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Abstract. The paper studies the performance of deconvoluting kernel density
estimators for estimating the marginal density of a linear process. The data
stem from the linear process and are partially, respectively fully contaminated
by iid errors with a known distribution. If 1 — p denotes the proportion of
contaminated observations (and it is , of course, unknown which observations
are contaminated and which are not) then for 1 — p € (0,1) and under mild
conditions almost sure deconvolution rates of order O(n~2/%(logn)%/'°) can be
achieved for convergence in Lo. This rate compares well with the existing rates
for itd uncontaminated observations. For p = 0 and exponentially decreasing
error characteristic function the corresponding rates are of merely logarithmic
order. As a by-product the paper also gives a rate of convergence result for the
empirical characteristic function in the linear process context and utilizes this
to demonstrate that deconvoluting kernel density estimators attain the optimal
rate in the dependence case with exponentially decreasing error characteristic
function. ’

Key words and phrases: Deconvolution, density estimation, contamination,
identifiability, dependence.

1. Introduction

Suppose that (Xj,e;), 7 = 1,2,...,n are iid bivariate random vectors where
X1 has an unknown density g, €; has a known density and is independent of X;.
It is desired to estimate the density g based on observations that are corrupted by
additive noise, i.e. based on observations

(11) }/J':Xj'*'Ej.

Problems in which these mixture models are relevant do occur in many branches of
statistics. One area is the empirical Bayes approach to compound decision prob-
lems, as discussed in Robbins (1964). To connect this with our notation assume
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that {X1,...,X,} is a set of parameters, G(z) is an unknown prior distribution
and conditionally on X; = x the observed Y; are realizations of independent ran-
dom variables with known parametric density f(y/z). Then unconditionally the
Y; are realizations from the density [ f(y/z)dG(z). Robbins (1964) recommends
the use of Y1,..., Y, _1 to estimate G(x) and then to use this estimate to compute
the posterior distribution of X,, given Y,,.

Deconvolution problems also appear in errors-in-variables models for non-
linear regression, see e.g. Carroll et al. (1984). Further applications are men-
tioned in Carroll and Hall (1988) and Zhang (1990), Crump and Seinfeld {1982),
Mendelsohn and Rice (1982), Snyder ef al. (1988) and some of the references
therein.

In the convolution context the question of identifiability arises. We shall call
a density ¢ identifiable in a general convolution with a density p if the following
implication holds a.e.

[ v = wawidy = [ e - vty = o) = at0).
This may be characterized in terms of the characteristic functions ¥, ¥, ¥; as
Ty (1) - Ult) = Tp(t) - Tglt) = Ty(t) = Tg(t)¥t.

The last implication holds if ¥,(¢) # 0 for all ¢ and this is what we will require of
our error characteristic function although there are weaker conditions that ensure
identifiability in the present set-up.

A variety of approaches for estimation of g have been considered in the liter-
ature: a maximum likelihood method is given in Snyder et al. (1988), B-Splines
are used by Mendelsohn and Rice (1982), and in Masry and Rice (1992) Gaussian
deconvolution is based on estimates of derivatives of g. Liu and Taylor (1989)
seems to be the first published work that investigates the performance of kernel-
type estimators in this context. Other work on deconvolving kerne! estimators
includes Zhang (1990), Stefanski (1990), Fan et al. (1990), Stefanski and Carroll
(1990), Fan (1991a, 19915, 1992), Fan and Truong (1993), Fan and Masry (1992),
and Masry (1991a, 19915, 1993a, 1993b). We give a brief discussion of this lit-
erature devoted to regression with errors-in-variables and density estimation from
contaminated observations as it relates to the present paper.

In the iid case the nonparametric regression estimation problem with errors-
in-variables was studied by Fan et al. (1990) and Fan and Truong (1993) where
optimal rates of convergence and asymptotic normality are established for the
estimator

S Y Wal(z - X;)/A(n))
ENTA(CES ATYE)

(1.2) m(z) =

of the regression function m(x) = E(Y z). The estimator is based on
observations (X; +¢€;,Y;), i.e. covariates pelturbed by error. In (1.2) Wy denotes
a deconvolution kernel and A(n) is the bandwidth parameter.
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Fan and Masry (1992) obtain asymptotic normality for i (z) in the more gen-
eral setting where {X;} and {Y;} are individually and jointly dependent. Finally,
for this general setting Masry (1991b) gives sharp almost sure rates.

The other papers cited above are concerned with versions of the deconvolution
problem when observations Y; are of type (1.1) and estimation of the density of X
is desired. The main focus of Liu and Taylor (1989), Stefanski (1990), Stefanski
and Carroll (1990), Zhang (1990), and Fan (1991a, 1992) is on the iid case and
on bounds for the rate of quadratic-mean convergence for deconvoluting kernel
density estimators: Liu and Taylor (1989) study the mean square error at a fixed
point, Stefanski and Carroll (1990) provide bounds for the integrated mean square
error, Zhang (1990) contains both upper and lower bounds for £;-loss and Fan
(1991a, 1992) obtains optimal local rates for the mean-square error at a point
and optimal global rates under £, and weighted L£,-loss uniformly over a class of
densities.

The more general context of processes {X;} satisfying a variety of mixing
conditions, with dependence among {X,} and {Y;} and the estimation problem
being extended to the joint density function f(z1,...,z,) of the random variables
Xi1....,Xp (p > 1) has been considered by Masry (1991a). There bounds as well
as precise asymptotic expressions for the mean square estimation error at a point
are provided.

In Masry (1993b) for essentially the same framework almost sure uniform con-
vergence rates over compact subsets of R? are given for estimators of f(z1,...,xp).
Both ordinary smooth and super smooth noise distributions are considered and
are found to significantly influence the convergence.

Finally, we also mention that Fan (19915) has proved the asymptotic normality
of deconvoluting kernel estimates for the iid case and that Masry (1993a) recently
extended this to the multivariate set-up.

In general, deconvolution rates of kernel estimators are intimately connected
to the decay of the characteristic function of the error density. For example, in
the practically important case of normally distributed errors and iid X; Carroll
and Hall (1988) show that the rate of convergence of any estimator cannot be
faster than O ((logn)~*/2) over densities in Cs(M) = {g : sup, g(z) < M and
sup, ¢ (2)] < AT},

The contents of the present paper generalizes existing results in several direc-
tions. As in Masry (1993b) we also allow for dependence among the {X;} but
focus on a different dependence structure, namely linear process dependence. Sec-
ondly, we aim for sharp uniform rates over the entire domain and not merely over
compact subsets thereof, and thirdly and most importantly, we allow for partially
contaminated observations. In this context the somewhat surprising fact is found
that in terms of uniform rates of the deconvolution kernel estimators any fixed
non-zero proportion of uncontaminated observations within a set of contaminated
observations is essentially as good as a full set of uncontaminated observations. In
addition, the methods employed which are related to the notion of metric entropy
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seem to be new in the deconvolution context. Our basic set-up is

(1.3) Y(G) =Y peelG— k) +T(G)e(i) j=1,....n,
k=0

where ¢(7), e(j) are (mutually) iid random variables with unknown (in the case of
(7)), respectively known (in the case of e(j)) density; T(j) are independent (of
each other and of the () and the e(j)) Bernoulli random variables with parameter
1 —p € (0,1). For practical examples of partially contaminated distributions in
the iid context see e.g. Huber (1981), in particular the discussion of the gross error
model, and also Tukey (1960).

As an estimator of the density g we propose

Wy (1)

Tre(A- (@)

“+1
(14) (o) = / T DGy (101 (d,)
—1

27 A(dy)

where Uy (t) denotes the empirical characteristic function of the observations
Y(1),....Y(n); Yr., Uy are the characteristic functions of T'(1)e(1l) and the
random variable W, respectively, whose density is used as a kernel and will be in-
troduced below. Furthermore, A(n) = cn™% with § € (0,1) to be determined later
is a bandwidth function and d, = en/logn. Here and below ¢ always denotes a
generic finite constant which may change from one occurrence to another.

Apart form a sharp uniform rate of convergence result for g, (z) the paper also
gives a rate of convergence for the empirical characteristic function in the linear
process context and utilizes this to demonstrate that deconvoluting kernel den-
sity estimators attain the optimal rate in the dependence case with exponentially
decreasing error characteristic function.

2. Convergence

In this section we will show that with an optimal choice of the bandwidth A(n)
the estimator §, () converges to g(z) at a rate of O(n~2/%(logn)%/1°) a.s. This rate
compares well with the one for uncontaminated iid observations, see Karunamuni
and Mehra (1990), and is significantly faster than the deconvolution rates (even in
the iid case) for normally distributed contaminating errors, see Carroll and Hall
(1988). Hence the result is insofar surprising as the “best” available observations
essentially determine the almost sure rate of the deconvoluting kernel estimator
rather than those observations of lesser quality and this is so irrespective of what
their relative proportions are.

The conditions we require are fairly mild and will now be introduced.

A: The random variables £(j) are iid with absolutely continuous distribution
and a finite absolute moment of order &« > 0. T(j) are iid Bernoulli random
variables with parameter (1 — p) € (0,1); |px| < cp* for some p € (0, 1).

B: The density g(z) of X(j) is bounded and has uniformly absolutely
bounded and continuous derivatives up to order two, i.e. sup,cpg(z) < M,
sup,cg |9'(z)| < M, sup,crlg”(z)| < M.
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C: infy |[Ur.(t)] > p and 22 ‘/-:1 e W - (8) ) Ure (t/ M(n))dt —*—>0 for
A(n) = O(n~%) and any 6 € (0.1).

D: W is a zero mean and finite variance random variable with a symmetric
density W'(z) and a characteristic function Wy (¢) that vanishes off [—1, +1].

E: P(|Y(i)] > a) < a7 for all a > 0 and some 7 > 2(1 +6)/(1 — 36).
It is clear by the Riemann- Lebesgue lemma that the second part of Condition C
is satisfied for example if Wy (t)/¥r, ((A71(n)) has two continuous integrable
derivatives. An example of a density satisfying Condition D is

Wi(z) = S:F <gm...(/i4 )

. (f)_{()‘f3—612+1 for 0<¢<1/2
T cat 62 —6t 12 for 1/2<t<1,

with characteristic function

and for t € [—1,0) given by symmetry. Uyu-(¢) also possesses two continuous
integrable derivatives.
We are now ready to state the main

THEOREM 2.1.  Under Conditions A-E the following rate is obtained for con-
vergence of g, (x) to g(x):

P (lim supn?/®(logn) =910 snp |gn (1) —glx)| < x) =1

n—oc reR

This rate is achieved for the bandwidth choice A(n) = en~1/2.

PRrROOF. Define the process

m{n)—1

Y()= Y pesli— k) +T()el))

where m(n) = [¢logn] with some appropriate constant ¢ to be chosen later. [z]
denotes the largest integer smaller than or equal to x. The density of X (J) is the
convolution of {(px) ' f((pr) ta) 1 k= 0,1..... m(n) — 1} where f denotes the
density of «(j).

Consider first

1 Ty Wy (t)
9 S () — S—ite AT (dy) J ) -1 / 1t
(Hl) y”‘J(‘l) 2”/\((1,1) /—1 ‘ \I}}(t\ ((1”))\I"T(:r(t’\_l(dn))(

n;—
- u k=0

tion of ¥ ba‘socl on Y(j),Y(G+m@).... .Y+ (n; —1)m(n)) and (n; —1) is the

where \IIJ e\p 11‘}7'(.7' + km(n)) is the empirical characteristic func-
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largest integer so that (n; —1)[¢logn] < n. Observe that n; is of order O(n/logn).
Clearly, gn j(x) are not statistics since they are not functions of the observations
Yi, ..., Y, It is crucial for the proof to link them to g, (x). This will be done later,
first we will evaluate the properties of g, j(z) as an “estimator” of the density of
X (1) which we denote by §

In particular we will show that

(2.2) P (limsup n(1=8/2(jog n)/2-1 sug@n‘j(;l) Egn j(x)| < B)
r€

n—0o0

and for the bias

(2.3) P (lim supn”®(logn) ™ sup |Egn ;(x) — g(x)| < B) =
n—oo reER
f01 all j =1,2,...,m(n), B sufficiently large and the bandwidth function A(n) =

6€(0,1). To demonstrate (2.2) it suffices to show that

n;—1

(2.4) P<hm sup sup Z W (Y (j + im(n)))

n—oc 47 .reu n

— E(WX (Y (j +im(n))))

<B>=

where
W2 (y) = n1+92(logn) =027 W, ((y — 2)/M(dy))
) en®(logn)~¢
u@up:@iﬁﬁﬂﬁ/% B et W (A(dn))
2 —cn?(logn)—¢ \IJT(>(f) i
and

W, = {WZ(y) = € R}.

W, is a sequence of sets of functions whose elements depend on n. We prove (2.4)
by introducing

(25) W (y) = (2m) 'l 2 (log )2
. /+cn (logn)~ e——lf(L —y) \IJH ((,f'” (log n)é)dt
—cn?(logn)~* \PTC (t)

for z; = jA and j € {0,%1,...,£[2K D!} := I with

K = 66_1/271(1_36)/4(10g '71)_1/2+36/4,

~38/2-1/2( 1+36/2

D = cen logn)
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In addition, for j = [2K D71 + 1 set

(27p) 01D 2 (logn) =271 for |yl > K

2.6 W (y) =
(26) ) {5/2 for |y] < K.

Similarly,
(2.7) M (y) = (2m) 7! n(1=9/2(1og n)8/2-1

./ﬂ'nh(logn)_h e—it(zj—y)\IIH"(Ctn_é(k)gn)é)

dt — ¢
—cnt(logn)~*¢ \IJTe(t)

for ; = jA, j € I, and finally
(2.8) I (y) =0

for j = 2KD~'] + 1. There are L(n) = O(n?/1+3%/4(log n)=5/4=3%/1) pairs of
functions *W,’ (y), .Wn’(y). They exhibit the properties stated in Lemma 2.3
below.

Now, with J =T U {[2K/D] + 1}

en/logn—1
(2.9) P( sup |clogn/n Z WY (j +im(n)))
WreW, i=0

— E(W (Y (j +im(n))))

>+ 20 + 45)

cn/logn—1

clogn/n Z W (Y (j + im(n)))

i=0
> C'1>
cen/logn—1

clogn/n Z T (Y (5 4 im(n)))

1=0

<P <'1nax
ke

— E(W™(Y'(j +im(n))))

max
ceJ

+p<
k

— E(WE (Y (j + im('ﬂ))))|

cn/logn—1

clogn/n Z W (Y (j + im(n)))

=0

— sup
Wrelv,

— B(WI(Y(j + im(n))))

> 20y + 45)

where Wk is a fixed but arbitrary element of the set W which we define as

Wr = {Wi(y) Wi y) — Wi ()] < [Tk (y) — VM ()Ivy € R}
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and clearly W, = [J{W} : k € J}. The introduction of W, and the construction
(2.5)-(2.9) is related to the metric entropy techniques introduced in Dudley (1978).
We now bound the variance of W7* (Y (j 4+ im(n))). We have

var(WI (Y (5 + im(n))))

< max max sup E((ﬁ’,’fk()}(j+1777'lv(77'))))2)
1Sjsmin) K€J (i-rk g ypk

< maxmax max | sup [TV (y)| | E[W (Y (j + im(n)))|
J Bk \ yeRr

< en(logn) ™2

+1
()ict(y—‘r;‘.)n“‘(log;n)‘A \II‘:V(#) dt
ik oW\ y o Ur, (ctn®(logn)=—?)

and since as a consequence of Condition D, Uy (1) is integrable and we can obtain
the bound

- max Imnax max <sup

dt

(&
cn®(logn)—¢ \Ich(f)

/+cn‘ (logn) ™ —it.rkpitf’(l) ‘I’u’(Ct’II_ﬁ(log 7?)6)

var(W (Y (j + im(n))))
< en(logn) ™2 max E(|gn ;(x)])
J

< en(logn)~? max (sup §(x) + sup (x) - E(lén.j(-r)IH)
J T€ER r€R

< en(logn) ™% max <Sup g(x) + sup |g(x) — g(x)]
J reR +eR

T sup [j(x) — B
r€R

f/n,j (I) | ) ')
< en(logn) ™2

by Lemma 2.2 below and by an argument similar to the one that establishes (2.3)
which is proved below. In addition,

max max sup | (Y (j + im(n))) — E(W (Y (j + im(n))))|
1<j<m(n) keJ TR

< 2max max sup sup |7* (y)]
R

(,77(1+5)/2(

Pl max
keJ

IA

logn)~'—4/2

so that

en/logn—1

clogn/n Z W (Y (j 4 im(n)))

=0
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> C1>
cen/logn—~1

clogn/n Z W (Y (j + im(n)))

1=0
> Cl>

< 2L(n) exp(—cn(log n)~tc? <2 var(W=+ (Y (j + im(n))))

— B(WZ(Y (j + im(n))))

< L(n)P<

— E(W* (Y (5 + im(n))))

F(4f3)ersup 7 <y>|))

< cL(n)n—CC?

by Bernstein’s inequality. We therefore have established a bound for the first
summand on the right-hand side of (2.9).

For the remaining term in (2.9) note that for sufficiently large n

cn/logn—1
max|clogn/n Y WiH(Y(j+im(n)) = EGW* (Y + im(n)))
kes =0
cn/logn—1
— sup [clogn/n Z WY (7 +im(n)))
WreWw, i=0

— E(W(Y(j + zim(n))))H

cn/logn—1
< max sup |clogn/n Z (W2 (Y (4 + im(n)))
ke wrewp i=0

— WE(Y (5 +im(n))))

— E(WE(Y (j + im(n))) - WH(Y (j + im(n»)))’

cn/logn—1
<max sup |clogn/n Z (WY (j +1im(n)))
ke wrewp i=0

— W= (Y (j 4+ im(n))))
— E(W2(Y(j +im(n))) = W (Y (j +im(n))) ’
cn/logn—1

clogn/n Y (WY (G +im(n))) — WE(Y (5 +im(n))))
i=0

+
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— E(WE (Y (j +im(n))) = WH(Y(j —l—im(n))))’

cn/logn—1

clogn/n Z (W (Y (j + im(n)))

=0

— (Y (J +im(n))))

< maxsup
koows

—Ewa?u+mmw»—Amwfu+hmmnﬂ

en/logn—1

+ |clogn/n Z PTEE (Y (j 4 im(n)))

1=0

— WY (G + im(n))|
— BE(FWE (Y (5 + im(n))

+ 45)

since E(|"W (Y (j 4+ im(n))) — .W* (Y (j + im(n)))]) < ¢ by construction and
Y (k) converges to Y (k) a.s. at an arbitrary rate if ¢ is increased so that for n large
enough

— WY (5 +im(n))])

E(T W (Y (f 4 im(n)) — W (TG + im(n))]) < 2

Therefore the second term on the right side of (2.9) is upper-bounded by

en/logn—1

clogn/n > (W (Y (j+im(n)) — SV (Y (j +im(n))))

=0
> (‘g)

(2.10) P <1nax
kelJd

cn/logn—1

— E(W (Y (j + im(n)) = V(Y (j + im(n))))
clogn/n > [PWrH(Y(j + im(n)))

+ P{ max
ke J _
=0

— VY (G + im(n))]

— E("W (Y (j + im(n))) — Wi (Y (j +im(n)))])

> ('g)

and again both terms can be bounded by Bernstein's inequality:

|U ’(J +im{n))) — Jl’,‘f"‘(f’(j + ’i'7n(7z)))|2)

< (SUP Wi (y) — *”’Vﬁ*(’y)|>
yER

E(|W (Y (j + im(n))) — JWI(Y (j + im(n))])

(1+6)/2 —1-6/2

< cen (logn)
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by construction of ,W=*, *WZ+ and W2+, Similarly,
E("WI (Y (j + im(n))) — W (Y (j + im(n)))[?) < cenM+8/2(1og n)=1-/2

so that both probabilities in (2.10) may be handled in the same fashion. By
Bernstein's inequality (2.10) is bounded by

4L(n) exp(—ccan(logn) ! /een1T8/2 (1og n)~17/2),

Combining the bounds for the terms in (2.9) we finally arrive at

cn/logn—1
(2.11) P ( sup |clogn/n Z Wo(Y (5 + im(n)))
WreWw, i—0

E(W(Y(j +1im(n))))

>c1 + 20 +45)

< CL(n)'n_CCf
+ 4L(n) exp(—ccin(log n) ™! /cen!1 T8/ 2 (log n) =1 ¢/2).

The right side of (2.11) is obviously summable and by the Borel-Cantelli lemma
(2.2) is found to hold. For (2.3) we first evaluate the expectation

AT Hdn) , ,
(2.12) E i i e—“f\iﬂ.,(t)wdt
Y

27( — A 1{dy) ‘I’Tc t)

—itx

2 -2~ 1(d,) \PTF(t)
(PE(NE) 4 (1 = p)E(et X Rreth gy
L +AT (d“) e—it;tM

27r —/\_l(dn) \IlTE(t)

: <p/ e'2g(z)dz + (1 —p)/ ety (/ g(2)k(y — :)d:> dy> dt
R R R
where k(y) is the density of e(1). Further,
1 AN U (EM(d)) </ " < '
1-p et T ety / g(z)k(y — 3)dz> dy) dt
( ])QW/ A=1(dy) Ure(t) R® Jr

+AT (‘1 ) _ \I/ (tA( n)) C’(t) pd
B zt(.. ) =W z)dzd
(1 /971'/,\ Yd,, Wre(t) et

) +,\—1(,1,,>€ 10 U (tA(dn))

and so, in summary,
1 +ATHdn) _ i
Egn.(x) = 5;// G (N (o)) (2) dbd
RJ—=X\

- /R A AW (= 2)A~ Y (dn))g(2)dz
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since the characteristic function of T'(j)e(5) is p + (1 — p)¥.(¢t) with ¥.(t) being
the characteristic function of e(j). Then

Egn () - g(z) = /R W(w)lg(x — Mdn)y) — g()]dy.

Due to Condition B the density g is twice differentiable with uniformly absolutely
bounded derivatives so that (remembering that ¢ is a positive constant, not always
the same one)

sup [Egn,1(2) = 9(2)] < cA(dn) sup () / YW (y)dy
re TE

+cA(dn Suplg”(r l/y W(y
< en~ % (log n)“‘5

and (2.3) follows with the help of part (b) of Lemma 2.2. Now, to link g, ()
defined in (2.1) to the sample statistic §,(z) defined in (1.4) we first observe that

min gn,j(I)Sgn( z) < max gn;(x)

1<i<m(n) 1<j<m(n)
where
]. +1 it A—l 3 \II (t)
“(x) = —HEAT DG (I H(d )
gn(l) 27T)\(dn) /_1 € ( ( ))\I’Te(t/\_l(dn))
with

= ! E exp(itY (k
n
k=0

By Lemma 2.2

sup |gn(z) — g5 (2)] = O(n_l/z) a.s.
z€R

for ¢ sufficiently large. Therefore

SUp [§n(z) = Egn(z)| < max  sup|gn,;(z) = Egn ;(2)| + O(n~"/?)
z€R 1<j<m(n) zeR

and
P ( (1=0)2(1og n)*/2= 1 sup |gn (z) — Egn(z)| > ¢ + om—”?))
r€eR

< (| max supn=)2{logn) 7 g (o) - Eus(e)] > c) .
1<i<m(n) 2eR
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Sumimation over n gives

X0
Z P ( max  supn{!=8/2(logn)4/2- Yon; (@) = Egn j{x)] > c1 + 209 + 4e
nero 1<i<m(n) reR
oo m(n)
< Z 4L(n) exp(—ccin(logn) ™! Jeen1T9/2(log n)=5/2-1)
n=ng j=1

+ cL(n)n‘CC? < 00

for any ¢ € (0,1) and ¢, ¢1, ¢2 sufficiently large. Comparing the rates of bias and
variance, namely O(n?¢(logn)~2%) and O(n1=%/2(logn)%/?=1), the rate stated in
the theorem results from 6 = 1/5.

The proof of Theorem 2.1 refers to Lemmas 2.1, 2.2, 2.3 which we establish
now.

_ LemmaA 2.1 Let X)) = Zig)~lpk6(j — k) with m(n) = [¢logn] and
Y(5) = X{(J) + T()e(y). Under Conditions A-D we have
Y < 71
1@]&2{71 [Y(j) =Y ()| <cZn

where Ty may be made arbitrarily large by increasing ¢ and Z is a random variable
that is a.s. finite with P(Z > z) < ¢z™® for all z € R4+, a being defined in
Condition A. In addition

sup |F(z) — F(z)| = O(n=am/tatl)y g5
r€R

where F(x), F(x) denote the distribution functions of X (j) and X(j), respectively.

PROOF. The proof is similar to the one in Hesse (1987), Lemma 2 and is
therefore omitted here.

LEMMA 2.2. Let X(j) = Zig)*lpkc”(j — k) with m(n) = [¢logn] and
Y(ii)=X{)+T(G)e(y). Also, define

1 1 it AT ! 2 \IJLV(t)
() = —itx) ([[”)\IJ“» t/\_l dn di
9n () 27r/\(d,l)/4 ¢ y (A d)) g3 =1 )

as an “estimator” of the density § of X(j) where \I/, is the empirical characteristic

function of Y(1),...,Y (n).
Then under Conditions A-E
(a) suplgn(z) = gu(z)| = O(n™7)
z€R

(b) suplg(z) — g(z)| = O(n™™)
z€eR
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where 7;(> 0) may be made arbitrarily large by increasing ¢ (see definition of Y (5))
and g, () is as in (1.4).

Proor. (a) By Lemma 2.1 for ¢ sufficiently large

max | exp(it((Y(j) — 2)A (dn))) — exp(@t (Y (5) — 2)A7 (dn)))]

1<j<n

< max (ct|Y (§) - Y(5)A " (dn))

1<j<n
< ctZn=°

and hence

1 +1 . . -
sup (5o [ lexpl((¥ () = 21~ )

+1

S c)\‘l(d.,l)Zn_C/ |t\I’n/(t)Idt = O(’I’l,_rz) a.s.

-1

(b) We know that

F(z+h)—F(z) F(z+h)-F(x)
h h

and also

F(zx+h)— F(z) F(z+h)-F(z)
h B h

<|F(z +h)—F+h)| |F)- F(z)|> |

sup
z€R

< sup
z€R

n * h
With 2 = n~7 for some v > 0 this is, by Lemma 2.1, of the order

nﬁO(n—an/(a#—l)) - O(n—an/(a-l—l)+7) = 0O(n~™).

LEMMA 2.3. The functions *Wy’ and ,Wy’ defined in (2.5)—(2.8) have the
following properties:

(a) For all W2(y) = n+9/2(logn) =827 W, ((y — x)A~(cn/logn)) € W,
there exists an index j € J such that for all y € R

W3 (y) = "Wai(y)| < PWR(y) — W (y)l.
(b) ForalljeJ ande > 1,

E(*WE (Y1) - Wi (Y(1)) <=
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ProOOF. The proof of these results is straightforward and is therefore omitted.

Remark 1. The result of Theorem 2.1 can be extended beyond the context
of partial contamination. Subject to E it holds more generally for any error
distribution whose characteristic function is twice continuously differentiable and
uniformly bounded away from zero in absolute value. The class thus specified is
rich and includes elernentar;/ examples such as the distributions with characteris-
tic functions p+ (1 — ple™ " /2, p+ (1 — p)(1 + )1 (i.e. partially contaminated
normal, Laplace, respectively, for any amount of contamination (1 — p) € (0,1)),
and in general any partially contaminated distribution if that distribution’s char-
acteristic function is real and non-negative. Also included are the Bernoulli(1 — p)
distribution with p # 1/2 and the Poisson()\) distribution. For the latter this is so
since clearly

|exp(A(exp(it) — 1))| = exp(Re[A(exp(it) — 1)]) = exp(A(cost — 1)) > e 2*

where Re[z]| denotes the real part of 2. Additional and less elementary examples
are provided by the distribution of a compound Poisson random variable Z =
ST, Z; for appropriate choices of the distribution of the iid Z; random variables
(m is a Poisson(A) random variable) as well as by the distributions corresponding
to the characteristic functions

y(t) = explexp(—at®) — 1]
U, (t) = explexp[Aexp(it)] — exp A].

Remark 2. The result of Theorem 2.1 is valid if the amount of contamination
is known. If p € [0, 1] is also unknown then the question of identifiability re-emerges
with respect to p. Since the density g to be estimated is unknown the parameter
p is identifiable for a given error density f if for the characteristic functions ¥,
U,, and ¥y of densities g;, g2 and f, respectively,

a1+ (1= p1)¥s(t)] = Wo, (t)[p2 + (1 = p2) ¥ (1)]V?

g2

implies p; = ps for all smooth g; and g2 satisfying the conditions of Theorem 2.1.
However, with

\I]f(t) = exp(~t2/2)7 D1 € (0’ 1)7 P2 = 1
Vg, (t) = exp(—t?/2)
92(2) = pro() + (1 = p1)27%p(27122)

the above implication does not hold, where ¢(z) is the standard normal density.

Remark 3. The rate given in Theorem 2.1 for the contamination and de-
pendence case compares well with existing results for ordinary density estimation
from iid uncontaminated observations. For a second order kernel with bounded
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support the relevant rates are o((n~!logn)?/°M,) a.s. where M, < loglogn and
M, — oo (Karunamuni and Mehra (1990)).

It is interesting to compare deconvolution of partially contaminated linear
processes with deconvolution of fully contaminated linear processes, i.e. with the
situation arising for p = 0 in the above model. Towards this end we first present
a theorem for the empirical characteristic function of

pr]-k +e(d), ji=1,...,n

THEOREM 2.2. Under Conditions A, B and E but with p = 0 in Condition
A we have

P (limsupnl/z(logn)"1 sup |Uy () — Uy (t)] < oo> =1

n—00 [t]|<n?
where 6 is an arbitrary positive constant.

PROOF. Because of Hesse (1990) Propositions 2 and 3 with g(i) = cp’,
p € (0,1) and h(n) = [¢logn] = m(n) it suffices to obtain the stated rate
O(n=Y2logn) for convergence of the characteristic function ¥s. of

[¢log n]

D meli—k)tel@), J=1....n
k=0

With )

1 e .

\Ili(t) = E kz::o exp(1t(Y'(j + km(n)))
we have

sup  |Up(t) — Tp ()] < max sup WU (t) — Uy (t)]
[¢]<(m(n))® 1<i<m(n) |t1<(m(n))®

and by the methods of Csorgo (1985)

p <n1/2(logn)—1 sup |\i/'7~,(t) - \I])"/(t” > C)

[t (m(n))?

16 exp(—cy logn)

< cexp(—c; logn) + K,n?T1/2(logn)
where ¢1, ¢co may be made arbitrarily large, 8 > 0 is arbitrary, and

K, =inf{z > 0: P(|Y(1)| > z) < n"%logn}.
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Therefore by appropriate choices of ¢; and cq

Z P ( max sup |\I/;/(t) - W (t) > c)
n=ng

1<5<m(n) |4]< (m(n))?

< chogn(n_Cl + Kponf+1/2=e2(logn) 17%) < o

since K, is of polynomial order. With this theorem we may now obtain deconvo-
lution rates for the model (1.3) with p = 0.

THEOREM 2.3. If Conditions A (with p = 0), B (with “two” replaced by s),
E hold, Wy (t) is even, real-valued and nonincreasing on [0, 00) with max(r,s) + 1

bounded deriwatives such that Uy (1) = --- = \Ilg,—l)(l) =0, \Il(v:,)(l) # 0 and
T 0) =0 = wi(0) = - = w7V0), ¥(0) # 0 and in addition W.(t) is

real-valued, non-vanishing with (U, (t))™! ~ at? exp(7t8) as t — oo for constants
a,&,7 >0, |0 < oo then

P <limsup(10gn)"‘/E sup |gn(z) — g(z)] < oo> =1

n—oo z€R
where gn(x) 15 as in (1.4) with A = A(d,) = (2v/logn)'/¢.
Proor. We have

sup |gn () — g(2)] < sup |gn(z) — Ega(2)| + sup |Ega(z) — g(2)|
z€R z€R reR

e )
% /_/\_1 e_itr(‘l’}f(t) — \Il)(t))\l"lylv((i;\)

< sup dt +cA®  as.

zeR

A-l
R Wy (EA
<c sup I\I/y(t)—\lly(t)|/ wl )dt+c/\s a.s.
0 €

] <A We(t)
< en V2 (logn)AUTDE P exp(yATE) + cX® as.

by Lemmas 3.1-3.3 of Stefanski (1990) and by our Theorem 2.2. Now the optimal
choice A = (2/logn)'/¢ produces the result.

In the normal case with £ = 2 this theorem reproduces the optimal rate
of order (logn)~*/? obtained by Carroll and Hall (1988) for iid observations with
normal contamination errors. We have shown that this rate of order O((logn)~%/%)
is still valid if observations have the dependence structure of a linear process.
If observations are merely partially contaminated then the results of the paper
show that deconvolution rates improve in a significant fashion from logarithmic to
polynomial order and get close to the best rates available for iid uncontaminated
observations.
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