on the hyperplane generated by the basis ( 1 , - 1 , 0 ) ,  ( 0 , - 1 , 1 ) ,  
then the preceding result shows tha t  one cannot distinguish asymptotical ly be- 
tween (/3,~(t9), c,(~), d,(~7)) and (0, 1, 0). This means tha t  an alternative shape 
parameter/3~(,9) can be hidden by a scale and location parameter,  such tha t  hy- 
pothesis and alternative cannot be separated asymptotically. 

Theorem 3.1 remains again true, if we replace the condition that  the upper tail 
of F~ coincides with tha t  of a GPD by the condition tha t  it is in a &neighborhood 
of a GPD: If we require co(F~) = co(H~) and tha t  F~ has ul t imately a density f j  
with 

(3.1) I f z ( x ) / h / 3 ( x )  - 11 _< C(1 - H/3(x))  ~, x > Xo(/3) 

for some fixed & C  > ' 0  and limsup~_~oo(x0(/3,~) - l o g ( n / k ) )  < 0, then we have 
under /3  = 0, c = 1, d = 0 again the expansion 

( ( Zn-i+ l:n)i=k)/dCo,l,o( ( Zn-i+l:n)i=k) } 1og{ds 1 : : 

= ('9 + ~ + r])k:/2(Z,~_k+::~ - log(n/k))  - (v 9 + { + ,7)2/2 + opo., o(1 ) 

, N ( - ( O  + + + + 
"Do. 1 ,o 

provided k ( k / n )  ~ ---+ 0 as n ---+ oo. 

PRoof" o~" THEOREM 3.1. Pu t  X(k) := k1/2(Z~-a:+1:,~ - log(n/k)) .  In con> 
plete analogy to the proof of (2.2) one establishes 

(3.2) H~,,,c,,,d,,(gn_k+l:n)/Ho(Zn_k+l:n) -- 1 = Op(k l /2 /n) .  

l%om now on we will drop the index n of/3~ etc. As in the proof of Theorem 
2.1 we have 

: d Z : Z 1 (3.3) log{ds  s n--i+l:n)i=k)}( n-i+l:n)i=k 

= ~ - ~ Z n - i + l : n T k  k ( 1 + /3 log(1 +/3(cZn-i+l:,~ + d ) ) -  log(c))/ 
i=k 
+ ( n  - k)log{H/3,~,a(Z~_a:+::,~)/Ho(Z,~-k+l: ,~)},  
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provided Zn-k+l :n  > Xo(/3, c,d). But  the probabil i ty  of this event converges to 
one as lim supn_oo(Xo(/3 , c, d ) -  log(n/k))  < 0 and kl/2(Zn_k+l: n -log(n/k)).DO,ll 0 

N(0, 1-). 
By using (3.2) and the expansion log(1 + c) = c + O(c 2) it is e lementary to 

show that  

(3.4) (n - k)log{Ho,~,d(Z,,-k+l:,)/Ho(Z,,-k+l:, , .)} 
/ 

k ~d - (1 - c)Z,~_k+l:,, 

/32 . 
~ (cZ~-k+l:, ,  + d) 2 + -3- (cZ,,-t-+l:~ 

= (~9 + ~ + , l )X(k)  - (~ + ~ + ,i) '2/2 + opo,,,o(1 ). 

+ d) 3)  

By using the expansion l o g ( l + c )  = c - c 2 / 2 + e a / 3 + O ( e  4) and tile conditioning 
technique in tile proof  of formula (2.1) one shows 

(3.5) ~Q Zn-i+l:n l+ /31og( l+ .3 (cZ , , - i+ l : , ,+d) ) - log (c ) )~ -  
i=l 

( d  - (1 - c)Z,_~:+l: ,  + k 
N 

/3 
cZ. k /32 ) ~(  -'+J-:n + d)2 + T ( c Z , - k + l : , ,  + d)3 

I 

= Oeo.~.o (1). 

The assertion of Theorem 3.1 is then immediate  from (3.3)-(3.5). [] 

Next  we will consider the case ~0 ~ 0 with underlying tail distr ibutions of tile 
fo rm 

1 - (cx) -~, cx > 1, i f  /3 > 0 
L~,e(x) := L~(cx) = 

1 - ( - c x )  -t3, - 1  _< cx _< 0, if /3 < 0 

and c > 0. Fix /30 r 0 and choose with v ~, ~ G N tile al ternatives /3,~ = /3~,(~), 
c,  = c,~(~) of (~0, Co) with Co = 1 as 

( ~ 0  - -  / ~ n ) / ~ O  = l~--l/2/1og(n/~), 1_ - -  C n = ~;-1/2 /9  0. 

For FZ,c(X) = Lz,e(x),  x >_ xo(/3, c), with lira s u p , , _ ~  Ix0(~,~, cn)l~"k/n. < 1 we 
have the following result. Recall that/3o log(lZI) has a s tandard  exponential  distri- 
but ion if Z has df  LZo. This implies the asymptot ic  normali ty of/3o log(IZ .... ~-+1:,,]) 
in tile following result. 

The following result parallels Theorem 3.1 in the case /3o ~ O. But  note 
tha t  a location parameter  is missing, in which c a s e  Z n _ k + l :  n loses its asymptot ic  
sufficiency; see Theorem 3.3 below. 
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THEOREIVI 3.2. (LAN) For `30 7 ~ 0 and `3n = `3.(~), c. = c.(~) as defined 
above we have 

1 1 1 
log{dL;~.,,c. ((Zn_i+hn)i=k)lds 

---- (0 + ~)kU'2(`3o log(IZ,_k+l:,~l) - log(n/k)) - (0 + ~)2/2 + op,~o,~ (1) 

, + + 
"DB o , 1 

Theorem 3.2 remains true if we require tha t  co(FZ) = a~(Lz), F~ has ul t imately 
a density fl~ such tha t  

(3 .6 )  If1~(x)/hz(x) - 11 < C(1 - L/~(x)) ~, x >_ Xo(~) 

for some fixed 6, C > 0 with limsupn~oo[xo(/fn)[t3ok/n < 1, and 
l im,~oo k (k /n )  6 = O. Note tha t  in case /3o > 0 an additional location param- 
eter can be subsumed under condition (3.6), but  affecting the exponent 5. In case 
/3o < 0, an additional location parameter  alters the right endpoint  of the pertaining 
dfs; see Theorem 3.3 below. 

PROOF. Pu t  Y,-/+a:n := `301og(IZ,-i+l:~l), 1 < i _< n and X(k) := 

k~/2(Yn_a.+~:, - log(n/k))  , N(0, 1). The assertion of Theorem 3.2 then fol-  
Z ) J  o , 1 

lows in complete analogy to the arguments  in the proof of Theorem 2.3 by the 
expansions 

L;3. ,c., (Zn-k+l:n)/L/3o,l (Zn.-k+l:n) -- i = OP~o, I (]s 

and, by means of formula (2.16), 

1=1 

k ( f l ~ 1 7 6  

k } 
= E { /30 - [3n (Y"-i+l:" - Y'~-I"+l:") + l~ ( l  + `3n : ~0' /30 J 

k 

_ Zo - fin E { } ~ _ i + l : n  _ Ir;,_k+l:.,~ _ 1} + o(1) = op,~o., (1). 
90  i = l  

[] 

We complete this paper by showing tha t  the kth-largest order statistic 
Zr~-A-+I:. is no longer the central sequence, if we add in the model Ft3,~(x ) = 
L/~(cx), x >__ xo(`3, e) with 1/31 > 2 an unknown location parameter  d E N, and 
consider 

FZ,~.:,d(x ) = LI3x,d(X ) := L/3(c:r + d), xo(/3, c, d) < x < (co(L/3) - d)/c. 

Fix again flo E ~ but  such tha t  Iflo] > 2 and choose the alternatives 

`3.. = `3,~(fl), c~  = c ,~(~) ,  dn = d n ( . )  
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of/30, c o = l ,  d o = 0 a s  

( ,& - a . ) / / 3 o  = o k - ' ~ " ~  l og ( . /a : ) ,  

1 - c~ = ~ 1 r  

d,, = -,7k-~/~(.,,.I~,)~/.<II/3oI 

where .d, {, r/E R. Observe tha t  the alternative location parameter  d,, is of smaller 
order than  k -1/2 iff the hypothetical  shape parameter/3o is negative. 

For a family F~.<d(a:) = L~,<d(:r), .ro(fl, c,d) < a" < (co(L~3) - d) / c  with 
l imsup ,_oc  [Zo(/3~,c,, ,d,,)[&(k/7~) < 1, where k --+ oc,, k / 'n  --+ 0 as 7t --+ oc, we 
have the following result. 

THEOREM 3.3. (LAN) For" /30 E ~ with. ]/3o1 > 2 and 3, = ,3,,(0), c,, = 
c,~ (~), d,, = d,, Ol) we h.ave the ezpans,ion 

1 Z 1 Z 1 log{dL;~,,,c,,,d,, ((Zn-i+l:n)i=lv)/ds n - - i + l : n ) i = k ) } (  , , - i + l : n ) i = k  

= (a + g + ,1)/J/2(/30 log(lZ, ,_k+l: , , I)  - log(n//, :)) - (a + g + ,1)"/2 

~" (,30__+ 1 1 
+ 71k-i~"- ~ \ ,,30 Z , , - i + l : , , / Z , , - ~ . + l : , ~  - 1 / 

i=1 
7l 2 

+ op~,~,.,.,, (1) 
-- 2/30(~0 + 2) 

, N ( - ( ~  + ~ + ,7)"/2 - ,# / (_g&( ,& + 2)), 
D,3o.l.o 

(a + ~ + .,1) 2 + ,~2/(a0(/30 + 2))).  

Note tha t  under L& the kth-largest order statistic Z , - k + l : ,  and tile vec- 
tor (Z,~-i+l:n/Z~-k+l:, ,)~=,~ are stochastically independent.  The distr ibution of 
(Z,,-~+I.,,/Z,,.-~-+I:,,. )i=x.~ 1 equals fi~rther tha t  of (IE:k_~l) k-*~=~ . . . . .  where V~. ~.~._ ~ 
are iid with common df L/3f,. This follows from Corollary 1.6.12 and Tlmorem 1.8.1 
in Reiss (1989). 

The central sequence in the preceding result is therefore the sum of two asymp- 
totically independent  terms based on Z,,-A,+I:,, and the vector 
(gr,_i+l:n/gn_k+l:n)~=k, w i t h  the vector (Z, ,- i+l:, , /Z, ,-k+>,,)~=a. carrying infor- 
mat ion only about  the location parameter  d, and Z,,-k+l:,, contailfing all the 
information about  the underlying shape and scale parameters /3  and c and a part  
of tha t  about  d. 

The regularity condition I/3ol > 2 is crucial in various parts of the proof of 
Theorem 3.3. In particular it ensures tha t  the second moments  of l /V/ are finite 
and therefore, the central limit theorem together with the preceding considerations 
imply tha t  

k 

i=1 f 3 ~  Zn-.i+>,,/Z,~-A.+l:,  - 1 D,%.,>.,, N(0, 1). 
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The limiting normal distr ibution in Theorem 3.3 is then a siinple consequence 
of normal convolution. Recall tha t  kl/2(/30 log(lZ, ,-~.+l: ,~l)  - l o g ( n / k ) )  z~i=: N(0, 1) 

as well. For a further discussion of the regularity condition 1/301 > 2 we refer to 
Hosking and Wallis (1987). 

PROOF OF THEOREM 3.3. First note tha t  if [3o] > 2 

(3 .7 )  JP/3,,.1,o{Zn_i+l:n ~ (q2o(/~n,cn,dn),(co(L/3,)) -dn)/cn.),  1 < i < ]i:} ----+n-~o 1. 

By (3.7) we can suppose for the rest. of the proof tha t  Zn-i+l .... E (x0(fl,,, c,, d,,), 
(w(L~3,,) - d,~)/c,,), 1 < i < k, with underlying df L&. Put  again Y,~-a:+I .... := 
,% log(IZ,,_k+l:,,I) and X(k ) :=  kUg(Y,,_a:+~:,, - l o g ( n / k ) ) .  Then we have 

( 3 . 8 )  (L~,,,c,,.~t. (Z,,-k+l:,,) - L31,,1 o(Z,,-i,.+l:,,))/L~o,l,r (Zn_hzl-l:n) 
= ( I Z  . . . .  k + , : , , I  - '~' '  - I<,Z,,-~.+,:,, + d, , I  - '~' '  )/(1 - I z  . . . .  ~-+~:,,I  - 'J ' ' )  

--]~: exp(-X(h.)/k 1/2) 
7~ -- ]C exp(--X(k)/kl/2) 

�9 ( e x p { - &  log(lc,,Z,,_t,:+~:,, § ~t, , I )+ 73o log(lZ,,-~,-+~:,,l)} - 1) 
= Op ,_ ;o . ,  .,, (h '1/2/1~) ,  

t)37 Taylor expansion of exp at. 0 and of log at 1, the definitions of ,3,,, %.  d,, and 
the facts that Zn_h.+l:n/(ll/~:) 1/13~ ----+ ,, -- >c 1 and ) , , - a . + l : , / l o g ( n / k )  ---*,,_~ 1 in 
P~3o.L0-probability. Equally, we have with 1,~,c,,~ denoting the density of L,~,,,,,~ 

(3.9) 
k 

 377,+T,5 

= ~ log \/30 ] - (/3. + 1)log 
i=1 " 

1 + Cr~Z,L i + l : n  

,% - / 3 , ,  } , , - i+1: , ,  ] .  - / 3 ,  log(c,,) + ,3~7--- / 
By repeating tile at 'gmnents in the proof of Theorem 3.2, we obtain fl'om (3.8) and 
(3.9) the expansion 

(3.10) log{ds ~ ~, ,.<, 1 1 1 .... ((Zn-i+l:,z)i=h!)/d~--~/~o,X,o((Z,t-i+l:n)i=k)}(Zr,-i+h,I)i=h . 

~1 ( IlJ,,,c.,d,,( z .... i+l:,~)) __ (/JO --/~n~/~7_h.+l: n 
= log 1,3,,,1.o(Z.-i+l:.) \ ,3~--~ != 

dn ( ,+ .... ))) 
+ (n - k) L~ ........ d, (Z, , -k+l : . )  -- L~o,l .o(Z.,-k+l: .)  

L/3o,l,o(Zn-h.+h,,) 
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+ k( /3~  - /30 3n Yn-k+l:n -- 3n log(c~) 

dn 

+ o/'~,o.,.o (1) 

= ,3,, log 1 + 
i=k " cngn-k+l:7~' 

/3~+1  ( d,~ ) )  
/ 3 ~  log 1 +  c,,Z ..... i+1:,, 

+ (.0 + + zl)k ' /m(X(k) - log(n/k)) 
- ( a + { + n ) V 2 + o p , , , . , . o ( 1 ) .  

The following expansion can be shown by conditioning on Zn-k+l: , ,  = u, in which 
)k-1 case the (conditional) distr ibution of (Zn-i+lm) li=k-1 equals tha t  of ([u.li~:h-_l i=1, 

where I71, I72,... are iid with common df L/3o : 

k { ( 1 d~, ) / 3 , + 1  ( d,, ) }  
(3.11) /3. E log + i=1 cngn-k+l:n 3., log 1 + c,,Z,,-i+l:,, 

k 

i=1 / 3 0  Z,,-i+l:,,/Z~,-~-+l:,, - 1 

7] 2 
+ oP, o,,,o (1) 

2/30 (~0 + 2 ) 

'as Z,~_~+t:,,/(n/k) 1/~'' ~ , , ~  1 in L/3,,,1.0-probability. The assertion of Theorem 
3.3 is now a consequence of formulas (3.10) and (3.11). [] 

We presently do not know, whether LAN of extreme order statistics can be 
established for underlying dfs, which do 'not belong to a 5-neighborhood of a GPD 
such as a normal df. Various examples, which we have computed,  give rise to the 
conjecture tha t  this is actually not possible. 
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