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A b s t r a c t .  Two-factor  exper iments  in which bo th  factors are ordinal  are con- 
sidered. If it  is believed apriori t ha t  the  mean response is nondecreasing in 
each factor wi th  the  other  held fixed, then  one may  tes t  for a t r ea tmen t  effect 
by  tes t ing homogenei ty  wi th  the  appropr ia t e  ordered al ternat ive.  The  likeli- 
hood  ra t io  test  has been developed in the  l i terature ,  bu t  the  level probabi l i t ies  
needed to implement  the  tes t  have only been de te rmined  in a few special  cases 
by Monte Carlo techniques. A test  ob ta ined  by combining the  p-values from a 
tes t  concerning the rows and a test  concerning the columns is studied.  F isher ' s  
me thod  of combining p-values is recommended.  I t  is shown tha t  the  l ikelihood 
ra t io  tes t  is more powerful, bu t  if one does not  want  to ob ta in  Monte  Carlo 
es t imates  of the  level probabi l i t ies ,  then  the procedure  proposed  here should 
be considered. 

Key words and phrases: Bivar ia te  trends,  combining p-values, F isher ' s  meth-  
od, l ikelihood ra t io  tests,  ma t r ix  ordering, order  res t r ic ted tests ,  two-moment  
approximat ions .  

i. Introduction 

We consider two-factor experiments in which both factors are ordinal level. In 
some of these situations, the mean of the dependent variable is believed apriori to 
be nondecreasing in each factor when the other is held fixed. For instance, over 
suitable ranges it may be reasonable to assume that  average yield is a nondecreas- 
ing function of moisture and amount of a certain chemical in a fertilizer. Suppose 
there are R levels of the first factor, C levels of the second factor and #ij is the 
mean response with the first factor at level i and the second factor at level j .  One 
cou ld  t e s t  to  d e t e r m i n e  if  t h e r e  is a n y  t r e a t m e n t  effect b y  t e s t i n g  h o m o g e n e i t y ,  

(1.1) Ho : #iy is constant, 
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with the alternative 

(1.2) H l : # i j  <#i , j ,  for l < i < i ' < R a n d l < j < j ' < C  

with at least one inequality. 

The relation, ~<, defined on F = {(i,j) : 1 < i _< R and 1 < j _< C} by 
(i,j)<~(i',j  ') if and only if 1 < i < i' <_ R and 1 <_ j <_ j '  <_ C is a partial order, 
which we refer to as the matrix order. Thus, assuming the responses are normally 
distributed, the work of Bartholomew (1961) gives the likelihood ratio tests of H0 
versus H1. However, the null distributions of the test statistics involve mixing co- 
efficients which are called level probabilities. In particular, the null distributions 
are mixtures of chi-squared or beta distributions depending on whether the vari- 
ances are known or not, see Robertson et al. ((1988), Section 2.3). For this partial 
order, the level probabilities seem to be intractable. For R = C = 2, formulas 
exist, cf. Robertson et al. ((1988), p. 84), and Lemke (1983) obtained Monte Carlo 
estimates of the level probabilities for a few pairs (R, C) for the special case in 
which the sample sizes are the same for all (i, j).  

Following the work of Mudholkar and McDermott (1989) and McDermott and 
Mudholkar (1993), we develop tests o f / t0  versus t t l  by combining p-values. The 
effieiencies of the procedures developed by McDermott and Mudholkar compared 
to the efficiencies of the likelihood ratio tests tend to decrease with the number 
of p-values that  are combined. For that  reason, we consider combining the p- 
value from a test of homogeneity in each row with a nondecreasing alternative in 
each row with the p-value of a test for equality of row effects with the alternative 
that  the row effects are nondecreasing. One could employ the tests developed 
by McDermott and Mudholkar on the rows and on the columns, but this would 
involve combining more p-values and we suspect this would cause a decrease in 
efficiency. Thus, we use the likelihood ratio tests on the rows and on the columns. 
While there are several ways to combine p-values, we considered the three methods 
studied by Mudholkar and McDermott (1989), Fisher's, Liptak's and Tippett's. 
As in their study, we found that  Fisher's method gave better power characteristics 
and so we only report the results for Fisher's method of combining p-values. 

If interaction is not present, then order restricted tests for main effects are rel- 
atively simple to conduct, see Robertson et al. ((1988), pp. 66-70) and Kulatunga 
and Sasabuchi (1984a). However, if interaction cannot be ruled out, then the pro- 
cedure presented here could be employed while Bartholomew's procedure cannot 
be implemented unless one wants to obtain Monte Carlo estimates of the level 
probabilities. 

The case of known variance is considered in Section 2. Those results provide 
large sample tests for one-parameter exponential families and in nonparametric 
settings. They also lay a foundation for the results in Section 3 which deal with 
an unknown variance. In Section 4, approximations are given for the p-values 
needed to implement these tests as well as certain powers for the special case of 
balanced designs. The results of a Monte Carlo study of the power of this test 
and the likelihood ratio test are discussed in Section 5. Dykstra and Robertson 
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(1982) present some data on first year university grade point averages (GPA) as 
a function of high school percentile ranks and scores on an entrance examination. 
In Section 6, the procedure developed here is applied to similar data which has 
been collected more recently. 

For balanced designs, known variance and the test obtained by combining p- 
values, it is conjectured in Section 4 that  the minimum of the power function over 
points in H1 at a fixed distance from H0 occurs at one of two types of alternatives 
and numerical evidence is given to support the conjecture. Also, approximations 
to the power function at these alternative are provided. In our Monte Carlo study, 
it was found that  the approximations are adequate for most purposes. These 
approximations provide some assistance in designing experiments with a specified 
power at a fixed alternative. 

In each case considered in Section 5, the likelihood ratio test has the larger 
power, but to implement it, one must obtain Monte Carlo estimates of the level 
probabilities. The test based on p-values does not have this drawback. For the 
variance known case with distance from H0 chosen so that  the minimum power 
of the test proposed here is about 0.8, the minimum power of the test based 
on p-values is about 95% of the minimum power of the likelihood ratio test for 
(R, C) = (3, 3). This percentage seems to decrease with R and C, but is about 
88% for (R, C) = (9, 9). Similar results hold for the variance unknown case with 
moderate sample sizes. However, for a common sample sizes as small as two, the 
corresponding percentages are 86% for smaller values of R and C and 82% for 
(R, C) = (9, 9). 

2. A test based on p-values: variance known 

We suppose that  X i j k  ~ N ( t t i j , o  -2) for k = 1 , . . . , n i j ,  i = 1 , . . . , R  and 
j = 1 , . . . ,  C are independent random variables and with a2 known and Ho and 
H1 defined as in (1.1) and (1.2), we consider testing H0 versus H1. Let N = n.. = 
n l l  + " "  + a r c  be the total sample size and for 1 < i _< R and 1 _< j _< C, 
let n~. = n i l  + "'" + n~c, n.j  = n U + . . .  + nnj,  ~(-ij. be the mean of X i j k  for 
]~ = 1 ,  2 ,  . . . , ~ i j ,  

C R 

(2.1) J~i-. = Z n i j X i j . / n i . ,  f ( ' J  = E n i j f ( i j . / n . j  and 
j = l  i=1 

R C 

i=1 j = l  

One could test Ho versus H1 in two stages. First, test H01 versus Hl l  with 

(2.2) 
and 

(2.3) 

H0~ :# i l  . . . . .  # i c  for l < i < R  

H l l  : /Z i l  _< - ' "  _< P i c  fo r  1 < i < R with at least one inequality. 
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If H01 is rejected, then H0 is rejected. If H01 is not rejected, then with /Ai. = 
(nil~All q -""  4- nic/Aic)/ni,  for 1 < i < R, test H02 versus H12 where 

(2.4) H02 :/A1 . . . . . .  /AR. and H12 :/A1. < "'" </AN. with ].t 1. < /AN.. 

If Ho2 is rejected, then H0 is rejected. However, we follow the closely related 
approach used by Mudholkar and McDermott (1989) and base a test on the p- 
values from the two stages above. At each stage, we use the likelihood ratio test 
developed by Bartholomew (1961), but  slight modifications are needed in the first 
stage since H01 is not homogeneity. 

2.1 Maximum likelihood estimates 
Under H01, the maximum likelihood estimate of #ij is _3[i.. and we let #i*j 

denote the maximum likelihood estimate of/Aij subject to the restrictions in H n .  
Because the partial order which determines H n  is decomposable, the/Ai*j can be 
computed separately on the rows, see Robertson et al. ((1988), p. 85). Further- 
more, on a given row the partial order is a simple order and thus /Ai*j can be 
computed by the pool-adjacent-violators algorithm on each row separately, see 
Robertson et al. ((1988), p. 8). That is, for each i, the pool-adjacent-violators 
algorithm is applied to 3~ij. with weights nij. 

Reparameterizing in terms of/Ai, and o~ij ~--- / A i j  - -  /Ai. for 1 ~ j < C - 1 and 
1 < i < R, we see that the maximum likelihood estimate of/Ai, under/ /02 is )(... 
and we denote the maximum likelihood estimate of/Ai, subject to the restrictions 
in H12 by/A*.. The/A*. can be computed by applying the pool-adjacent-violators 
algorithm to the )2i.. with weights ni.. 

2.2 Test statistics 
For a2 known the likelihood ratio test of H01 versus Hl l ,  which was studied 

by Kulatunga and Sasabuchi (1984b), rejects H01 for large values of 

N C 

(2.5) T1 = E Y i  where Yi = E n i j ( # i * j  - Xi..) 2 for 1 < i < R 
i=1 j=l  

and Y/ for 1 < i < R are independent. Let n = ( n l l , . . . , n N c )  ~ and let n/ = 
, . . .  n / (nil , iC) for 1 < i < R. Kulatunga and Sasabuchi (1984b) note that under 

Hol, 

C 

(2.6) pr(Y//cr 2 ~ y) = ~ P(l ,  C; h i )pr (x~- i  _~ y) 
/=1 

where X~ denotes a chi-squared random variable with ~ degrees of freedom, X02 - 0 
and the P(1, C; hi) are the level probabilities for a simple order which are dis- 
cussed in detail in Robertson et al. ((1988), pp. 77-82). If for C > 5, one uses the 
FORTRAN program given in Bohrer and Chow (1978) to compute the level prob- 
abilities, then the program due to Sun (1988) for computing orthant probabilities 
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works well. Using (2.6) and the independence of the Yi, Kulatunga and Sasabuchi 
(1984b) note that 

R C  

(2.7) pr(T1/(y 2 _> t) = E P(I, RC; n) pr(xz_ R 2  _> t) 
l = R  

with P(1, Re;  n) the convolution {P(l, C; nl)} * . - .  * {P(l, C; nR)}. 
The likelihood ratio test of H02 versus H12 rejects H02 for large values of 

R 

ft  * T2 = x )  2 
i=1  

and applying Theorem 2.3.1 of Robertson et al. (1988) again, under H02, 

R 

(2.8) pr(T2/cr 2 _> t) -- Z P(I ,R;nl .  , . . . , hR . )  pr(xz_ 12 >_ t), 
/=1 

where P(l, R; n l . , . . . ,  rtR.) are the level probabilities for a simple order which are 
discussed above. 

2.3 P-values 
T1 and T2 are independent because T1 is a function of {f(ij. - fi2i.. " 1 < 

i _< R, 1 _< j _< C} and T2 is a function of{Xi..  : 1 _< i < R}. Let *~l(t) and 
/~2(t) denote (2.7) and (2.8) respectively and note that for i = 1, 2, the p-value for 
the i-th stage is Pi - /~i(Ti/a2). Also, Fi(0) = 1, Fi is nonincreasing and /~i is 
continuous except at t = 0. Because/ ' i  is not continuous, the null distribution of 
the p-values are complicated slightly. Let Pi = _fi'i(0+) and for 0 <_ y <_ Pi, let Xiy 
be such that T'i(xiy) = y. Thus, 

p r ( P i > y l T i > 0 ) = l - y / p i  if 0 < y _ < p ~  

and the conditional distribution of P~ I T~ > 0 is uniform on (0,pi). With P" = 
Pi/p~, the conditional distribution of P~' I T~ > 0 is uniform on (0, 1). 

Without loss of generality, we may base our test statistic on the P/'. In par- 
ticular, the proposed test rejects H0 for large values of 

2 

(2.9) % =-2ZlogP ' .  
i = 1  

Conditional on Ti > 0, - 2  log P" has a chi-squared distribution with two degrees 
of freedom. Thus, conditioning on whether Ti is positive or not, we see that under 
H0, 

(2.10) pr(~T > c) = PiP2 pr(x~ _> c ) +  p1(1 --P2)Pr(x 2 _> c -  2 logp2) 

+ (1 -- Pa)P2 Pr(x~ _> c -- 2 logpl) 

+ (1 -- pl)(1 -- p2)I(2 logpl + 2 logp2 >_ c), 

where I(A) is the indicator of A. Of course, the last term in (2.10) is zero for 
c _> 0. Table 1 gives the critical values for ~T for 2 _< R, C _< 9, selected a and 
balanced designs. 
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Table 1. Critical values for ~T  and ~ with balanced designs. 

R c~ C = 2  C = 3  C = 4  C = 5  C = 6  C = 7  C = 8  C = 9  

2 0.100 5.694 6.051 6.160 6.209 6.234 6.249 6.259 6.266 

2 0.050 7.426 7.779 7.888 7.936 7.961 7.977 7.986 7.993 

2 0.025 9.097 9.448 9.557 9.604 9.630 9.645 9.655 9.662 

2 0.010 11.244 11.594 11.702 11.750 11.775 11.790 11.800 11.806 

2 0.001 16.456 16.803 16.911 16.959 16.984 17.000 17.010 17.016 

3 0.100 6.660 6.855 6.900 6.915 6.922 6.925 6.927 6.928 

3 0.050 8.376 8.570 8.615 8.630 8.637 8.640 8.642 8.643 

3 0.025 10.036 10.231 10.275 10.290 10.297 10.301 10.302 10.304 

3 0.010 12.174 12.368 12.412 12.428 12.435 12.438 12.440 12.441 

3 0.001 17.374 17.567 17.612 17.626 17.633 17.636 17.638 17.640 

4 0.100 7.054 7.160 7.177 7.181 7.183 7.184 7.184 7.184 

4 0.050 8.767 8.872 8.889 8.893 8.895 8.896 8.896 8.896 

4 0.025 10.425 10.530 10.547 10.551 10.553 10.554 10.554 10.554 

4 0.010 12.560 12.665 12.682 12.687 12.689 12.689 12.690 12.690 

4 0.001 17.756 17.860 17.878 17.882 17.884 17.885 17.885 17.885 

5 0.100 7.257 7.313 7.319 7.321 7.321 7.321 7.321 7.321 

5 0.050 8.968 9.023 9.030 9.031 9.031 9.032 9.032 9.032 

5 0.025 10.625 10.681 10.687 10.688 10.689 10.689 10.689 10.689 

5 0.010 12.760 12.815 12.822 12.823 12.823 12.823 12.823 12.823 

5 0.001 17.954 18.009 18.016 18.018 18.018 18.017 18.018 18.018 

6 0.100 7.375 7.404 7.406 7.407 7.407 7.407 7.407 7.407 

6 0.050 9.085 9.114 9.116 9.116 9.117 9.117 9.117 9.117 

6 0.025 10.742 10.770 10.773 10.773 10.773 10.773 10.773 10.773 

6 0.010 12.876 12.905 12.907 12.907 12.907 12.907 12.907 12.907 

6 0.001 18.070 18.099 18.101 18.101 18.101 18.101 18.102 18.102 

7 0.100 7.450 7.464 7.465 7.465 7.465 7.465 7.465 7.465 

7 0.050 9.159 9.174 9.175 9.175 9.175 9.175 9.175 9.175 

7 0.025 10.815 10.830 10.831 10.831 10.831 10.831 10.831 10.831 

7 0.010 12.949 12.964 12.965 12.965 12.965 12.965 12.965 12.965 

7 0.001 18.143 18.158 18.159 18.159 18.159 18.159 18.159 18.159 

8 0.100 7.500 7.508 7.508 7.508 7.508 7.508 7.508 7.508 

8 0.050 9.209 9.217 9.217 9.217 9.217 9.217 9.217 9.217 

8 0.025 10.865 10.873 10.873 10.873 10.873 10.873 10.873 10.873 

8 0.010 13.000 13.007 13.008 13.008 13.008 13.008 13.008 13.008 

8 0.001 18.193 18.201 18.201 18.201 18.201 18.201 18.201 18.201 

9 0.100 7.537 7.540 7.540 7.540 7.540 7.540 7.540 7.540 

9 0.050 9.246 9.249 9.249 9.249 9.249 9.249 9.249 9.249 

9 0.025 10.902 10.905 10.905 10.905 10.905 10.905 10.905 10.905 

9 0.010 13.036 13.040 13.040 13.040 13.040 13.040 13.040 13.040 

9 0.001 18.229 18.232 18.232 18.232 18.232 18.232 18.232 18.232 
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3. A test based on p-values: variance unknown 

Let Xijk, 14o, Hm, Ho2, H1, Hi1, H12, #i*j and #*. be defined as in Section 2 
except that a 2 is unknown. A test of H0 versus H1 is developed by combining 
p-values from the tests of Hm versus Hl l  and H02 versus H12. The likelihood 
ratio test of H01 versus Hll  rejects H01 for large values of 

R C / ~ C n~j 

(3.1) E1 = E E nij(#i*j - S2i..) 2 E E (Xijk - f(i")2' 
i=1 j=l  i=1 j=l  k=l 

and the likelihood ratio test of H02 versus H12 rejects H02 for large values of 

R / ~ C n~j 
(3.2) E2 = Z ni ( , ; . -  :?..)2 Z ~(xij~- x.) 2. 

i=l i=l j=l  k=l 

We show that under//01,  E1 and E2 are independent. Under H01, 

R C T~Ij 

(3.3) E E E (xijk -- )~/..)2, Xl- . , . . .  ,XR-. 
i=1 j=l  k=l 

are complete and sufficient and thus El, which is ancillary, is independent of (3.3). 
Writing the denominator in E2 as 

R C nlj R 

E E - + E 
i=1 j=l  k=l i=1 

it is clear that E2 is a function of the quantities in (3.3) and thus independent of 
El. 

From Robertson et al. ((1988), p. 70), it follows that if H01 holds, then with 
B(a, b) denoting a beta random variable and B(0, b) - 0, 

R ( (~ 1 1N_~ l )  >t)  (3.4) p r ( E 2 _ > t ) = E P ( l , R ; n l . , . . . , n R . ) p r  B 1 - 5 , 2  - " 
l=l 

Also, Kulatunga and Sasabuchi (1984b) note that under Hox, 

RC 
(3.5) pr(El >t)=EP(l,l~C;n)pr(B(~l- 1-R 1N-~l) >t) 

l=R 2 ' 2  -- " 

One may combine the p-values associated with E1 and E2 and again we found 
that Fisher's method is preferred in this setting. For i = 1, 2, let Pi be the p-value 
associated with E~; let p~ = pr(E~ > 0) = pr(T~ > 0); let P~ = Pi/p~ and reject Ho 
for large values of 

2 
(3.6) ~ E = - - 2 E 1 o g P  ~. 

i=1 

Under Ho, the tail probabilities are given by (2.10). It is interesting that ~T and 
• ~ have the same critical values for a given level of significance. 
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4. Approximating p-values and powers: balanced designs 

Computing p-values via (2.7) and (2.8) in the variance known case or via 
(3.4) and (3.5) in the variance unknown case can be tedious. For balanced de- 
signs and simple orders, Bartholomew (1961), for the variance known case, and 
Sasabuchi and Kulatunga (1985), for the unknown variance case, showed that 
moment approximations can be used in most practical applications. For known 
variance, balanced designs and simple orders, Bartholomew (1961) also obtained a 
two-moment approximation to the minimum of the power function at points that 
satisfy the ordering and are a fixed distance from homogeneity. In this section, we 
assume the sample sizes are equal and show how these results can be modified for 
the tests developed here. Singh and Wright (1987) obtained approximations for 
the minimum powers in the case of unknown variance, but  they are more cumber- 
some to apply. Thus, approximations to minimum powers are not discussed for 
unknown variance. If the degrees of freedom on the variance estimator is not too 
small, the power in the variance known case should not be too much larger than 
in the unknown variance case. 

4.1 Approximating p-values when the variance is known 
In this subsection, we consider two-moment gamma approximations for the 

p-values of T1 and T2 which are relatively simple to use with balanced designs. 
For balanced designs, formulas and numerical values for the first two cumulants of 
the null distribution of T2/a 2, which we denote by ~ ( R )  for i = 1, 2, are given in 
(3.2.2) and Table A.15 of Robertson et al. (1988) and p2 = pr(T2 > 0) = 1 - 1/R. 
They show that the cumulants of the conditional null distribution of T2/cr 2 given 
that T2 > 0 are 

(4.1) a n d  t%(R)/p2 (1 2 = = * _ 

Let P2 = ~2/~x, b2 = hi~p2 and Gb, Gb and gb denote the distribution function, 
the tail probabilities and the density of a gamma distribution with parameters b 
and 1. The p-value corresponding to t~, an observed value of T2/a 2, is 

(4.2) - t ! Y 2 ( t ; )  

For 5 _< R _< 40, Table A.14 of Robertson et al. (1988) gives the values of P2 and 
52. 

One sees from (2.5), (2.6) and the independence of the Y~, that the cumulants 
of the null distribution of T1/~ 2 are T/*(R, C) = R ~ ( C )  for i = 1, 2 and pl = 

pr(T1 > 0) = 1 - ( l /C)  R. Replacing ~;*(R) by ~-[(R,C) and P2 by Pl in (4.1), 
gives ~-1 and ~-2. With pl = ~-2/~-1 and bl = ~-1/Pl, the p-value corresponding to t~, 
an observed value of T1/a 2, is 

- -  ! 

( 4 . 3 )  yx(t ) p G l(tl/Vl). 
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4.2 Approzimating powers when the variance is known 
Expressions for the power functions of the likelihood ratio tests for the simple 

ordering, #1 _< "'" _< #k, only have been derived for k = 3 and 4, see Robertson 
et al. ((1988), Section 2.5). Approximations for the minimum of the powers at a 
fixed distance from the null hypothesis have been provided for the simple order 
with balanced designs. Bartholomew (1961) conjectured that with the distance 
to homogeneity fixed, the minimum power of the likelihood ratio test at points 
satisfying the ordering occurs at #1 < ~t2 . . . . .  ~k and at #l . . . . .  #k-1 < ~k, 
see Singh and Wright (1989) for additional numerical evidence. Approximations 
to these minimum powers are of interest because (1) the gain in power due to the 
order restriction is smallest at these points and (2) if an experiment is designed 
to have a specified power at these points, then the power is at least as large at all 
points in H1 with the same A. 

The analogous approximations are given here for the test obtained in Section 2. 
Let n denote the common value of nij,  w = n/cr 2, fit denote the average of the #~j 
and 

(4.4) 
/ Rc } 
1, i=1 j = l  

1/2 

We seek the alternatives in H1 with fixed A > 0 which give the minimum power 
for ~T. 

The symmetry properties of the power functions of order restricted tests for 
normal means play an important role in this search. For instance, consider the 
likelihood ratio test of homogeneity of normal means with the nondecreasing al- 
ternative, ~1 ~ #2  ~ " ' '  ~ ~k and #1 < #k, equal sample sizes, and variances 
which are known and equal. By negating all the observations it is easily seen 
that the power at an alternative, # = (#i,#2,... ,#k), is the same as that at the 

alternative -# = (-#I,-#2,...,-#k) with the alternative hypothesis changed 

to Pl _~ #2 2 "" _ Pk and Pl > #k. By relabeling, the alternative can be 

changed to the original nondecreasing alternative. Thus, the powers at p and 

_#(r) = (-#k,-Pk-1,. .. ,-#1) are the same for testing homogeneity with a non- 

decreasing alternative. This is also true for the case of unknown but equal vari- 

ances. It is also helpful to note that, whether the variances are known or unknown, 

the power of the likelihood ratio test of homogeneity against an ordered alterna- 

tive is not changed if the same constant is added to each of the underlying means. 

Hence, for equal variances whether they are known or unknown, the power of the 

likelihood ratio test of homogeneity with a nondecreasing alternative is the same 
at the alternatives (aej, bek_j) and (aek_j, bej) where a and b are real numbers 

and ei is a vector of dimension i with a 1 in each component. 

Because of Bartholomew's conjecture concerning minimum powers for the sim- 
ple order, in our search for mean vectors with a minimum power for fixed A > 0, 

we consider alternatives of the form #n = a and #ij = b for (i, j) ~ (I, l), or 

alternatively with #Rc = b and #ij = a for (i,j) ~ (R,C), where a < b. We 
call such mean configurations type I alternatives and applying the symmetry and 
invariance properties given in the last paragraph, one can show that the power of 
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~T is the same at these two types of alternatives. This is also true for the test  q@. 
In fact an argument  like tha t  given above shows tha t  the power of Bartholomew's 
likelihood ratio test  for the case of known (unknown) variances, which we denote 
by T (E), is the same at these two types of alternatives. Suppose tha t  # n  = a 
and pij = b otherwise. For i = 2 , . . . ,  R, y / / a2  has the same distribution as under 
H01, the means in the first row are the form tha t  Bartholomew conjectured would 
yield the minimum power for Y1/a 2 and the #i. are also of tha t  form. 

We also considered alternatives for which T2/cr 2 has its null distribution and 
T1/¢ 2 has minimum power for such alternatives. In this case, the #i. are the same. 
It is easy to show tha t  if the alternative is in H1 and one of the rows is constant  
then they  all are and the mean configuration is in H0 which means A = 0. Thus, 
none of the rows are constant.  Furthermore, since 

c c 

E -- E. J 
j= l  j= l  

and #~ j_<#~j  for l < a < / 3 _ < R  and I < j _ < C ,  

all of the rows must be the same and not constant. Because of Bartholomew's 
conjecture, we consider alternatives with all of the rows of the form (a, a,..., a, b) 
or all of the rows of the form (a, b,..., b) and call these type II alternatives. Again, 
one can show that the power of ~T is the same at these two kinds of type II 
alternatives and this is also true for the test ~E. In fact an argument like that 
given above shows that the power of Bartholomew's likelihood ratio test for the 
case of known (unknown) variances, i.e. T (E), is the same at these two types of 
alternatives. 

In addition, we considered type III alternatives, which are those that yield a 
null distribution for TI/~ 2 and minimum power for T2/~ 2. It is straightforward 

to show that these alternatives are of the form #ij = a for 1 ~_ i _~ R- i and 
1 ~_j <Cand#Rj =bfor l_~j ~_ Cor of the form#lj =a for 1 <j_~ C and 
#ij = b for 2 <i < Rand 1 ~_ j ~_ C. Again, ~T has the same powers at these 

two kinds of type III alternatives and this is also true of ~E, T and E. 
To provide information about where the minimum power occurs, Monte Carlo 

estimates, based on 100,000 iterations, of the power of ~T with a = 0.05, (R, C) = 
(2, 2), (2, 3), (3, 2), (2, 4), (4, 2) and (3, 3) and A = 1, 2, 3 and 4 were obtained for 
all mean configurations with just  two distinct values. Because the power of ~T 
is not changed if the same value is added to all ~ij, we may take the smaller of 
the two values to be zero and the other value is determined by A and the form of 
the alternative. Type II alternatives have the smallest estimates of powers except 
in the two cases of (R, C) = (4, 2) with A = 1 and 2, and in these two cases, the 
type III alternatives have the smallest estimates of power. For (R, C) = (4, 2) and 
A = 1, the estimates of power for the type I, II and III  alternatives are 0.156, 0.158 
and 0.152, respectively, and for (R, C) = (4, 2) and A = 2, the estimates of power 
for the type I, II and III alternatives are 0.410, 0.410 and 0.408, respectively. 
This provides some indication tha t  our search can be limited to type I, II and 
III alternatives. Incidentally, for (R,C) = (9,2) and A = 1, 2, 3 and 4, the 
type I alternatives have smaller estimates of power than  the other two types of 
alternatives. 
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In addition, random searches over points in HI with A = 3 were conducted. 
This value of A was chosen because it gives powers about 0.8. Such powers are large 
enough to be of practical interest, but not so large as to obscure the differences 
in power. In particular, with (R,C) = (2, 2), (2, 3) and (3, 2), #11 = 0 and 
# R c  = 1, R C  - 2 pseudo random uniform variables on the interval (0, 1) were 
generated. Next, for each permutation of these R C - 2  values, #12, . . . ,  #1c, #21,.. • 
and #R(c-1) were set equal to the permuted values provided the resulting mean 
configuration was in H1. These values of #ij were multiplied by the appropriate 
constant to make A = 3, and based on 10,000 iterations, Monte Carlo estimates 
of the power of 9T at these alternatives were obtained. This was repeated 1,000 
times. With R, C and A = 3 fixed, let t3 denote the smallest estimated power for 
the alternatives with two distinct values. Each of the estimates of power in these 
1,000 iterations which were less than 

p~ =/5 + 3~(1 -/5)(1/10000 + 1/100000)] 1/2 

were recorded along with the corresponding mean configuration. (If/5 is one of 
the 1,000 power estimates and the corresponding true power is close to the true 
power associated with/5, then with high probability/5 will be less than t3 + 3cr~_~ 
which is approximately equal to p~.) For the case (R, C) = (2, 2) with A = 3, 
the smallest estimated power for alternatives with two distinct values occurred 
at a type II alternative and the estimated power was 0.809. All of the points 
identified in the random search were "close" to being of type II. For instance, 
the smallest power estimate obtained in the search was 0.810 and occurred at 
(#11, #12, #21, #22) = (0, 2.9674, 0.00886, 3.0406). For the case (R, C) = (2, 3) with 
A = 3, the smallest estimated power for alternatives with two distinct values oc- 
curred at a type II alternative and the estimated power was 0.753. All of the points 
identified in this random search were also "close" to being of type II. For instance, 
the smallest power estimate obtained in this search was 0.755 and occurred at 
(#11, #12, #13, #2~, #22, #23) = (0, 2.5906, 2.6286, 0.00815, 2.6501, 2.6816). For the 
case (R, 6') = (3, 2) with A = 3, the smallest estimated power for alternatives 
with two distinct values occurred at a type II alternative and the estimated power 
was 0.763. The points identified in the random search were again "close" to being 
of type II. The smallest power estimate obtained in this search was 0.773 and oc- 
curred at (#11, ~12, ~21, #22, #31, #32) = (0, 2.4178, 0.0753, 2.5552, 0.1200, 2.5623). 

Based on the information given above, we limited our search for the points 
with minimum power to alternatives of type I, II and III. With R, C = 3, 5 and 
9, c~ = 0.05 and A = 3, Monte Carlo estimates of the power of ~T were obtained 
for these three types of alternatives using 10,000 iterations. In none of these cases 
did the type III alternative have the smallest estimated power. In fact, the only 
cases we found for which the type III alternatives had the smallest estimates of 
power were (R, C) = (4, 2) with A = 1 and 2. In the next section it is observed 
that  the minimum powers seem to be smaller in the case (R, C) = (A, B) than in 
(R, C) = (B, A) with A > B and thus we recommend labelling so that R _> C. 
For R _> C, we conjecture that  the minimum powers in H1 at a fixed distance, 
A, from H0 occur either at type I or type II alternatives. Hence, we develop 
approximations to the power of 9T at these types of alternatives. 
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We consider type I alternatives first, that is a = #11 < #12 . . . . .  #1c = b 
and b = #~1 . . . . .  # ic  for 2 < i < R. Then 

(4.5) A 2 = w ( R C  - 1)(b - a ) 2 / ( R C )  or b = a + A [ R C / ( ( R C  - 1)w)] 1/2. 

Using the argument in Barlow et al. ((1972), p. 162), 

(4.6) Y1/~ ~ ~ v ~ / ,  ~ + ~ ( & )  

where Y~/~r 2 has distribution given by (2.6) with C and rtl replaced by C -  1 and 
the C - 1  dimensional constant vector with each nlj  = rt, A12 = w ( C - 1 ) ( b - a ) U / C ,  
~ ( A 1 )  has distribution and cumulants given by (3.60) and (3.61) in Barlow et al. 
(1972), and y~/a2,  Y 2 , . . . ,  YR, )(22(A1) are independent. Denoting the cumulants 
of ~2(A1) by 5i(A1), the approximate cumulants of T1/~r 2 for this alternative are 

(4.7) z ~ - ( R - 1 ) ~ ( c ) + < ( C - L ) + 5 ~ ( & )  for i = 1 , 2 .  

Thus, with Pa = 72/71, ba = 71/pa and t > 0, 

(4.8) Pr(T~/~ 2 > tIT1 > 0) ~ Oh, (t/pa). 

Robertson et al. ((1988), p. 153) noted that for powers typically of interest in 
designing experiments, pr(T1 > 0) is close to one and so the unconditional and 
conditional probabilities are nearly the same. 

A similar approximation is needed for T2. For the alternative being considered, 
//,1. = [ ( C -  1)b + a]/C and #i. = b for i = 2 , . . .  , R  and the associated weights, 
which are the reciprocals of the variances of the ~7i.., are nC/er 2 = Cw.  With 
A~ = w ( R -  1 ) ( b - a ) 2 / ( R C )  and applying the same argument from Barlow et al. 
(1972) used above, the nonnull cumulants of T2/c~ 2 are approximated by 

(4.9) A i ~ - W ( R - 1 ) + S i ( A 2 )  for i = 1 , 2 .  

With P4 = A2/A1, 54 = A1/p4 and t > 0, 

(4.10) pr(T2/O-2 > ~ I ~2 > 0) ,~' 0b4 (t/p4)- 

Next, the results above are used to approximate the distribution of the P ' .  
Conditional on T1 > 0, the nonnull distribution of T1/cr 2 is approximated by that 
of p3U where U is a gamma random variable with parameters b3 and 1, cf. (4.8). 
Applying (4.3), the distribution function of -21ogP~ conditional on T1 > 0 is 

(4.11) p r ( - 2  log P~ ~ t IT, > 0) = pr(P~ > e -t/2 IT1 > O) 
pr(Obl(p3U/pl) ~ e - t /2)  

= pr(~7 _< plC~-l(1 -- ~-~/2) /p3)  

= C b ~ ( p ~ Q * ( 1  - -  ~-~/2)/pa) -- H,(t). 
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Similarly, the approximate distribution function of - 2  log P~ conditional on T2 > 0 
is 

(4.12) ab  4 (P2 ab21 ( 1 - e-t/2 )/P4) ~-- H2 (t) 

and its approximate conditional density is 

gb4 [p2Gb2 ]- (1 -- c-~/2)/p4]p2e-~5/2 
(4.13) h2(t) = 

2p4gb  1 (1 - 

Convoluting - 2  log P~ and - 2  log P~, one can approximate the power function of 
~T at this alternative by 

/0 (4.14) pr(gJr > C l Tl  > O,T~ > O) ~ l - H l ( C -  t)h2(t)dt,  

where c is the critical value for ~T given by (2.10). In Section 5, the accuracy of 
this approximation is studied by Monte Carlo techniques. 

Next, a similar approximation is obtained for the power of q/T with type II 
alternatives. In particular, we consider #ij = a for 1 < i < R and 1 _< j < C - 1 
and #ic  = b for 1 < i < R. Then, 

(4.15) A 2 = w R ( C  - 1)(b - a)2 /C  or b = a + A [ C / ( R ( C  - -  1)w)] 1/2. 

Using the argument in Barlow et al. ((1972), p. 162), each y~/a2 is approximated 
by the variable in (4.6) except that  b -  a is determined by (4.15) rather than (4.5). 
Thus, the approximate cumulants for T1 /a  2 in this case are 

u i = R ( ~ * ( C - 1 ) + S i ( A 1 ) )  for i = 1 , 2  and 
(4.16) 

pr( r l /cr  2 > t IT i  > O) ..~ Gbs(t/ps),  

where A 1 is as in (4.6), p~ = ~2/~1, b5 = ~] l / f15  and t > 0. Applying the argument 
that  led to (4.11) gives 

(4.17) p r ( - 2  logP~ _< t l r l  > O) ~ a b s ( p l a ~ l ( 1  - e - t /2) /p5  ) = H3(t), 

and - 2  log P~ conditional on T2 > 0 has a chi-square distribution with two degrees 
of freedom. Convoluting - 2  log P~ and - 2  log P~ and using pr(T1 > 0) ~ 1 and 
pr(T2 > 0) = 1 - I / R ,  we obtain 

( 1  l ) f 0 c  (4.18) p r (¢T > c) ~ 1 -- 2 2~R H a ( c -  t) e x p ( - t / 2 ) d t  

1H3 ( c - 2 1 o g ( 1 - ~ ) ) .  

The accuracy of this approximation is studied in Section 5. 
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4.3 Approximating p-values when the variance is unknown 
Sasabuchi and Kulatunga (1985) studied moment approximations for the null 

distribution of the likelihood ratio test of homogeneity with a simply ordered 
alternative with unknown variance. Singh and Wright (1988) found that for most 
practical purposes the two-moment approximation is adequate. We consider two- 
moment beta approximations for the p-values of E1 and E2. The notation follows 
that of Robertson et aI. ((1988), p. 124). With 

(4.19) 

P2 = pr(E2 > 0) = pr(T2 > 0) = 1 - 1/R, 
~ ( R )  ~ : (R)  + [ ~ ( R ) ]  2 

a2 - ( N -  1)p2' b2 = ( N -  1 ) ( N  + 1)p2 

[led the tail function of a beta distribution with parameters c and d, 

(4.20) c2 = a2(a2 - b2)/(b2 - a 2) and d2 = (1 - a2)(a2 - b2)/(b2 - a[), 

(4.21) pr(E2 > y) ~p2/t¢2a 2(y) for y > 0. 

To use this technique on El,  one needs to find Pl = pr(E1 > 0), at = E ( E t  I 
E1 > 0) and bl = E ( E  2 I E1 > 0). However, from the argument given on p. 124 
of Robertson et al. (1988), one sees that 

(4.22) 
p] = 1 - 1 / C  R, al - ( N -  R)pl  

bl = R ~ ( c )  + [ R ~ ( c ) ]  2 
( N  - R ) ( x  - R + 2 ) p l  

and 

With cl and dl defined as c2 and d2 in (4.20) with a2 and b2 replaced with a l  and 
hi, 

(4.23) pr(E1 ~ y) ~ pl~fc~d~(y) for y > 0. 

5. Results of a power study 

A study of the powers of the tests based on ~T and ~E as well as 

Bartholomew's likelihood ratio tests, which we denote by T and E for the cases 

of variance known or unknown respectively, was conducted for balanced designs 
and selected R and C. For the chosen pairs (R, C), Monte Carlo estimates of the 

level probabilities needed to implement Bartholomew's tests were obtained based 

on I00,000 iterations and using them, the approximate a = 0.05 critical values 
were computed. The corresponding critical values for qJT, which are the same as 

for ~, were taken from Table I. 

Because we want to be able to compare the minimum powers of the tests, 
we first need some indication of which alternatives in HI with fixed A > 0 yield 
minimum powers for T with a balanced design. Considering the simple loop or- 
dering, Singh and Schell (1992) based on numerical evidence, conjecture that for 
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R = C = 2, the minimum powers occur at alternatives of the form # n  = #12 = a 
and /£21 = l £ 2 2  = b, which is type III, or alternatively at /£11 = /£21 = a and 
/£12 = /£22 = b, which is type II. (Of course, for R = C, T, as well as E,  has 
the same powers for type II and III alternatives.) For A = 1, 2, 3,4, (R, C) = 
(2,2), ( 2 , 3 ) , . . . ,  (2,6), (3, 3), ( 3 , 4 ) , . . . ,  (3,6), (4,4), (4,5), a = 0.05 and alterna- 
tives i n / / 1  with exactly two distinct values, we obtained Monte Carlo estimates 
of power based on 100,000 iterations. In each case with R = 2, the type III al- 
ternatives had the smallest power. However, in the case (R, C) = (2, 9), which 
was also considered, type I and III alternatives had the smallest powers and the 
estimates, to three decimal places, for the type I alternatives were the same or 
slightly smaller than  those for the type III alternatives. In all the other cases 
which were considered, i.e. the ones with 2 < R _< C, the type I alternatives have 
the smaller estimates of power. 

For the simply ordered case, /£1 _< " "  _< /£k, with A > 0 fixed, Bartholomew 
conjectured tha t  the maximum power occurs when/£2 -/£1 . . . . .  /£k - /£k-1  > 0. 
While the conjecture does not seem to be correct, cf. Singh and Wright (1989), 
it is adequate for practical purposes. Because of this conjecture, we included 
alternatives with /£~j proportional to i + j and A > 0 fixed. The mean vectors 
labeled type IV alternatives are of this form. 

Using the IMSL routine QUADS, the approximations to the powers of ~T 
given in (4.14) and (4.18), which we denote by #(/£, ~T) ,  were computed for c~ = 
0.05 and values of A incremented by 0.1 and the values of A which gave powers near 
0.8 were used in the rest of the study. Using 10,000 iterations and a significance 
level of 0.05, Monte Carlo estimates of the powers of T, E,  ~T and ~PE, which we 
denote by ~-(/£, T), #(#, E),  ¢r(/£, ~I/T) and ¢r(/£, g~E), were obtained. Let n denote 
the common sample size. For the case of known variance, the power depends on n 
only through the factor w = n/(72 in A. For convenience, we took n = cr 2 = 1. For 
the case of unknown variance, the degrees of freedom for the variance est imator is 
R C ( n  - 1) and so to contrast with the variance known case, in which one could 
think of the degrees of freedom as infinite, we chose n = 2. 

Table 2 contains these power estimates for (R, C) = (3, 3), (3, 5), (3, 9), (5, 5), 
(5, 9) and (9, 9). In these cases, we conjecture tha t  T has minimum powers at type 
I alternatives and ~T has minimum powers at type I or type II alternatives. Thus, 
the power estimates are given for type I, II and IV alternatives. 

First, we note tha t  for type I alternatives, the largest discrepancy between 
#(/£, ~T) and ¢r(#, ~T) is 0.011 and tha t  these differences are within sampling 
error. Thus, it seems tha t  the approximation to powers given in (4.14) performs 
quite well. For type II alternatives, the largest discrepancy between ~(/£, ~T) and 
#(/£, ~T)  is 0.030. While these differences are larger than  for type I alternatives, 
the approximation for type II alternatives given in (4.18) is adequate for most 
practical purposes. 

The powers of T and E are symmetric  in R and C, but this is not true for ~T 
and ~E.  We found tha t  if R < C, the minimum powers are larger than  if R and 
C were interchanged. However, the powers for type IV alternatives are larger if 
R > C. For instance, if (R, C) = (9, 3) and A = 4.0, for the variance known case, 
the Monte Carlo est imate of power for type I and IV alternatives are 0.809 and 
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0.966, respectively. The corresponding values taken from Table 2 are 0.840 and 
0.960. For R = 9, C = 3 and A = 4.0 in the variance unknown case, the Monte 
Carlo estimates are 0.682 and 0.964, which should be compared with 0.737 and 
0.949. If one only knows that  # satisfies H1, then we recommend labelling so that  
ft < C, but if in addition, one believes # is in the "middle" of / /1 ,  then label so 
that  R > C. 

In every case considered, the likelihood ratio test has larger power. The max- 
imum likelihood estimates subject to the restriction in H1 can be obtained by the 
iterative algorithm in Dykstra and Robertson (1982) and thus the only impedi- 
ment to implementing T or E is the level probabilities, which could be estimated 
by Monte Carlo techniques. If one doesn't wish to obtain such estimates of the 
level probabilities, ~T or OE can be used. In the variance known case, the loss 
in minimum power due to using k~T rather than T ranges from around 5% for the 
(3, 3), (3, 5) and (3, 9) cases to around 12% for the (9, 9) case. The powers for 
the two tests with type IV alternatives are very close. For the variance unknown 
case with small sample sizes of 2, the decreases in minimum power are greater. 
In particular, the losses are about 14% for the (3, 3), (3, 5) and (3, 9) cases and 
about 18% for the (9, 9) case. However, part of the differences between the vari- 
ance known and unknown cases is due to the fact that the powers are smaller. For 
instance in the case (3, 9), if A is increased to 4.3, the estimated powers for ~E 
and E are 0.803 and 0.893 and ~(#, ~E)/gr(#, E) = 0.899. In fact, in each case 
considered in Table 2, if A is increased to make 7~(#, ~E) ~ 0.8, then the ratios 
~-(#, ff*E)/~-(#, E) are increased about two or three per cent. 

In summary, the likelihood ratio test has greater power than the test developed 
here, but is much more complicated to use. In many situations, the tests based on 
fliT and ~E provide satisfactory alternatives to those based on T and E. 

6. A numerical example 

The use of the test developed here for the case of unknown variance is illus- 
trated on some data concerning the first-year GPA of entering freshmen at the 
University of Iowa. Because the original data in Dykstra and Robertson (1982) 
is not available, a variance estimator cannot be computed. Thus, data from 1990 
is considered. Table 3 gives the summary statistics for the GPA of the 2511 stu- 
dents when cross-classified according to high school percentile rank (HSR) and 
composite score on the ACT entrance examination (ACTC). The R = 8 intervals 
for HSR and the C = 6 intervals on ACTC were obtained by collapsing some of 
the intervals in Dykstra and Robertson (1982) so that  none of the cells are empty. 
As they noted, it is reasonable to assume that the mean GPA is nondecreasing in 
each variable with the other fixed. Thus, one could test H0 versus H1 to deter- 
mine if there is a statistically significant effect due to ACTC and HSR. The first 
entry in each cell is nij, the second entry is J(ij. and the third entry is #i*j. In 
the last column, which is labeled Row Statistics, the entries are hi., J?i.. and #*., 
respectively. The overall mean for the 2511 observations is 2.5857 and the sum of 
the squared observations is 18,488.4671. 

From the SAS procedure GLM, the observed significance level of the F-test  for 
interaction is less than 0.0001. Thus, the simpler test for main effects mentioned 
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Table 3. First-year GPA of freshmen entering the University of Iowa in the fall of 1990. The 
students are cross-classified according to high school percentile rank (HSR) and composite score 
on the ACT entrance examination (ACTC). The first entry in a cell is the number of students 
in that cell, the second is the average GPA for the students in the cell and the third is/zi*j, the 
estimate of the cell mean subject to H01. The entries in the last column are defined similarly 
except the third entry is #* 

ACTC 
HSR Row 

1-15 16-18 19 21 22-24 25-27 28 36 Statistics 

1 4 8 9 15 1 38 

(0.9,1.0) 3.8300 1.6950 1.6338 1.3511 1.6653 2.3300 1.6618 

1.6291 1.6291 1.6291 1.6291 1.6653 2.3300 1.6618 

1 7 8 14 28 10 68 

(0.8, 0.9] 2.5500 1.8700 2.1037 1.7136 1.9057 1.7310 1.8696 

1.8696 1.8696 1.8696 1.8696 1.8696 1.8696 1.8696 

2 17 23 36 49 12 139 

(0.7, 0.8] 1.4900 1.8176 1.7657 1.7642 2.0820 2.1717 1.9142 

1.4900 1.7766 1.7766 1.7766 2.0820 2.1717 1.9142 

11 39 64 59 56 13 242 

(0.6,0.7] 1.8500 2.0741 2.1720 1.9559 2.4407 2.1662 2.1508 

1.8500 2.0698 2.0698 2.0698 2.3890 2.3890 2.1508 

13 35 85 120 90 19 362 

(0.5, 0.6] 1.9715 2.2180 2.3796 2.3316 2.2238 2.3805 2.2947 

1.9715 2.2180 2.3125 2.3125 2.3125 2.3805 2.2947 

14 39 116 171 128 44 512 

(0.4, 0.5] 1.9057 2.4338 2.4379 2.5776 2.6859 2.4386 2.5318 

1.9057 2.4338 2.4379 2.5776 2.6227 2.6227 2.5318 

3 24 89 166 172 90 544 

(0.3, 0.4] 1.6800 2.2854 2.5853 2.7480 2.7666 2.8508 2.7180 

1.6800 2.2854 2.5853 2.7480 2.7666 2.8508 2.7180 

3 9 18 101 209 266 606 

(0.0,0.3] 2.1833 2.6300 3.0794 2.9902 3.0281 3.3453 3.1524 

2.1833 2.6300 3.0037 3.0037 3.0281 3.3453 3.1524 

in  the  i n t r o d u c t i o n  would  no t  seem to be app rop r i a t e .  T h e  value  of the  tes t  

s t a t i s t i c  for h o m o g e n e i t y  w i t h i n  the  rows is E1 = 0.04142 a n d  the  va lue  of the  

tes t  s t a t i s t i c  for h o m o g e n e i t y  of the  row averages is E2 = 0.24240. Al l  of the  b e t a  

ta i l  p robab i l i t i e s  in  (3, 4) a n d  (3, 5) are 0 to  five dec ima l  places. As was expec ted ,  

the  hypo thes i s  of h o m o g e n e i t y  is re jected,  a n d  in  fact,  th i s  is t he  case for a n y  

r ea sonab le  va lue  of a .  Since the  b e t a  ta i l  p robab i l i t i e s  are so smal l  the re  is no 

need  to  c o m p u t e  the  level p robab i l i t i e s ,  P ( l ,  R ;  n l . ,  . . . , r~R. ) or P ( 1 ,  R C ;  n ) .  
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