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A b s t r a c t .  This paper establishes essentially complete class theorems and 
gives conditions for admissibility of tests for parametric families of distributions 
having some kinds of regular variation properties. A complete treatment of 
topologically contiguous one-dimensional bounded and unbounded hypotheses 
is given. Examples of applications to well known families of distributions are 
presented. 
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1. Introduction 

Most of the research in the field of complete classes of tests has been devoted 
to testing problems involving exponential families of distributions and there are 
few results for non-exponential cases. In this paper we consider problems of test- 
ing one-dimensional hypotheses for families of distributions whose densities vary 
asymptotically at a lower rate than exponential families in the sense given by As- 
sumption 2.3, which is a generalisation of Karamata's (1930) definition of regular 
variation. Well known examples of such families are the location families of the 
double exponential, logistic and Cauchy distributions and the scale family of the 
Cauchy distributions. Other examples are provided by the location families of 
Rider's (1957) generalised Cauchy distribution, Gumbel's (1944) generalised lo- 
gistic distribution, Talacko's (1956) hyperbolic secant distribution and the scale 
family of generalised Cauchy distributions. The generalised logistic and hyper- 
bolic secant distributions belong to Perks' (1932) family of distributions. For the 
definitions and basic properties of the distributions mentioned above, see Johnson 
and Kotz (1970). If a null or alternative parameter space is unbounded or if 
these spaces are topologically contiguous an explicit charaeterisation of a proper 
essentially complete class is usually difficult. Lehmann (1947), Birnbaum (1955), 
Matthes and Truax (1967), Farrell (1968), Ghia (1976), Eaton (1970) and Marden 
(1982) present certain complete class theorems for a simple null hypothesis for 
cases such as exponential families of distributions, separated null and alternative 
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parameter spaces or alternative spaces contained in a cone. A quite general case 
of a simple null hypothesis versus an arbitrary alternative is considered in Kud6 
(1961) but explicit forms of tests constituting a complete class are not presented. 
Only the result by Brown and Marden (1989) yields a satisfactory characterisation 
of such tests. 

We assume a sample space X, a a-field b e of subsets of X, and a family of 
distributions {£0 : 0 C (9} on b e, where the parameter space O is a subset of 
the real line. We also assume that every Po has a probability density function 
(PDF) fo with respect to a certain a-finite measure # on b e and all fo have the 
same support. A test of a null hypothesis / t0  : 0 E O0 _C R versus an alternative 
HA : 0 E (gA _C R is represented by a measurable function 05 : X ~ [0, 1] and its 
risk function is defined by 

S Eo(05), if 0 E (9o 
(1.1) ~'0 (05) / 1-E0(05),  i fOE(gA.  

In Sections 2, 3 and 4 we give complete class theorems for simple null versus 
two-sided alternative, non-simple null versus two-sided alternative and one-sided 
null versus one-sided alternative hypothesis testing problems, respectively. Sec- 
tion 5 is devoted to applications of the notions of regular variation and (in our 
present terminology) additive regular variation to problems of testing scale or lo- 
cation parameters. In Section 6 we give some conditions for admissibility of tests 
from the essentially complete classes, tn Section 7, we introduce the notion of 
locally best at infinity tests which are the most sensitive to big departures from a 
null hypothesis. Section 8 contains examples of test procedures from the complete 
classes obtained and characterisations of their properties. 

2. Simple null hypothesis 

In this section we deal with simple null hypotheses and two-sided alternatives 
under an asymptotic assumption that admits the two-point compactification of 
the real line. An essentially complete class theorem, proven here, could be oh- 
rained as a corollary of the result of Brown and Marden (1989) by an appropriate 
reparameterisation of the parameter space as a bounded subset of the real line. 
However, using similar methods we give a simpler proof of our theorem which sets 
the stage for the next two sections where we deal with non-simple null hypotheses. 
Before formulating the main theorem of this section, we state some assumptions 
and definitions similar to those of Brown and Marden (1989). 

For a Borel set f~ C R denote by P(t~) and br(~) the sets of all probability 
and finite Borel measures on t~, respectively. 

Consider testing the hypothesis 

(2.1) H 0 : 0 = 0 0  versus H A : 0 E O A C _ { 0 : 0 ~ 0 0 } ,  

where 00 is a left and right limit point of OA. Take real numbers 01, 01 such that 
01 < 00 < 01 and define sets O1 and (92 by 

O1 = [0~, 01] Cl OA and O2 = [0~, 0'9] c Ct OA. 
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ASSUMPTION 2.1. A family of PDFs {fo(x)} is such that  fo(x) is a contin- 
uous function of the parameter 0 for #-almost all x E X. There exists a positive 
function a(0) such that  Ro(x) - a(O)fo(x) can be extended to a positive function 
of 0 on the closure O of the parameter space O, which is continuous except possibly 
at 0~ and 01, and which is right-continuous at 0~ and left-continuous at 01, and 
the limits lim0-_~0;_ Ro(x) and lim0--,0;+ Ro exist and are finite for p-almost all x. 

From now on we use the convention that whenever we integrate Ro(x) over 
the set O2 we put 

= lim Re(x). Ro,(X) = lim Ro(x) and Ro,~(x) o--,o'2+ 
0 - - + 0 '  1 _ 

ASSUMPTION 2.2. For p-almost all x there exists a neighbourhood Ux of 00 
such that Ro(x) has continuous first and second partial derivatives with respect 
to 0 at every point of Ux. 

ASSUMPTION 2.3. There exist positive functions R+ (x) and R_ (x) such that 

lim Ro (x) = R+ (x) and lim Ro (x) = R_  (x) 
0--++oo 0--+-oo 

for p-almost all x C X. 

Assumption 2.2 is used to deal with the problem of topological contiguity of 
00 and OA. The purpose of Assumption 2.3 is to treat unbounded alternative 
hypotheses. If Assumptions 2.1-2.3 are satisfied, for a certain function c~(0), then 
by considering Ro(x)/Ro(xo) we can see that  these assumptions hold with a(O) 
defined by fo(xo) -1 for p-almost all x0. For convenience, in the case of testing 
problems involving location families, we usually take functions a(0) defined by 

f f o ( 0 )  -1, i f 0 e O 2 ,  
(2.2) o~(0) [ 1, otherwise. 

Define, for p-almost all x E A', the following function of 0 on ~1: 

(2.a) Do(x) = { 

ORo(z) O=Oo Ro(x) - ROo (x) O0 

( 0 - 0 o )  2 

21 02Ro(x)002 0=0o 

(0 - 0o) 

Let r = {(OL1,OZ2, O~3): ~3 ~ 0,1~11 + 1~21 + ~ 3  = 1}. 
G E JE'(O2) , (Ogl,Ol2, OL3) C I n , ~1 ~ 0, /32 ~ 0, set  

(2.4) 

if 0 ¢ 0o, 

if 0 = 0o. 

For F E P ( O 1 ) ,  

d(x) = oqRoo(X) + a2O Ro(x) 0=0o + a3 f ~  Do(x)F(dO) 

+ £ no(~)a(dO) + 91R+(x) + 92R_(x). 
2 
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Under Assumptions 2.1-2.3, we define • to be the class of all tests of the form 

1, i fd(x)  > O, 
(2.5) ¢(x) = 0, i fd(x)  < 0, #-a.e. 

THEOREM 2.1. If Assumptions 2.1-2.3 are satisfied, then • is an essentially 
complete class of tests for testing hypotheses (2.1). 

PROOF. Let {~r~} C :P(O) be a sequence of prior probabilities concentrated 
on finite sets and let 

,,0> +,,x>: {;) 

be the corresponding Bayes tests. By the complete class theorem of Wald (1950), 
all limits in the regular sense (which is equivalent to weak* convergence in 
L °¢ (X, O r, #)) of convergent sequences of tests (2.6) constitute an essentially com- 
plete class. Assume that a sequence (2.6) converges in the weak* sense to a test ¢. 
We shall prove that ¢ E • by showing that, there exists a subsequence {i,} C_ {i}, 
such that the sequence {¢i, } converges pointwise to q$ on the set {d(x) # 0} for a 
certain function d(x) of the form (2.4). 

We can assume that 7r~({00}) > 0 for almost all i. Otherwise, it is possible to 
extract a subsequence {is} of {i} such that  q$i. (x) = 1 #-a.e., and therefore the 
limit test ¢(x) = 1 #-a.e. belongs to ~. 

If we set lr~(d0) = a(O)-lTri(dO), and use Do(x) defined by (2.3), then 

(2.7) f fo(x)Tri(dO) - fOo(X)TCi({Oo}) = ROo(X)[7c~(01) - 7r;({00})] 
d O  A 

+  .o(xl o:oo(O o01 :(.ol 
+ -_./A, Do(x)(O - 00)27r;(d0) 

+ So~ Ro(x)zr~(dO). 

For i = 1 , . . .  define probability measures Fi E 7)(O1) by 

{ /e~ (0)(0 - Oo)21r~(dÜ) 
(2.8) Fi(dO) = - r o Y - - O ~ d - ~ )  ' if ~(O1)  > 0, 

~r(d0), otherwise, 

where IA denotes the indicator function of a set A and 7r is an arbitrary element of 
P(O1). Using the probability measures (2.8), we can rewrite the right-hand side 
of (2.7) as 

 Ro(x) °:oo 

+ L I  ( 0 -  0°)27c:(d0)iol Do(x)Fi(dÜ)+ re, Ro(x)~r;(dO). 
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Set 

(2.10) = I  (Ol) - + £ (0 - Oo)  (dO) Jr (0 - 
1 1 

Since ~r~({0o}) > 0 for almost all i, Si > 0 for almost all i. 
Define measures Gi E 3c(O2) by Gi(dO) = Ie2(O)S~l~r~(dO). 

expression (2.9) by Si for each i such that  Si > 0 yields 
Dividing the 

- a(i) 0 R Ix~ -F /o1Do(x)Fi(dO)-F/o2 Ro(x)Gi(dO) (2.11) a~)ROo(X).  2 -~  o~ ) O=Oo a~ i) 

/ (1) (2) O~13)) C F. for a certain triple [c~ , c~ i , 

We now make the convention that whenever in the further course of the proof 

we assume that a sequence is convergent we mean that it is possible to pass to a 

convergent subsequence which can be relabeled as the original sequence. 

Each Fi is a probability concentrated on 01 so that the sequence {Fi} is 

tight. Hence, by Prohorov's theorem, we may assume that Fi --+ F weakly. Fur- 

ther the set F is compact, hence, again we may assume that (oL~ I), o~ !2)z ,0~!3)~ z --+ 
(c~1, c~2, c~3) E F. We treat each Gi as a measure on the two-point compactififlation 

02 LJ {-ee,-Fee} of O2, which we denote by c(~2). If limsupi_. ~ G~(O2)/= -Fee, 

then we may assume that limi_~ Gi(O2) = -Fee. Since Ro(x) is separated from 

0, the expression (2.11) diverges to infinity and ¢~(x) --+ 1 for #-almost all x E 2C. 

In the case when limsupi_~o o Gi(O2) < -Fee, we can assume that for some mea- 

sure G c ~(c(~2)), Gi --+ weakly. By Assumption 2.3, we can extend Ro(x) to a 
function Ro(x) of 0 on c(O2) by pu t t ing /~_~(x)  = R_(x)  and /~+~(x)  = R+(x). 
Since Ro(x) is a bounded and continuous function of 0 on c(O2), the sequence 
(2.11) converges p-a.e, to (2.4) and the sequence of tests corresponding to (2.10) 
converges #-a.e. to the given test ¢ on the set {d(x) ¢ 0}. Coefficients fll, /32 
in (2.4) satisfy ~1 = G(-Fee), /32 = G ( - e e )  and the measure G in (2.4) is the 
restriction of G to 02. [] 

The set q~ is independent of a particular choice of 0~ and 0 I. 
Note that it is not clear whether all measures F C P(01) ,  G E 2"((~2), triples 

(al ,  a2, a3) c F and numbers ~1 > 0, ~2 > 0 which are used in the definition 
of the class ~, can be attained by the limiting process considered in the proof of 
Theorem 2.1. The following theorem gives a solution to this problem: 

THEOREM 2.2. Under Assumptions 2.1-2.3, for each (O~1, OL2,OL3) E F, /31 --> 
0, f12 > 0, F C P(01)  and G C f (O2) ,  the corresponding test (2.5) is a weak* limit 
of a certain sequence of Bayes tests with respect to prior probabilities concentrated 
on finite sets. 

PROOF. Note that, the expression (2.11) is invariant with respect to rescaling 
measures ¢q. Hence, we may assume that  7r~ can be any arbitrary finite measure 
concentrated on finite points. 
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Let F E P ( ( ~ I ) .  There exists a sequence {Hi} C_ 7)(O1) of probabilities 
concentrated on finite sets of points, tha t  converges weakly to the measure F ,  see 
Billingsley (1968). For i = 1 , . . .  define probabilities F~ = piHi + ~ (5~ +5~  ), where 
5; denotes the probability concentrated in the point % ~ E [0[, 00), 0i E (0o, 0~] 
and pi, qi are non-negative numbers such tha t  Pi + qi -- 1 and qi ~ O. 

Denote by Ti the support  of Fi and assume tha t  the number of elements in 
Ti is ni. We can think of (2.8) as a system of ni linear equations with respect to 
variables 7r~(0) for 0 E Ti. Since for 0 E Ti, Fi(O) > 0 and }--~-OeT~ Fi(O) = 1 this 
system has positive solutions and therefore there exists a measure 7c~ such tha t  
(2.8) holds. 

Extend now every measure 7r~ by put t ing a certain mass 7c~({00}) at 00. We 
can rewrite the first two coefficients in (2.9) in the following way: 

Set 

~(o~) - ~({Oo}) = £ 1  Fi(dO) (~: goo)~ £~ (0 - Oo)~;(dO) - ~;({0o}), 

f+ (o-Oo)~:(dO) = £1 r~(dO) (~-- 7o) £~ (0 - Oo)~(dO). 

Fi(dO) £ F~(dO) ~({0o}) 
xi = 1 ( 0 -  0o)' V, = 1 ( ~ - - ~ 2  fe l (O-  Oo)2~(dO) 

and rewrite the coefficients a (i) in (2.11) as a~i) -1 a~i) = xiz~-l, a~i) = z-1 ---- YiZi , i , 
where zi = ]Yil+ ]xil+ 1. It is easy to see that ,  by a suitable choice of (i, 0i and the 
proportion between 7v~({00}) and Iv~(O1), xi and Yi can be any real numbers and 
therefore any triple from the set F ~ = {((~1, a2, (~3): a3 > 0, ]al] + ]c~21 + a3 -- 1}, 
which is a dense subset of F, is attainable.  On the other hand, since qi -~ 0 as 
i --* oc, we can see tha t  the sequence {Fi} converges weakly to F.  Therefore any 
triple (a l ,  a2, a3) E F and any probability measure F E 7)((~1) can be at ta ined in 
the limit as i ~ oc. 

To complete the proof, we extend each measure 7~ concentrated on (~1 U {00} 
to O by setting 

~;(dO) = S~ [Gi(dO) + 916(o,~+~)(dO) + ~26(o,~-~)(dO)], 

where {Gi} is a sequence of finite measures, concentrated on finite subsets of 02, 
tha t  converges weakly to the measure G E f(~)2)  and Si is defined by (2.10). [] 

Remark 2.1. It may happen tha t  

(2.12) ff--~Re(x) eo = 0 #-a.e., 

see Remark 2.2 in Brown and Marden (1989). Examples of such cases shall be 
given in Remark 2.3. If (2.12) holds, then by letting a2 = 1, ~1 = /32 = 0 and 
lett ing a measure G be the zero measure in (2.4), we have tha t  every test  belongs 
to class (I), and therefore Theorem 2.1 does not yield a proper essentially complete 
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class. However, if we follow the proof until (2.9), then  we can see tha t  the second 
te rm containing the first partial  derivative is zero #-a.e. Eliminating the term 
I f e l ( O -  Oo)Tc~(dO)] from (2.10) and proceeding further with the proof, we find 
tha t  a new essentially complete class • consists of tests of the form (2.5) with d(x) 
defined by (2.4) such tha t  a2 = 0. 

It is easy to see tha t  the counterpart  of Theorem 2.2 is true for this case. 

Remark  2.2. If HA is a one-sided hypothesis, then Theorems 2.1 and 2.2 
can be easily adapted to this case by the following alterations: measures F and 
G in (2.4) are concentrated on the right side of 0o and P = {(OL1, Ot2, O:3)  : Ol 3 H 
0,~2 > 0, I~11 + aN + ~a = 1} if HA is right-sided, and measures F and G in 
(2.4) are concentrated on the left side of 0o and F = {(a l ,  a2, a3) : a3 H 0, a2 <_ 
0, ]all - a2 + aa = 1} if HA is left-sided. 

Remark  2.3. Consider test ing the simple null hypothesis H0 : 0 = 0 versus 
HA : 0 ~ 0 for the family of PDFs  of the form 

(2.13) fo(x)  = f ( x l  - 0 ) . . .  f(x,~ - 0), 

where x = ( X l , . . . , x n ) ,  0 E R and f is an even positive differentiable almost 
everywhere P D F  such tha t  for every s E Rl ime_~+~ f ( s  - O)/f(O) = R(s) ,  for 
some function R : R --+ R.  

This test ing problem is invariant under the two-element group G of transfor- 
mations consisting of the identi ty mapping and the symmet ry  about  the origin. 

Let 

fo(x) + fo(-x) (2.14) go(x )  = 2 

Consider test ing of H0 : 0 = 0 versus  HA : 0 > 0 for the family defined by (2.14), 
i.e. the reduction by invariance of the original two-sided testing problem. If we 
take the function a(0) defined by (2.2) with 01 = - a  and 01 = a for some a > 0, 
then Assumptions 2.1-2.3 are satisfied. 

Note that ,  since f o ( - x )  = f - o ( x ) ,  we have tha t  

Ogo(x) = 0  and 02g°(x) o=o-02f°(x) o=o 
O0 o=o 002 002 " 

To determine an essentially complete class ~inv for invariant tests, we follow 
Remarks 2.1 and 2.2 and find tha t  

(2.15) ~0 a d(x) = ~lfo(x) + ~3 Do(x)F(d0) 

f +~ 90 (x) 
+ fo(O) 

G(dO) 

+ ~[R(Xl)-. .  R(xn) + R(-xl) . . .  R(-xn)] ,  
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where 

(2.16) 

-go(x) g°(x)02 , if 0 ¢ 0 ,  

Do(x)= 21 02fo(x)002 o=o' i f 0 = 0 ,  

and a3 Z 0, I~11 +~3  = 1, ~ 2 0, F • 7)([0, a]), G • 5C([a, +co)) .  

Certain examples of P D F s  of the form (2.13) are given closer at tent ion in 
Section 5. 

3. Bounded non-simple null hypotheses 

In this section we are interested in testing the hypothesis  

(3.1) Ho : 0 C Oo C [01, 02] versus HA ** 0 E OA g [01,02] c 

where 01 < 02 and 01, 02 are limit points of Oo and OA- For real numbers  0o, 0~, 
01 such that  0~ < 01 < 0o < 02 < 01 we define sets: 

O1 = [0~, 01) n OA, (a.2) 
O4 = (02, 01] n OA 

O2 = [01, 0o] n Oo, 03  = (Oo, 02] n Oo, 
and O5 ~ I e = [01 ,  02] n Oa. 

Two of the assumptions of this section are identical to the assumptions of the 
previous section but we repeat them to simplify cross-referencing. 

ASSUMPTION 3.1. This assumption is identical to Assumption 2.1. 

ASSUMPTION 3.2. Ro(x) has first partial derivatives with respect  to 0 at 01 
and 02 for #-almost  all x E 22. 

ASSUMPTION 3.3. This assumption is identical to Assumption 2.3. 

From now on we use the convention that  whenever we integrate Ro(x) over 
the set O5 we put  

Rol(x)= lim Ro(x) and Ro~(x) = lim Ro(x). o~o'~- o--,o'2+ 

For #-almost  all x E 22 and k = 1, 2 we define the following functions of 0 on 
O2k-1 U O2k: 

(3.3) 

no(x )  - nok (x) 
- - - - - -~--  0--2---- ' 

D(°k)(x) = ORo(x)  

O0 o=o~ 

if 0 ¢ Ok, 

if 0 = Ok. 
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Let F = {(0~1,0~2,,3,-4) : "3 ~ 0 , -4  ~ 0, ]-1] -t-1"51 + " 3  +-4 = 1}. For 
F1 ~ P(~)IU05), F2 ~ P(e3U04), G E $-(05), (-1, as, -3,a4) e 1~ and Zl,/35 >_ 0, 
define 

(3.4) d(x) = "1Re1 (x) + ,hRo2 (x) - "3 f D~ 1) (x)F1 (d0) 
J~ 1UO2 

Jr" "4 J(~aU(g4 f D;2)(x)Fh(dO) ~- f05 Ro(x)G(dO) 

+ ~IR+ (x) + ~2R-  (x). 

Under Assumptions 3.1-3.3, we denote by ~ the class of all tests of the form (2.5) 
with d(x) defined by (3.4). 

Before we prove the main result of this section we establish the following: 

LEMMA 3.1. Let {fo(x) : 0 E 0 C_ R n} be a family of PDFs with respect 
to a certain measure # on (2(, jr) and for #-almost all x C 2(, let fo(x) be a 
continuous function of O. Assume that the sets (~o, OA C_ 0 are disjoint. Then the 
partial order generated in the set of all tests by the risk function (1.1) for testing 
the hypothesis Ho : 0 COo versus HA : 0 E OA is identical to the partial order 
generated by (1.1) for Ho : 0 C ~3o versus HA : 0 E OA. 

PROOF. By Scheffe's theorem (see e.g. Billingsley (1968)) the mapping O 
0 --+ fo E L1(2(, 5 t', #) is norm-continuous. Hence E0(¢) is a continuous function of 
0 for an arbitrary test ¢. Therefore for tests ¢ and ¢', we have that  E0(¢) < E0(¢') 
for all 0 E O0 iff E0(¢) _ E0(¢') for all 0 E O0- [] 

THEOREM 3.2. Under Assumptions 3.1-3.3, ~t is an essentially complete 
class of tests for testing hypotheses (3.1). 

PROOF. The methods of the proof are similar to those of the proof of The- 
orem 2.1 and therefore some technical details are omitted. We concentrate our 
attention on differences resulting from the presence of two boundary points. By 
Lemma 3.1, we can assume without loss of generality that  00 C_ (01,05). 

Let 

1 

be a sequence of Bayes tests weak* convergent to a test ¢. We may assume 
that  7h(@o) > 0 for almost all i. Set Try(dO) = ,(O)-17ri(dO), and note that  
fOA fo(x)Tr~(dO) - foo fo(x)Th(dO) can be rewritten as 

(3.6) [ ~ ( o ~ )  - ~(O~)]Ro~(x) + [ ~ ( e 4 )  - ~ ( O ~ ] R 0 ~ ( ~ )  

+fol [Re(x) - Re1 (x)l~(d0) ÷ fo4 [Re(x) - Re2 (x)]~r~(d0) 

[R0 (x) - R01 (x)]7~ (dO) - / 0 3  [Ro (x) - Ro2 (x)]n~ (dO) 

Ro(x)~(dO). 
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Define probability measures Fki E 7)(02k_1 U ~)2k) for k = 1, 2 by 

Ie~k_,ue.,k(~)10-- Glw~(dO) 

(3.7) G~(de) = if 10 - Glrr~(dO) > O, 
02k--lU(~2k 

rr( dO ), otherwise, 

where 7r is an arbitrary element o f / ) (02k-1  U 02k). 
Using (a.a) and (3.7) we rewrite (3.6) as 

(3.8) [Tr~(e:t) - 7r~(O2)]R< (x) + [Try(e4) - ~(Oa]Re., (x) 

- fo,~e lO-O,l~:(dO) fo,~e D~')(X)Fl,(do) 

3U~4 d O 3 u ~ 4  5 

Set 

_ T - t  & = 1Try(el) < (e~ ) l  + I< (e4)  - ~(e3)l 

+ £,~e le-e,l<(dn)+ £~oe la-e~l<(dn). 
Since 7ri(O2) + ~r~(O3) is positive for almost all i, Si is positive for almost all i. 

Define Gi E 5~(O5) by 

G~(dO) = Io5 (O)S~-17c~(dO). 

Dividing the expression (3.8) by Si, for each i such that  Si is positive, yields 

(3.9) ~oRol(x) +4om~(x)-~ ~) _.f<.~ D~l)(x)<i(de) 

%(0 (i) (0 (i), P. for s o m e t  1 ,a2  , an  ,~4  )C  
The remainder of the proof is analogous to the last part of the proof of Theorem 

2.1. E] 

THEOREM 3.3. Under Assumptions 3.1-3.3, for every F1 E 7)((~1 U (~2), 
F2 E 7~((~3U(~4); G E 5v((~5), fll,fl2 >_ 0, the corresponding test (2.5) with d(x) 
of the form (3.4) is a weak* limit of a certain sequence of Bayes tests with respect 
to prior probabilities .concentrated on finite sets. 

/ 
PROOF. As in the proof of Theorem 2.2 we can assume that 7r i can be any 

finite measures concentrated on finite sets. 
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Let {Hli} C_ 7)(O1 U 0 2  - -  {81}) and {H2/} C_ 7)(03 U 0 4  - -  {82}) be sequences 
of probabili ty measures, concentrated on finite sets, converging weakly to F1 and 
F2, respectively, and let (ti E Or, for l = 1, . . . ,  4 and i = 1 , . . .  be points tha t  are 
different from 81 and 82. Define probabili ty measures 

qi /6 Eli = piHii + ~ t ~ + 6~2~) qi 
and F2i = piH2i + ~(6~3~ + 6~), 

Z 

where pi _> 0, qi > 0, pi + qi = 1 and qi --~ 0. 
, ~c(@~ U O2 U 03 U O4) be measures such tha t  (3.7) is satisfied for Let ~r~ C 

all i = 1 , . . . .  Note tha t  the first two coefficients in (3.8) can be expressed in the 
following way: 

' ( /e  Fli(dS) 
71~(01) - 71i(02) = i [8 - 81] 

and 

- = 18 - 821 

Set 

Xl,  i = 

X3, i ~- 

F  (aS) 10_821) £ oo18-821 :(d8)" 

/e Fli(d8) ~o Fli(dS) /e F2i(d8) /e F2i(d8) 
i [ 8 - - 8 1 [  2 1 0 - - 0 1 1  , X2'i = 4 ~ = - ~ 2 ~  3 ~-~2~' 

/e 18-8117c:(d8) and x 4 # - - f o  18-821~:(d8). 
1U02 3U(~4 

The coefficients in the expression (3.9) can now be rewrit ten as 

OZ(r i) : Xr,iXr+2, i 

[Zl,ilZ3, i J- [X2,ilX4, i @ X3,i ~- Z4, i 
~! i)  : Xs, i 

I x l # l X 3 #  + Ix2#lx # + + 

and 

where r = 1,2 and s = 3, 4. By a suitable choice of~u , for l = 1,2,3,4, the 
terms x1# and x2# can be any real numbers. Similarly, by rescaling the masses 
7r~(O1 U 02) and 7r~(O3 U O4), we can see that x3# and x4# can be any positive 

real numbers and therefore ((x~i),~i),(~i),~ (i)) can take any value from the set 

F '  : {((~1,  O~2, Oz3, ( I 4 ) :  O~3 > 0, O~ 4 > 0,  [0~1[ J r  [0~2[ J r  Ot 3 J -  O~ 4 : 1} .  The remainder 
of the proof is analogous to the last part  of the proof of Theorem 2.2. [] 

Remark 3.1. If HA is a one-sided hypothesis, then Theorems 3.2 and 3.3 can 
easily be adapted to this case. It suffices to put  in (3.4) a l  = c~3 = /92 = 0, 
0 3 = O 0 o r  o~ 2 = oz 4 ~--- ~1 = 0, 0 2 = (~0 when the alternative is right-sided o r  

left-sided, respectively. 

Remark 3.2. Set 82 = - 8 1 =  b > 0, 80 -- 0, 8 1 - - - 8 ~ - - a > b i n  (3.2) and 
consider the testing problem of H0 : I81 _< b versus HA : 181 > b for the family of 
PDFs  defined by (2.13). This problem is invariant under the two-element group 
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of transformations G from Remark 2.3. Let c~(0) be given by (2.2) and let go(x) 
be given by (2.14). Consider testing of null hypothesis Ho : 0 _< 0 _< b versus 
HA : 0 > b, i.e. the original problem reduced by invarianee. By Remark 3.1, we 
find that the essentially complete class (I)~, for the G-invariant tests consists of 
tests of the form (2.5) with 

(3.10) 
c~ 

d(x) = g [ f b ( - x )  + fb(x)] 

o~' ~o a f o ( - - x )  + f o ( x )  -- f b ( - - X )  -- f b ( x )  F ( d O )  

+ 2  O - b  

f +~ fo ( -~)  + fo(x) 
+ fo(x) 

G(dO) 

+ / ~ [ R ( X l ) . . . R ( x n ) - ] - R ( - x l ) . . . R ( - X n ) ] ,  

where a '  _> 0, I~1 + ~' = 1, ~ _> 0, F E 7)([0, a]) and G E 5C([a, +co)). 

4. One-sided null and alternative hypotheses 

We consider a problem of testing hypothesis 

(4.1) /to :0 E Oo C_ ( -oc ,  0o] versus HA :0 E OA C_ (0o, +oo), 

where Oo is a limit point of Borel sets Oo and OA. 

Define sets 

where 0[ and 0~ are real numbers such that 0[ < 0o < 0~. 

ASSUMPTION 4.1. This assumption is identical to Assumption 2.1. 

From now on we use the convention that whenever we integrate Ro(x) over 
the set (~1 or O4 we put 

Rol(x) = lim Ro(x) and Ro2(x) = lim Ro(x). 
0--,0~- 040;+ 

Ro(x) has first partial derivative with respect to 0 at 0o 

ASSUMPTION 4.3. There exist positive functions R+ (x) and R_ (x) such that 

lim Ro(x) = R+(x) and lim Ro(x) = R_(x) 
O --, + c~ O ---+ - co 

for #-almost all x E 22. We assume that R+(z) is essentially different from R_(x).  

o l  = ( -oo ,  0~) n Co, 

03 = (0o, 0;] n Oa 

02 = [0~, 0o] n Oo, 
and O4 = (0~,--(X)) n OA, 

ASSUMPTION 4.2. 
for p-almost all x C X. 
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For #-almost all x E A2, we define the following function of 0 on 02 U ~)3: 

{ R0(x)- ROo(X) 
- - - - - 0 - ~ 0 ~ - - - '  i f 0 •00 ,  

(4.2) Do(x) = ORo(x) if 0 = 0o. 

N 0=0o ' 

Let :D(B) denote the family of all probability measures having total masses 
not greater than 1 on a Borel set B C_ R. 

LetP  = {((21, (22, (23) : (22 ~ 0,(23 ~ 0,1c~11+(22+(2a -- 1}. F o r F  E ~[:)(~)2U(~3), 
H E :D((~I), G E 9c(E)4), ((21, a2, a3) E F and/3 _> 0, define 

d(x) = (21ROo(X) + (22 f Do(x)F(dO) (4.3) 
J8 2u@3 

-o,(L.o )÷i,-,,(o,ll._(xl) 
+ / i  Ro(x)C(dO) + l~R+(x). 

J @  4 

Under Assumptions 4.1-4.3 we define V ~ as the class of all tests of the form 
(2.5) with d(x) given by (4.3). 

THEOREM 4.1. Under Assumptions 4.1-4.3, O" is an essentially complete 
class of tests for testing hypotheses (4.1). 

PROOF. The proof uses similar techniques to those of Theorems 2.1 and 3.2. 
Consider Bayes tests {¢i} of hypotheses (4.1) defined by (3.5). Assume that, the 
sequence {¢i} is weak* convergent to a test ¢. We shall show that ¢ E V'. We 
can assume that 7ci((91 U (92) > 0 for almost all i. 

Set Try(dO) = (2(O)-17ri(dO), and note that 

(4.4) 

(4.5) 

e~ fo(~)~ddO) - £o fo(x)~(dO) 

= [ Ro(~)~;(~o)+ £ [Ro(~)- ROo(X)l~;(do) 
304 3 

+ ~(e~)ROo (x) - fo~ [Ro(~) - Roo (~)]~(dO) 

- ~(e~)ROo(X) - £1 Ro(~)~(dO). 
Define probability measures Fi E P(02  U 03) by 

[ Ze~e~ (O) lO --~o I~(dO) 

ri(dO) = i f  ~uo~ le - eol~-~(dO) > o, 

7r ( dO ) , otherwise, 



334 JACEK P. KOWALSKI 

where ~r is an arbi t rary element of 7)(O2UO3). Further,  for each i define probabil i ty  
measure Hi E 7)(O1) by 

(4.6) { ~ r e ,  (O)~;(dO) 
Hi(dO) = ~(e,) ' 

u(dO), 

if 7r~(Ot) > 0, 

otherwise, 

where u is an arbi t rary element of P(O1). 
Using (4.2), (4.5) and (4.6) we can rewrite the right-hand side of (4.4) as 

[Tr~(Oa) - Tr~(O2)]R°°(x) + /o  10 - OolTr~(dO) / e  Do(x)Fi(dO) 
2U{~3 2U{~3 

-- ~T~({~}I) /{~1 J~O(x)Hi(dO) ~- /{~4 l~O(X)~T;(dO)" 

Set 

(4.7) 

f 
s~ = 1~ (o3 )  - ~ ( o 2 ) 1  + / 10 - Oolite(dO) + 71i(O1). 

J o  2U03 

Since Tri(O1 U 02)  > 0 for almost all i, we have that  Si > 0 for almost all i. 
Define Gi E ~c(O4) b y  

a~(dO) = ~ ( O ) S ~ ( d O ) .  

Dividing the expression (4.7) by Si, for each i such that  Si is positive, we obtain 

(4.8) 4 ~)Roo (x) + ~) £ ~  Do(x)Fi(dO) 

- a~) ~ Ro(x)Hi(dO) + ~ Ro(x)Gi(dO), 

, (i) (i) (i), for some (ct i , oz 2 , a 3 ) C I ~. The remainder of the proof is analogous to the last 
part  of the proof of Theorem 2.1. [] 

THEOREM 4.2. Under Assumptions 4.1-4.3, for every F E P(O2  U ~)3), H E 
D((~I), G c Jr(~)4) and/~ > 0 the corresponding test of the form (2.5) with d(x) 
given by (4.3) is a weak* limit of a certain sequence of Bayes tests with respect to 
prior probabilities concentrated on finite sets. 

PROOF. Similarly as in the proofs of Theorems 2.2 and 3.2, we may as- 
sume that  7r~ can be any finite measure. By  Lemma 3.1 we can also assume tha t  
~ ( { 0 o } )  = 0. 

Let {F~} C_ P(O2  U O3) and {Hi} C_ P(O1)  be sequences of probabil i ty mea- 
sures tha t  converge weakly to F C P(O2 U E)a) and H C P(c(@l)) ,  respectively. 
Let ~ ,  &, pi, qi be real numbers  such that  ~i < 00 < &, Pi _> 0, qi _> 0, Pi + qi <_ 1 
and Pi + qi ~ 0. Define probabil i ty measures Fi = (1 - Pi - qi)E[ + piS& + qiS&. 
Let 7r~ E ? ( O 2  U O3) be a measure such that  (4.5) is satisfied for all i. Ex tend  7r~ 
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on O1 U (~2 U 03  in such a way that  (4.6) holds for all i. The first coefficient in 
(4.7) can be expressed in the following way: 

- = IO - Ool  (do) Vol IO - O o l /  
2U~3 a 2 

Put  

'e F~(dO) £ F~(dO) ~r~(01) 
xi = 3 I 0 - 00] ~ ]0 - 00] and Yi = revue3 ]0 - Oo]Tr~(dO)" 

Then we can rewrite the coefficients in (4.8) as 

(4.9) a~) - ]xi] + 1 + Yi ]xi I + 1 + Yi ]xi] + 1 + yi 

By a suitable choice of ~i and ~i, the te rm xi can take an arbi t rary  real value. By 
a proper  setting of the proport ion between the masses 7r~(O1) and Tr~(O2 U ®a), 
the term Yi can at ta in any positive real value. The remaining par t  of the proof  is 
analogous to the last par t  of the proof  of Theorem 2.4. [] 

5. Regularly varying functions and scale or location families 

In this section we point out  relationships between the notion of regular vari- 
at ion of functions, which has a number  of applications in probabil i ty  theory (see 
e.g. Bingham et al. (1987)), and testing for scale or location parameters .  If we 
deal with scale parameters ,  then the asymptot ic  assumptions of previous sections 
are equivalent to regular variation of probabil i ty density functions. In the case of 
location parameters  these assumptions are equivalent to additive regular variation 
defined below. 

Recall tha t  a positive function g : [0, +oc )  --+ R is regularly varying (r.v.) at 
infinity if 

(5.1) lim g( tx )  _ S ( x )  < + o c  
g(t) 

for every x > 0. In the natural  way the above definition extends to even functions. 
A function g is said to be r.v. at the origin if 9(x -1) is r.v. at infinity. If (5.1) 
holds, then S(x)  is of the form x p, where - c o  < p < +oo,  see Feller (1966). 

We say that  a positive function f : R --+ R is additively regularly varying 
(a.r.v.) at infinity if 

f ( t  + x) 
(5.2) lim -- R(x)  < +oo 

t-~+oo f ( t )  

for every x. 
Note  that  if g is r.v. at infinity, then f ( x )  =_ g(exp(x))  is a.r.v, at infinity 

and conversely if f is a.r.v, at infinity, then g(x) - f ( ln (x) )  is r.v. at infinity. 



336 JACEK P. KOWALSKI 

Therefore, if (5.2) is satisfied, then there exists a positive number a such tha t  
R(x )  = a x for every x E R.  

One-parameter exponential  families, which do not satisfy the condition (5.1) 
belong to the class of functions of rapid variation, see Bingham et al. (1987). 

Example 5.1. Consider the problem of testing the scale parameter  for n i.i.d. 
random variables in the case of Cauchy distribution with P D F  

1 1 
f ( x )  =- 7r - ~ -  

1 + x 2 1 + x~' 

where x = ( X l , . . . ,  Xn), for / t 0 : 0  e (0, a] versus H A :  0 C (a, +co).  Note tha t  for 
n = 1 the Cauchy distr ibution is r.v. at infinity and at the origin and Assumptions 
3.1 3.3 are satisfied. 

Similar consideration can be applied to the generalised Cauchy distribution. 

LEMMA 5.1. I f  a funct ion h : [0, +co) --+ R is concave and non-decreasing 
and a funct ion e : [0, +oc) --+ R is such that 

lim e(x) = 0 ,  
X--+ ~-CX~ 

then the funct ion 

(5.3) f ( x )  = exp(c(Ixl) - h(Ixl) ) 

is a.r.v, at infinity. 

PROOF. Pu t  s = t - x and note tha t  

(5.4) f ( t  - x) _ f ( s )  
f ( t )  f ( s  + x)" 

If (5.2) holds for every x > 0, then by letting s diverge to infinity, we see tha t  
the r ight-hand side of (5.4) converges to a -x  for some a > 0 and all z > 0 and 
so does the left-hand side. Therefore it suffices to verify (5.2) for every positive 
x. To this end, we show the existence of a number c such tha t  limt_~+~ [h(t + 
x )  - h(t)] = cx for all x > 0. It is known tha t  if h is a concave function, then 
h'+(t) >>_ [h(t + x) - h( t )] /x  >_ h'_(t + x),  where h~ and h'_ denote the leR and 
the right derivatives of h, and both functions h~_ and h'_ are non-increasing, see 
e.g. Ash (1972). Since h is non-decreasing, the functions h~_ and h'_ are non- 
negative and therefore there exist non-negative numbers c+ and c_ such tha t  
limt-~+oo h~_ (t) = c+ and limt--.+~ h '  (t) = c_. Since h is differentiable except for 
at most countably many points we have tha t  c+ = c_ = c. [] 

If f is a function satisfying the assumptions of Lemma 5.1, then limt--._~ f ( t +  
x ) / f ( t )  = limt_~+~ f ( t  - x ) / f ( t ) .  Thus f is a.r.v, at (negative) infinity. 
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As it turns out in the next section, in the case of location families generated 
by PDFs of the form (5.3) we can prove admissibility of many tests and conditions 
for admissibility are very simple. 

Example 5.2. Denote by f~,b, g, h,~ and d the densities of the generalised 
Cauchy, double exponential, generalised logistic and hyperbolic secant distribu- 
tions, respectively, i.e. 

dr(b) 1 1 
fo,b(X) = 2 r ( a - 1 ) r ( b -  a -1) (1 + Ixla) b' g(x) = ~ exp(-lxl) ,  

( 2 m -  1)! 
hm(x) - [~-~_--]).~-]2 {exp(-x)[1 + exp(-x)] -2} m, 

2 1 
d(x)  = 

exp( ) + exp(-x) ' 

where a, b > 0, ab > 1, m = 1 , . . . .  It is easy to show that fa,b, g, hm and d are of 
the form (5.3). 

In testing problems involving n i.i.d, random variables and location families 
generated by fa,b, g and d, if for each of these families we take a(0) of the form 
(2.2), then the function R+(x) ~ 1 for f~,b and R+(x) = exp(}-~i~=l xi) for the 
densities g and d, where x = (Xl , . . . ,  xn). In all the cases above R_(x) = R+( -x ) ,  

n for all x E R n. For the density hm we have R+(x) = m e x p ( ~ = l  xi). 

6. Conditions for admissibility of tests 

In this section, we present certain sufficient conditions for admissibility of 
tests for location families generated by a.r.v. PDFs. To prove admissibility of 
tests which are weak* limits of Bayes tests, we use the following lemma, based on 
Blyth (1951): 

LEMMA 6.1. Consider testing the hypothesis Ho : 0 E Oo v e r s u s  HA : {9 E O A 

for a family of probability density functions {fo : 0 E (9}, and assume that the 
following conditions are satisfied: 

(i) There exists a sequence of priors {J,~} C_ 9v(O) such that 

(6.1) di(x) = / e  fo(x)J~(dO) - £ fo(x)J~(dO) --+ d(x) 
A 0 

for p-almost all x E X.  
(ii) If  {¢i} is a sequence of Bayes tests with respect to Ji, then 

limi__  inf/x [¢(x) - ¢ i ( x ) ]d i ( x )p (dx )  = O. 

(iii) p ({x:  d(x) = 0}) = O. 
Then the test of the form (2.5) is admissible. 
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PROOF. The proof is analogous to the proof of Lemma 3.2 in Brown and 
Marden (1989). [] 

We assume (abusing the notation) tha t  the measure # on the a-field of Borel 
sets of R ~ is the n-fold product  of the same measure. In the next theorem, we give 
simple conditions for admissibility of tests for a location parameter  in the case of 
invariant testing problems considered in Remark 2.3. 

THEOREM 6.1. Let f be a PDF of the form (5.3) satisfying the assumptions 
of Lemma 5.1 and such that the function e(Isl) - h(Isl) is twice differentiable and 

(6.2) sup le'(lsl)l - h'(Isl)l < ÷oo and sup Je"(N)l - h"(H)l  < -t-oo. 
sER sCR 

I f  d(x) is of the form (2.15) and #({x e R~ : d(x) = 0}) = O, then the correspond- 
ing invariant test defined by (2.5) is admissible in the class of all invariant tests 
for testing Ho : 0 = 0 versus HA : 0 7 ~ 0 for the location family of distributions 
generated by (5.3). 

Before proving Theorem 6.1, we establish two technical lemmas. 

LEMMA 6.2. If  a sequence Of functions {hi} C L I ( x , j c , / t )  is convergent in 
L 1 to a function h and a sequence {¢i} C_ L ~ ( X , ~ , p )  is weak* convergent to a 
function 4, then 

I x  hi(x)¢i(x)#(dx) ~ I x  h(x)~(x)#(dx).  

PROOF. Note tha t  

and 

 [ hi(x) - h ( x ) l ¢ i ( x ) , ( d x )  _< M [ Ibm(x) - h (x ) l , (dx ) ,  
J• 

where M is an upper bound for the L °° norms of ¢i for i = 1, 2, . . . .  [] 

LEMMA 6.3. If  f : R ~ R is a positive continuous function and G E J=(R) 
is such that 

+ ~  f (x)G(dx)  < +ee, 

then there exists a sequence {Gi} of finite measures, which are concentrated on 
finite sets of points, such that 

Y - o c  d - o c  
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Proof. Let {Ik} be a sequence of bounded intervals such that G(Ik) > O, 
G(OIk) = O, Ik C Ik+l and [_JIk = R. Denote by Gk the restriction of the 
measure G to the interval I~. The sequence of measures {Gk} converges weakly 
to the measure G and 

/ +~f(x)Gk(dx) : f+o~ I±k (x)f(x)G(dx)---+ / 7 5  f(x)G(dx). 

On the other hand, we know that for every measure Gk there exists a sequence of 
probability measures {Gk,l}, which are concentrated on finite number of points, 
such that l iml_~  Gk,t = Gk weakly and since the function/Ik (x)f(x) is continuous 
G-a.e. and bounded we have 

tim f+~ 5k (x)f(x)Gk,l(dx) = f + ~  Ixk (x)f(x)Gk(dx), 
t ~ J _ ~  

see Ash (1972). Since the set of probability measures with the topology of weak 
convergence is a metric space, we can extract a subsequence of probability measures 
from the double subsequence {Gkj}, which after relabeling we denote {G~}, such 
that it is weakly convergent to the measure G and (6.3) is satisfied. [] 

PROOF OF THEOREM 6.1. The proof is based on Lemma 6.1. Take (~(0) 
defined by (2.2) and consider the original testing problem reduced by invariance, 
i.e. the problem of testing the hypothesis H0 : 0 = 0 versus HA : 0 > 0 for the 
family of PDFs go given by (2.14). 

From the proof of Theorem 2.2 and Remarks 2.1 and 2.2 it follows that there 
exists a sequence of prior measures {J~} _C jr([0, +ce))  concentrated on finite sets 
such that condition (6.1) holds and di(x) can be expressed by 

fo(o) 

where (~ i) _~ 0, : 1, (~i) ,  c@ )) --~ (o~1, o~3) , V( (0 ,  a]) ~ F i --+ F weakly, 
$-((a, +oe)) ~ Gi --+ 0 E $'([a, +c~) U {+oe}) weakly, the measure G is such that 
its restriction to the set [a, +c¢) is the measure G and G({+e¢}) = 2/3 and Do(x) 
is defined by (2.16). 

Now we verify that the condition (ii) of Lemma 6.1 holds. We break this into 
two parts. First, we prove that 

(6.4) 

and in the next step we prove that 

(6.5) f. L go(x) [¢(x) - @(x)] fo(O) Gi(dO)#(dx) ---* O. 
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If we show that  

o aDo(x)Fi(dO) << Kfo(x) 

for some positive constant  K then, by Lebesgue's  dominated convergence theorem, 
condition (6.4) is satisfied. 

It is known (see e.g. Feller (1966)) tha t  the convergence in (5.2) is uniform on 
every bounded  interval I and therefore 

f ( t  + O) 
(6.6) sup - -  < 2/40 

o~I f(t) - 

for a certain M0 > O. 
By (6.2) and (6.6) we obtain 

(6.7) sup Of(t+O) 
OeI O0 

= sup Olnf(t+O) 
oe± O0 f( t  + O) 

= SUPoe± O [ e ( l t  + 0]) - h(It + 0])] f ( t  + O) <_ Mlf(t)  

for a certain positive constant  M1 and it follows that  

(6.8) sup 
OEI 

02f(t + O) 
002 

021nf( t+O)f( t  Olnf(t+O) Of(t+O) 
= sup + 0) + 

oeI 002 00 00 
02 

---- sup O-~-[e([t + 0[) - h(lt + 01)] 
OEI 

0 Of(t + O) 
+~-~[e(lt + 0[) - h(lt + 01)] 

00 

<_ M2f(t) 

for a certain positive constant  2142. Bearing in mind (6.6)-(6.8), it is easy to see 
that  

foaDO(x)Fi(dO) 10e[fo(x)+f_o(x)] < 1 02fo(x) 
<- 0e[0,a]sup ~ 002 - 2 0e[-~,~]sup 

1 x--" 2f ( i l ) (x l  - 0 ) . . .  f(i~)(Xn - O) 
sup 

2 oc[-~,~] i1!.., in! Q+...+ "~=2 

<_ K l f ( X l ) " "  f(Xn), 

where f(0)(t  - 0) = f ( t  - O) and f( i ) ( t  - 0) denote partial derivatives of order i of 
the function f with respect to 0 for i -- 1, 2 and K1 is a positive constant.  The 
first of the inequalities above results from Taylor's expansion of the second order. 
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Now we show that the condition (6.5) is satisfied. Let r be the maximal integer 

such that 0 < r <_ n and f+~ exp(rh(O))G(dO) < +oc. Denote by x[1],...,X[n] 
the decreasing rearrangement of the sequence Ix l l , . . . ,  IXnl and set X[o] -- 0. 

By (5.3) we obtain 

go(x) 
(6.9) fo(O)fo(x) 

exp  41xk  - Ol) - h(Ixk - OI)] + exp  [e(Ixk + 01) - h(lxk + OI)] 

2oxpln lO nhlO Iloxp  /xk l) 
> c  
- exp(_nh(lOi)_k~=lh(]xkl) } 

> 2c 

where e is some positive constant. The first of the two inequalities in (6.9) follows 
from the boundedness of the function e(x) and the second results from the con- 
vexity of the exponential function and the concavity of the function h on the set 
of non-negative real numbers. 

If 101 ___ z[~-~l for a certain integer r E {0 , . . . ,  n}, then, since the function h 
is non-decreasing on the set of non-negative real numbers, we have 

(6 .10)  e x p  h(Ixkl)  + nh(lOI) - ~_, sup{h(Ixkl),h(lOI)} 
k = l  k = l  

) = exp h(IX[k]] ) +nh(]O]) - sup{h(]x[k]]),h(]O])} 
\ k = l  k = l  

>_ exp((~ ÷ 1)h(lel)). 

By (6.5), (6.9) and (6.10) we obtain 

• /o a U olxl ,l o  (6.11) di(x) >_ -Ic~i) fo(x) + c~ (i) D°(x)Fi(dO)[ + fo(O) 

>_ fo(x) - (.f+¢~ 
go(z) 

/o(x)/o(0) ~d0~_~ ~ - K ' j  

>>_ f o ( x )  2c exp([r + 1]h(lOI)G,(dO) - K '  , 
\ J a  
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for some constant  K t > 0. For a positive number  5, define the set C5 = {x E R n : 
x[n-r] < 5}. Now we can rewrite (6.5) as 

/c f+~ go(x)G~(dO)#(dx) (6.12) e [¢(x) - ¢i(x)] fo(O) 

fc g°(x) + [ ¢ ( x )  - (dO)u(dx). fo(O) 

The first integral in (6.12) can be rewrit ten as 

(6.13) Ix [ ¢ ( x ) -  ¢i(x)]Ice(x) f+~ go(x) 
fo(O) G.~(dO)p(dx). 

By Lemma 6.3, we can assume that  the sequence {Gi} converges weakly to the 
measure G and 

~a+C~ f+e~ 
(6.14) exp(rh(O))GddO) ~ exp(rh(O))G(dO). 

o a  

If we show that  

fa+°C fa +°c gO(X) L1 g°(x) Gi(dO) --+ Ic~(x) G(dO) in (6.15) Ice(x) fo(O) fo(O) ' 

then, by Lemma 6.2, the integral (6.13) converges to 0 as i ~ ec. To this end, note 
tha t  for #-almost  all x the integrand in (6.15) is a continuous and bounded  function 
of 0 and therefore the left-hand term of (6.15) converges #-almost  everywhere to 
the right-hand one. 

Define measures 

G'~(dO) = exp(rh(O))G~(dO) and G'(dO) = exp(rh(O))G(dO). 

Obviously G~ converges vaguely to G' and by (6.14) it follows that  it also converges 
weakly, see Bauer  (1981). 

If we show that  

(6.16) Ix Ic~(x) f+~ g°(x) ~ Ix IC~(x) ~+~ ~G(dO)p(dx), 

then, since all integrands in the above integrals (with respect to measure #) are 
non-negative, we have proven that  (6.15) holds, see e.g. Par thasa ra thy  (1978). By  
Fubini 's  theorem, rewrite the left-hand part  of (6.16) as 

(6.17) 

= ce ~x) 
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Define the set 06 = {x:  Ixxl _ • . ,  ~ Ixn-~l ~ ~} and note that 

~o(~) x Ic~ (x) f~(~  exp(-rh(O) )p(dx) 

l o g O ( z )  = ( n -  r)! ~ fo(O) exp(-rh(O)),(dx) 

_< (n  - r)!  . V -~  " "" f ; ~  gofo(o)(X) 

• exp(-rh(O))#(dxl). . .  #(dxn_~)) tt(dxn_r+l)... 

% 

#( dxn ) 
/ ( ).. 6 f  _ )  

< (n--  r)! SoP dt supexp(re(0)) < ÷oc. 
5 0 

Hence the integrand with respect to G~ in (6•17) is bounded and since the 
mapping 0 --+ 9o E L 1 is continuous, this integrand is also a continuous function 
of 0. Therefore (6•16) holds. 

To complete the proof we have to show that the second integral in (6•12) 
converges to zero as i --+ oc. If 5 is sufficiently large, then by the inequality (6.11) 
the function di(x) is positive for all x ¢ C~. Therefore @(x) = ¢(x) and the 
considered integral vanishes• [] 

THEOREM 6.2. Let f be a PDF of the form (5.3) satisfying the assumptions 
of Lemma 5.1 such that the function e(]s ] ) -  h(]s]) is differentiable except possibly 
at zero where left and right derivatives exist and 

sup I~'_(Isl) - h~(Isl) l  < + ~  and 
s c R  

sup I ~  (Isl) - h~( i s l ) l  < + ~ .  
s c R  

If d(x) is of the form (3.10), and #({x :  d(x) = 0}) = 0, then the corresponding 
invariant test defined by (2.5) is admissible in the class of all invariant tests for 
testing Ho : ]01 <_ b versus HA : ]0] > b for the location family of distributions 
generated by (5.3). 

PROOF• The proof is similar to the proof of Theorem 6.1 so that  we only 
concentrate on some technical differences• 

We have to prove that the condition (ii) of Lemma 6.1 holds with 

foa f + ~  go(x)G.;dO' , go(x) - gb(x) F~(dO) + 
di(x) = aigb(x) + ~ O b ,a fo(x) '~ j' 

where a~ > 0, ]a i [+  a~ = 1, Fi • 7)([0, a]), Gi • 5C([a, +oc)) and de(X) is defined 
by (2.14), see Remark 3.2. First consider 

i. '/o ° (6.16) [¢(x) - ¢~(x)]{~gb(x)  + ~ 0 
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If we show that  

fO a go(x) -- gb(X) Fi(dO))#(dx ) < Kfo(x)  
0 b 

for a certain positive constant K then, by Lebesgue's dominated convergence the- 
orem, the integral (6.18) converges to zero as i ~ oc. Note tha t  

/o   lxlÈ,l o) 
< sup Ofo(x) Ofo(x) 
- -  OE[-a,a] 0 0 -  + sup 0~[-~,~1 00+  

_< sup E I f ( i l ) ( x l -O) ' " f ( i~ ) ( xn -O) l  
OE[--a,a] Q+'"+in=l  

+ sup E I f ( i l ) ( x l -O) ' " f ( i~ ) ( xn -O) l  
OE[--a,a] il+...+in=l 

<-- \OER(SUp le'_(lsl) - h~_(lsl)l + oERSUp le~(Isl) - h~( I s l ) l )  f ( x l ) - - ,  f(Xn) 

where the symbols o f(1) f(+l) - and o +  _ denote respectively the firs left and 

right partial  derivatives with respect to 0 and f(_0) _ f(+0) _ f .  The remaining 
part  of the proof, i.e. showing tha t  

go(x) a "dO" "dx" I (x)] f o ~  i[ )~t[ ) --+ O, A 

is identical with the analogous part  of the proof of Theorem 6.1. [] 

THEOREM 6.3. Let f be a PDF of the form (5.3) satisfying the assumptions 
of Lemma 5.1 such that e(lsl) - h(isl) is differentiable except possibly at Oo where 
left and right derivatives exist and 

sup le~_(Isl) - ht (Isl)l < +oc  and 
sER 

s u p  ]e~-(lsl) - h~-( ls l ) l  < + o o .  
sER 

If d(x) of the form (4.3) is such that H(01) = 1, ~ = O, f(~l exp(nh(O))H(dO) < 
+oc, fo4exp(nh(O))G(dO) < +oc and #({x :  d(x) = 0}) = 0, then the correspond- 
ing test of the form (2.5) is admissible for testing hypotheses (4.1) for the location 
family of distributions generated by (5.3). 

PROOF. The condition (ii) of Lemma 6.1 can be checked by splitting di(x) 
of the form (4.8) into functions 

and 
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- £1Ro(x)U (ds) + £4 
and proceeding in a way similar to the proofs of Theorems 6.1 and 6.2. [] 

Remark 6.1. Theorem 6.1 can be applied to the generalised Cauchy, gener- 
alised logistic and hyperbolic secant distributions. The double exponential distri- 
bution does not satisfy the condition (6.2). However from the proof of the theorem 
mentioned above, it follows that if there is no local term in d(x) defined by (2.15), 
i.e. c~3 = 0, and the set {x : d(x) = 0} has Lebesgue measure zero, then the corre- 
sponding test of the form (2.5) is admissible. Theorems 6.2 and 6.3 apply to the 
double exponential, generalised logistic, hyperbolic secant and generalised Cauchy 
distributions. 

7. Locally best tests 

Under Assumption 2.1, consider a test ¢ of the form (2.5) of hypothesis H0 : 
8 = 80 versus HA : 8 > 80 with d(x) given by 

(7.1) d(x)=/3R+(x)-fOo(X),  

where/3 > 0, such that #(x : d(x) = 0) = 0. The expression (7.1) is for/t-almost 
all x ~ X the limit of the sequence di(x) = /3ife~(x) - Reo(x), where {/3i} is a 
sequence of positive numbers converging to /3 and a sequence {8i} C (8o, +ao) 
diverges to infinity. 

Assume that for all such sequences {8i}, the sequences {/3~} are such that 
the corresponding measures Ji = 600 +/3i50~ satisfy the condition (ii) of Lemma 
6.1. By Lemma 6.1, the limit test ¢ determined by d(x) is admissible for testing 
H0 : 8 = 80 versus HA : 8 E {8i} for every sequence {8i} C_ (8o, +oc) diverging to 
infinity. The test ¢ has the following optimum property: for any test ¢ such that 

(7.2) tOo(C) rOo(¢), 

there exists a number c > 00 such that 

(7.3) r0(¢) ~ ro(¢) 

for every 0 > c, where r is the risk function (1.1). To prove that ¢ has the 
stated property, assume that (7.2) holds and the subsequent condition (7.3) does 
not. Then there exists a sequence {0i} diverging to infinity such that r0~(¢) > 
ro~ (~b). But this contradicts the admissibility of the test ¢ for the alternative space 
consisting of the sequence {0i}. 

In this light, the test ¢ can be called locally best at positive infinity. In a 
similar way, for a left-sided alternative, we can define a locally best test at negative 
infinity. These tests are good at detecting big departures from a null hypothesis. 

Another extreme case of tests are locally best tests defined by Neyman and 
Pearson (1936, 1938). In the expression d(x) defined by (2.4), we can find terms 
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involving first and second partial derivatives with respect to a parameter, that are 
characteristic for locally best unbiased tests. Similarly the expressions d(x) given 
by (3.4) and (4.3) contain terms present in locally best tests for one-sided hypothe- 
ses, see e.g. Ferguson (1967). These tests are weak* limits of Bayes tests relative to 
priors which concentrate masses arbitrarily close to the boundary of a null param- 
eter space. Locally best tests, locally best at infinity tests and tests which contain 
combinations of local and asymptotic terms have usually quite simple forms, which 
makes them easy to use. 

8. Examples 

In this section we present some examples of tests from the complete classes 
obtained in the previous sections. 

Example 8.1. Let f be an additively regularly varying PDF such that 

R+(x) =- lim f ( x  - t) f ( x  - t) 
t--~+~ f(t)  # t--~-~lim f(t)  - R_(x)  

for almost all x E R.  Both functions R+ (x) and R_ (x) are exponential so that 
R+ (x) = a x and R_ (x) = b x, for some positive numbers a and b. We assume that 
ab~  1. 

The densities of the double exponential, generalized logistic and hyperbolic 
secant distributions are examples of probability density functions which have the 
above properties. 

Consider testing the hypothesis H0 : 0 < 00 versus HA : 0 > 00 for a location 
parameter of the density f .  For the case of n i.i.d, random variables take the 
function d of the form (4.3) given by 

(8 .1)  d(x )=/3exp  lna  xi - e x p  - l n b  xi , 
i=1 / i=1 

where x = ( x ] , . . . ,  xn). The test based on the function d given by (8.1) is identical 
with the test based on the sample mean, i.e. 

n 

1, i f E x i  > k, 

¢ ( x )  = i=1 
n 

0, i f E x ~ < k ,  
i = 1  

where k = In/3-1 / In ab. 
Since tests based on the sample mean were obtained as limits of Bayes tests 

relative to priors with masses arbitrarily far from the point 0o, we can expect, that 
for the one-sided testing problems under consideration, these tests are sensitive to 
big departures fl'om the central point 00. Figure l(a) presents the power func- 
tions of the tests based on the sample mean for samples of size 5, for testing the 
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F i g .  1. P o w e r  f u n c t i o n s  o f  t e s t s .  

hypothesis H0 : 0 _< 0 versus HA : 0 > 0 for the double exponential  distr ibution 
(k = 5.1, solid line) and for the logistic distribution (k = 6.68, dashed line). The 
size of both  tests is a = 0.05. From the plots, we can see tha t  both  tests are very 
sensitive even to moderate  departures from 0 and their power functions increase 
quite sharply in the neighbourhood of 0. 

Example 8.2. Consider the invariant testing problem of the simple null hy- 
pothesis arising from Remark 2.3 for the Cauchy distributions. The function R(x) 
is in this case the constant  equal 1. Consider a test  of the form (2.5) with d(x) 
given by (2.15) such tha t  only local and asymptot ic  terms are involved, i.e. 

(8.2) 1 0 2 o=o d(x) = c q f o ( x )  q -  o ~ 3 ~  -~ fo (x )  ~-/3, 

where c~3 >0, ]all + a3 = 1 and /3  _> 0. If/3 = 0 in the expression (8.2), then the 
invariant test based on d(x) is the locally best unbiased invariant test, see Ferguson 
(1967). If C~a = 0, then the test based on d(x) is locally best at infinity for the 
testing problem reduced by invariance, i.e. for the one-sided alternative space and 
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the family of distributions with densities of the form (2.14). If we divide (8.2) by 
fo(x) we can see tha t  the test  based on (8.2) is identical with the test based on 

f i  2 1 12[ Z i -- 
(8.3) dl(x) = °L1 ~- (23 (1 ~- x/2) 2 ~- ~ (1 Jr- x2). 

i=i i=1 
By Theorem 6.1, all invariant tests determined by d ~(x) are admissible in the class 
of all invariant tests for the testing problem under consideration. 

The function d'(x) given by (8.3) at tains its minimum when x~ = 0 for all 
i and d ' ( 0 , . . . , 0 )  = a l  - nOz3 ~- /3. If O~ 1 - -  TtO~ 3 -~- ~ ~ 0, then d'(x) > 0 for 
almost all x. Hence, to obtain non-trivial tests we have to impose the condition 
/3 < - a l  + na3 = - a l  + n(1 - laiD, where ]al] < 1. Numerical computat ions 
have shown tha t  in order to obtain low sizes of tests based on d~(x) we should 
choose negative coefficients a l .  For instance if the sample size is 5, and Ctl is 
non-negative, then the lowest size of such a test is a t ta ined when a l  = ~ = 0 and 
it is approximately equal 0.25. 

If a l  < 0 and ~ = 0, then the test  determined by (8.3) is locally best and 
unbiased. It is easy to see tha t  the power of this test  tends to zero as the parameter  
0 diverges to infinity. A method of improving the test  is to combine it with 
locally best at infinity tests by choosing positive coefficients ;? in (8.3). Such 
combined tests appear to have, as might be expected, quite big powers in a certain 
neighbourhood of 0 and their power functions approach 1 if the parameter  0 tends 
to infinity. Figure l(b) presents the power functions of the locally best test  (solid 
line) with a l  = -0.6465 and /3  = 0 and the locally best at infinity test  (dashed 
line) with a l  = - 1  and/3 = 5.4 x 10 -7. Figure 1(c) presents the power functions of 
the combined tests with a l  = -0 .79  and ¢~ = 1 0  - 9  (solid line), a l  = -0.8183 and 
/3 = 10 -8 (dashed line) and a l  = -0.8564 and/3 = 10 -7 (dotted line), respectively. 
In all the cases above, the sample size is 5 and constants a l  and ~ are chosen in 
such a way tha t  the size of all tests is 0.05. Since the above tests are invariant 
with respect to the symmetry  about  the origin, Figs. l(b) and 1(c) show plots for 
non-negative parameter  values only. 

Example 8.3. Consider testing the hypothesis H0 : 0 = 0 versus HA : 0 ¢ 0 
for the double exponential distribution. Take a locally best unbiased invariant test 
determined by 

0 
+( l - - 'Y)2-n+102  ( f i  ) 0=0 002exp - ]xi--O] , 

i=1 
where 0 < V < 1, see Remark 2.3. After simple calculations we obtain tha t  

d x/=  2noxp( x ) l 

+ (1 - 7 )2  sgn(  ) 

2 exp( x ) 
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and therefore the test based on d(x) appears to be a two-sided sign test. It is easy 
to see that sizes of such tests can only be of the form r/2 n-1 where r = 1 , . . . ,  2 n-1. 

The test obtained from (2.15) by taking a l  = -1 ,  ~3 = 0,/3 > 0 and G being 
the zero measure is identical with the test 

(8.4) 

n 

1, ifexp(fi,xi,-~x~)+exp(fi,xi,+Exi I > k ,  

¢ ( x ) =  / 

0, i fexp ]x i ] -  xi +exp  I x i ] + E x i  < k ,  
i--1 i--1 i=1 / 

for a certain real number k > 0. By Remark 6.1, this test is admissible in the 
class of invariant tests and it is also locally best at infinity for the testing problem 
reduced by invariance. Figure l(d) shows plots of the power functions of the 
two-sided sign test given by 

5 

1, i f E s g n x ~  > 4 ,  

¢(x) = 
5 

0, i f E s g n x ~  <4 ,  
i=1 

(dashed line) and the test defined by (8.4) with k = 106 (solid line). Both tests are 
of size (~ = 2 - 4  - -  0.0625. From the plots we can see that although the sign test is 
slightly better in the neighbourhood of 0, the power of the second test increases 
faster from a certain point. 

It is easy to show that for testing one-sided hypotheses for the double expo- 
nential location family, the sign test (which is locally best) belongs to the class 
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