Ann. Inst. Statist. Math.
Vol. 47, No. 4, 665-674 (1995)

ON CONSTRUCTION OF IMPROVED ESTIMATORS IN
MULTIPLE-DESIGN MULTIVARIATE LINEAR MODELS
UNDER GENERAL RESTRICTION

T. SHIRAISHI! AND Y. KONNO?

1Department of Mathematical Sciences, Yokohama City University,
22-2 Seto, Kanazawa-ku, Yokohama 236, Japan
2Department of Mathematics and Informatics, Chiba University,
1-38 Yayoi-cho, Chiba 263, Japan

(Received December 20, 1993; revised January 4, 1995)

Abstract. Consider a set of p equations Y; = Xi€, +€,i=1,...,p, where
the rows of the random error matrix (e1,...,€) : n X p are mutually inde-
pendent and identically distributed with a p-variate distribution function F'(z)
having null mean and finite positive definite variance-covariance matrix 3.
We are mainly interested in an improvement upon a feasible generalized least
squares estimator (FGLSE) for £ = (£],...,£,)" when it is a priori suspected
that C€ = cp may hold. For this problem, Saleh and Shiraishi (1992, Non-
parametric Statistics and Related Topics (ed. A. K. Md. E. Saleh), 269-279,
North-Holland, Amsterdam) investigated the property of estimators such as the
shrinkage estimator (SE), the positive-rule shrinkage estimator (PSE) in the
light of their asymptotic distributional risks associated with the Mahalanobis
loss function. We consider a general form of estimators and give a sufficient
condition for proposed estimators to improve on FGLSE with respect to their
asymptotic distributional quadratic risks (ADQR). The relative merits of these
estimators are studied in the light of the ADQR under local alternatives. It
is shown that the SE, the PSE and the Kubokawa-type shrinkage estimator
(KSE) outperform the FGLSE and that the PSE is the most effective among
the four estimators considered under C€ = ¢p. It is also observed that the PSE
and the KSE fairly improve over the FGLSE. Lastly, the construction of esti-
mators improved on a generalized least squares estimator is studied, assuming
normality when X is known.

Key words and phrases: Shrinkage estimators, generalized least squares esti-
mators, asymptotic distribution, seemingly unrelated regression model.

1. Introduction
Consider p different regression models with cross correlation,

(11) Y nxl :Xi6i+ei and E[éiég-] :UijIm (1,7=1,...,p)
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where X; (n x ¢;) is a design matrix of full rank, &, {¢; x 1) is a column vector of
unknown parameter, and €; (n x 1) is an error term vector continuously distributed
with Fle;] = 0. We also assume that ¥ = (0y5); j=1,..p is positive definite. The
model (1.1) is referred to as the seemingly unrelated regression model of Zellner
(1962). We can rewrite the model (1.1) as follows:

(1.2) Y=Xf{+e and Cov(e)=2X®I,.
where Y :npx 1= (Y/.....¥)). £:qx1=(§..... £,) . enpxl=(¢,.. .. €)'
X, 0 - 0
e p
X npxl= . SR . and q:Zq,-.
0 0 - X,

In this paper, we are primarily interested in the estimation of £ when it is suspected
that a general restriction

(1.3) Hy: CE=co

holds, where C is an r x ¢ matrix of rank r and ¢g is an r-dimensional column
vector. Taking account of the form of the covariance matrix in (1.2) and utilizing
any consistent estimators 3 of B, we have a feasible generalized least squares
estimator (FGLSE)

(1.4) £ ={X'(Z'oL)X} ' X'(2'0,)Y.

For example, we may take

3, =n" Y mat(Y — X¢,)] mat( ¥ — XE,)],

nxp nxp
as a consistent estimator. Here, we define mat,, «,(-) by mat, «,(Z) = (Z1,....Z,)
/ ! . . .
forZ - npx1=(Z;..... Zl,)’ and p-dimensional column vectors Z;, ¢ = 1.....p.

See Srivastava and Giles (1987) for a review of the estimator (1.4). Furthermore,
taking the restriction (1.3) into consideration, we have a restricted estimator (RE),

(15) &, =€, — (Z:'#D,) ' C'{C(EZ;'#D,)" C'} 1 (CE, — a).

where D,, : g x ¢ = (Dyij)ij=1....p With Dyy; 1 ¢ x ¢; = X3 X';j/n, and the matrix
operator # is defined by A#B = (a;;B;j)i j=1...p for A = (a;;);j=1...pand g x g
matrix B = (B;;)i j=1

én may be biased and even inconsistent unless the restriction (1.3) holds, while
it performs better than En when (1.3) holds. So we propose a weighted combination
of €, and €., being of the form

p so that B;; is ¢; X g;.

.....

(16) éi = én + {Iq - g(cll)(ﬁgl#D‘”)_lC/]t—‘rzlc}(én, _En)*
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where

L,=n§,~€,)CT,'CE,-¢£,) and

T,=C(Z,"#D,) ' Q.(;'#D,)"'C".

Here, £,, is a test statistic for testing Hy: C€ = ¢o v.s. Hy : C€ # o, and Q,, is
a consistent estimator of @ which is a weight matrix of full rank associated with
a quadratic loss function

S+ S+

(1.7) € -9'QE¢ -9

for an estimator §+ of £&. The estimator (1.6) reduces to one considered in Saleh
and Shiraishi (1992) when @, = ﬁ);l#D,,. We obtain a sufficient condition
that the proposed estimator outperforms the FGLSE (1.1) with respect to their
asymptotic distributional risks (i.e., the risk by reference to the asymptotic dis-
tribution of an estimator) associated with the loss function (1.7) under the local
alternatives. We construct the shrinkage estimator (SE), the positive-rule shrink-
age estimators (PSE), and the Kubokawa-type estimator (KSE), which are better
than the FGLSE.

2. Asymptotic distributional quadratic risks (ADQR)

First, we introduce the assumption to compute the asymptotic distributional
risks of estimators. Let

(2.1) £ ={X' (T 'oL)X})"'X(2'a1I,)Y,

which is referred to as the generalized least squares estimator. The variance-
~ %
covariance matrix of &, is given by

Var(€) = {X'(Z ' L)X} ' = (S"'#D,)"".
Now, we set
ASSUMPTION 1. lim,—-n"'D, = A.
ASSUMPTION 2.
Vi, -6 = Ny(0. (271 4#A)7),
where = denotes convergence in distribution.

Assumption 2 holds if Lindeberg's condition is satisfied. We consider the
following contiguous sequence of alternatives

A, CE= ¢ +0/\/E,0: (91,...,9,-)/.
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Then, we have the following Lemma from Saleh and Shiraishi (1992).

LEMMA 2.1. Under Assumptzons 1, 2 and under A,, the asymptotic distri-
butions of \/n(€, — &), vnC(, —&,), L. and \/n(€,, En) are given by

(2.2) f(én—@L Y~N<—uo,< “l4A) - By),

(2.3) \/—C &, -¢&,) Lz~ ~ N.(0, By),
Ln £ VA I‘“Z,
and
(2.4) V€, —€,) S(ETHA)TH{C' B CY 1 Z ~ Ny(po, By),

where By = (STV#A) 1C' B, C(BH#A) Y py = (Z'#A)"H{C'B; C} 16,
B, = C(Z7'#A)7C" and T = C(Z'#A)71Q(271#A)7' C'. Furthermore
vn(€, — &), and \/n(€, _n,) are asymptotically independent under A,.

Assume that the asymptotic c.d.f. is obtained as

GlHz)= lim P{\/— ) <z}

At

for an estimator £, of . Then we define the asymptotic distributional quadratic
s+

risk (ADQR) of £, by the expression

(2.5) R(é: Q) = hm lim E[min{n(€, —f) Q(E, —£).b}]

b—oc n—oo

- / 2 QzdG* (z) = tr(QEY).

where % = [, zz'dG* (z) and Q is the weight matrix in the loss function (1.7).
In order to obtain a sufficient condition for the proposed estimators to outperform
the FGLSE, we investigate the ADQR for EZ

LEMMA 2.2, Under Assumptions 1, 2 and under A, the ADQR R Eg Q) for
the estz’mator{i defined by (1.6) has the following expression,

(2.6) tr((Z7'#A)TIQ) - E2rg(Y'T'Y) +44(Y'T'Y)Y'TT'Y
+P(Y'T'Y)Y'T Y]

Proor. Using (2.3) and (2.4), we get

(2.7) Vi, - 6L Y + [{((E'#A)C'B, C)
—g(ZTY)(Z T #A)T I CT Y,
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where Y and Z are independent and are respectively defined in (2.2) and (2.3).
From (2.7), we get that the ADQR R(fi : Q) is expressed as

E{Y +u) QY +py)} +E(Z ~g(Z'T'Z2)B,T'Z-60)B,”'I'B,!
x(Z -g(Z'T~'Z)B,T'Z - 9)].

After a simple computation, it follows that the ADQR R(E‘Z : @) is equal to

(2.8) tr(ZT'H#A) T Q — 2E[tr(Z — 0By Hg(Z2'T7'2)Z)
—trg?(Z'T'2)2'T712).

Under the regularity conditions stated in Stein (1981) or Bilodeau and Kariya
(1989), we have

Elg(2'T~'2)2(Z - 6)'B, ™" = E|(3/02)(9(2'T~" 2) 2))
where (8/0Z)(g(Z'Y'"1Z)YZ) is an r x r matrix whose (i,j) element is
(8/0Z;)(9(2'T~12)Z;) for Z = (Z3,...,Z,)" and 8/0Z = (8/0Z:,...,0/0Z,)".
From chain-rule and straightforward calculation, it follows that
E[(0/0Z)(g(Z'T7'Z)Z)) = E[¢(Z'T"'Z)I. + 24 (Z2'T"'Z2)ZZ'T7"].
Finally, putting this equation into (2.8), we get (2.6). O

3. Asymptotic dominance

Using Lemma 2.2, we give a sufficient condition for the estimators (1.6) to
outperform the FGLSE.

THEOREM 3.1. Suppose that r > 3. Under Assumptions 1, 2 and under A,,
the estimatorfi asymptotically outperforms &, if (1) 0 < g(u) < 2(r — 2) for any
u and (ii) g(u) is nonincreasing.

PrROOF. This is a direct consequence from Lemma 2.2. O

Set g(u) = I(u< Lpg), (r—2) - u ™, 1~{1—(r—2)-u '} - I{u>r—2),
1.6), where I4 is an indicator function, ¢(u) is increasing,

(3.1) o(w) > dolu) = r — 2 — 2f,(u)/ / " bt

and f.(t) is a density of the chi-square distribution with r degrees of freedom.
Then, we define a preliminary test estimator (PTE), a shrinkage estimator (SE), a
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positive-rule shrinkage estimator (PSE), and a Kubokawa-type shrinkage estimator
KS

(KSE) én as

£ =&, +{I, - I(L, < L,.0)(E7#D,) T CHE, - &,).
=&, +{I, - (r— 2L (374D, C'T; CYE, —&,).
£ =&+ (I, ~[1—{1—(r— 2L} [(L7 > —2)]

'(En #Dn) ICI‘I_I C}(En_é11)=

and
~KS N -

€ =& +{I, - 6(La) L;'(Z7'#D,)" C'TICHE, - €.
respectively. Now, we have the following corollary:

COROLLARY 3.1. Suppose that v > 3. Under Assumptions 1, 2 and under
.S ,PS SKS <
A, . the estimators§,, . €, and§, h asymptotically outperform the FGLSE €, with

respect to the ADQR defined by (2.5).

THEOREM 3.2. Put Q, = (X;'#D,)"! in Ei of (1.6), and _suppose that
r > 3. Undm 4ssumpnons 1, 2 and under Hy, the ADQR of{ is less than
those ofﬁn', &, . éfT and §n, where ¢g(u) defined in (3.1) is taken as ¢(u) in E:\S
and k <r—2 éfT, Furthermore we have, for any positive definite matriz S,

(32)  RE :S)<RE :8)=RE :S).RE, :8)<RE  S)

Proor. From Theorem 3.1 in Saleh and Shiraishi (1992), the ADQR R(ﬁz :
S) is an increasing function of E{1 — g(x%,,(0))}* under Hy. Hence, we get

-9

=2/ fld 18 =8

g .S

/‘ {1—_ / } f’+2 dl if{nzgn‘

V)

(33) E{l_ \,+)(0))} = /0 {lﬂ(f)(l / } fl+ (11 lfézzén

/.x freo(x)dz if §f’, = éff

I\‘

/x f,‘+2(.‘l')d.'ll if éi = éu?
0

from which it follows that

RE" . S)<RE :S).RE. 8 <RE,:S)
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Furthermore, using equation (4.3) in Kubokawa (1994), we get

/{1—r—2/r}f,+2 dr—/o {1 = o(x)/x)? frya(x)dr =0,

0

which implies
JKS

RE.":S)=RE : 5). O

If we employ the Mahalanobis loss function, i.e., § = L '#A in (3.2), we
can see stronger ordering than that given in Corollary 3.1.

THEOREM 3.3. Set @, = (S;I#Dn)_l, and suppose that r > 3. Under
Assumptions 1, 2 and under A, the PSE and the KSE asymptotically outperform
the SE with respect to the ADQR defined by (2.4) with Q = S #A.

PROOF. Setting I' = By and @ = Z7'#A in (2.6), we get

R, : ST'HA) = q — E{2rg(Z}Zy) + 49'( 2§ Z0) 2} Zo)
+ E{g*(Z)20) 2} 20},

where Zy = B, Y/?Z ~ N, (v, I,). Since the relation R({P B Q) < R(E Q) is

LK
shown in Saleh and Shiraishi (1992), it suffices to prove R(ﬁ,,_ ° Q) < R({n C Q).
This follows from the argument of the proof of Theorem 4.1 in I\ubokawa (1994). O

Under the Mahalanobis loss function, Theorem 3.3 implies that the PSE and
the KSE outperform the FGLSE and the SE. Hence, we investigate how much the
PSE and the KSE improve upon the FGSLE by utilizing an efficiency. We define

an asymptotic relative risk efficiency (ARRE) of é: with respect to En (FGLSE)
by R(E, 2*1#A)/R(E: . 5-1#A), which is denoted by ARRE(E, ,£,). If
ARRE(E:,ER) 1 (< 1), E:: is better (worse) than E The ARRE’s of the
estimators depend on underlying distribution only through the noncentrdhtv pa-

LPS
rameter 6. For 62 = 0.0(0.5)20, the values of the risks for §n and 5 were
estimated from a Monte Carlo simulation with 10,000 repetitions. In the first

setting, we restricted our attention to the case that ¢ = 6 and 7 = 4. In Flg 1,
. PS KS
we drew the graphical picture of the ARRE’s of the estimators £ and €, "7 with

respect to the estimator £,. From Fig. 1, we can see that (i) the improvements of
the PSE and the KSE over the FGLSE decrease in 62, and (ii) the PSE is better
than the KSE for all §2 satisfying 0 < 62 < 2.6 while the latter is better than the
former for 2.8 < §2. Further, we find that, for ¢ = 2 + r, the ARRE’s of the PSE
and the KSE relative to the FGLSE increase in 7.
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- ARRE(E, )

SKS -
ARRE(E, ,£,)
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. . . . . ~PS sKS | 5
Fig. 1. The asymptotic relative risk efficiency of £, ~ and §,, ~ with respect to §,,.

4. Normal theory

In this section, we assume that the underlying distribution F(zx) is a p-
variate normal distribution with null mean and known positive-definite variance-
covariance matrix 3. We state the normal theory shrinkage estimators, which is
a general theory of a classical result. Based on E:L defined by (2.1), estimators are
constructed. The weighted combination of the generalized least squares estimator
and restricted estimator corresponding to (1.6) is proposed, being of the form

*

(4.1) & =& +{I, - g(L)(Z'#D,) ' C'T" ' CHE, - E.),

where

£, =& — (S7'#D,) ' C'{C(E"'#D,) ' C'} " (CE, - ),

Ly =nE, -E)CT'CE, -¢) and

I =C(E'#D,)"1Q(Z'#D,)" 1 C.

By setting g(u) = I{u < Ly0), (r=2) v L, 1-{1-(r=2) w1} T(u>7r—2),

~*xPT

and ¢(u) - u~! in (4.1), we define the preliminary test estimator (PTE) £
xS R

shrinkage estimator (SE) €, , positive-rule shrinkage estimator (PSE) E;: , and

T ’

~xKS
Kubokawa-type shrinkage estimator (KSE) £, ' , respectively.
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The quadratic risk (QR) of é: is given by

o+ +

RE, : Q) = E{(E, — &) Q. —&)}.

Corresponding to Corollary 3.1 and Theorem 3.3, we get Theorems 4.1 and 4.2
respectively.

~xS ~xPS ~xRKS ~%
THEOREM 4.1. Suppose that r > 3. The &, , €, and§, dominate§,,

namely,

45 ~xPS ~x NS

RE, Q) RE, Q) RE, :Q) <RE :Q).

THEOREM 4.2. Suppose that v > 3. For Q = X '#D,, namely, when
~xPS ~xKS ~*S
Mahalanobis loss is taken, §,,  and En‘ dominate €,, , namely,

RE T Q) RE T Q<RE Q) <RE Q)

The MDM linear model is an extension of the standard multivariate linear
model. Our results stated in this section include those of many papers discussed
shrinkage problems. As special cases, we state the following two examples.

Fzample 1. Whenn=1, X, =---=X,=1,and ¥ = C = I,, James and
Stein (1961), Sclove et al. (1972), and Kubokawa (1994) discussed the results of
Theorem 4.2. :

Erample 2. Whenn =1, X, =--- = X, = 1, and C = I,, Berger (1975)
and Hudson (1974) discussed the results of Theorem 4.1.
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