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Abstract .  A simple estimate of the asymptotic dispersion matrix of the LI 
median is proposed and its rate of convergence is studied. 
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1. Introduction 

Let X 1 , X 2 , . . .  , X  n be n i.i.d, observations on a distribution F in R a, d > 2. 
Medians for multivariate distributions have been defined in many ways in the 
literature. See Small (1990) for a survey in this area. The L1 median of F is the 
value of 0 which satisfies 

EF([X - O I - I X I ) =  inf EF([X - ¢I - [X[). 
CER~ 

Let Fn be the empirical distribution function of (X1, . . .  ,Xn). Then a natural 
estimate of 0 is the corresponding sample analogue 0n which satisfies 

(1.1) ~2-~ , lx~-0~l=  inf ~ ] X ~ - O [ .  
a=l ¢@Rd c~=1 

Under the assumption of boundedness of the density (Assumption B of Section 2), 
nl/2(On - O) has an asymptotic N(0, D(O)) distribution. The exact form of D(O) 
is given in Section 2. 

The problem of estimation of D(O) was first discussed in Bose and Chaudhuri 
(1993). They exhibited an estimate D~ which, under the assumption of bounded- 
ness of the density of X1 on every compact set (see Assumption B later) satisfies 

(1.2) D n - D ( O ) =  ~Op(n-1/2) if d > 3  

t Op(n -~) for any 5 < 1/2 if d = 2. 
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Note that these bounds are probability bounds and no almost sure results were 
given. This estimate is computed by splitting the data into two groups which 
are used to estimate two different components of D(O) and is thus likely to be 
inefficient. It was claimed in Bose and Chaudhuri (1993) that there are serious 
difficulties in establishing asymptotic bounds, even in probability, for the simple 
plug in estimator. 

In the next section we introduce the natural plug in estimators and show that 
they have excellent asymptotic properties provided certain conditions are satisfied. 
In particular, we show that irrespective of the dimension d _> 2, 

(a) D~ - D(O) = Op(n  -1/2) if EIX1 - O1-2 < oo. 
(b) Dn - D(O) = O(n-1/2( loglogn)  1/2) almost surely if 

E P IXt - 01-2 -> logTog i < o~ for any small e. 
i=1  

The condition of (b) (and hence of (a)) holds for dimension d _> 3 under 
Assumption B. Thus in this case we have the sharpest possible rates. For d = 2, 
these conditions do not hold solely under Assumption B. Our method of proof 
also shows that under finiteness of higher inverse moments, Dn is asymptotically 
normal. Unless the above conditions are satisfied the plug in estimator perhaps 
does not have any good asymptotic properties. This is suggested by the method 
of proof that we have employed. These issues are discussed in more details in the 
Remarks following the proof of the main results. 

Assumption B has been used by Chaudhuri (1992) for establishing various 
properties of 0n. Our investigation seems to indicate that this assumption has a 
bearing on such results for the median only through the fact that it guarantees 
the existence of these inverse moments. It is plausible that such properties of the 
L1 median hold true solely under such assumptions. This issue will be explored in 
a separate paper. 

2. Results and discussion 

For any vector x E R d, define the vector U and the matrix Q as, 

x 
U ( x ) =  ~ i fx  7~ 0 

0 i f x  = O, 
I xx  T 

Q ( x ) =  Ixl ixl3 ifx¢O 

0 i f x  = 0 
-- Ql(x) - Q2(x), say. 

Then the matrix D(O) (whenever it exists) may be written as 

D(O) = A - 1 B A  -1 
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where 
d = EFQ(X1  - 0), B = EF[U(X1 - O)U(X1 - o)T]. 

Note that  B is always defined and A is defined under the following 

ASSUMPTION A. E F [ I X 1  - O1-1] < oc. 

The natural plug in estimators An and Bn are then defined by 

n 

(2.1) A n = n - I E Q ( X a - O n ) ,  
o ~ 1  

n 

(2.2) Bn = n -1 E U[(Xa - OnlU[(X, - on)T]. 

We now introduce an assumption which has been used by Chaudhuri  (1992) to 
study the properties of 0n. 

ASSUMPTION B. X1 has a density f which is bounded on every compact 
subset of R d. 

By using the fact that  d _> 2, it is easy to see that  Assumption B implies 
Assumption A. Under Assumption B, the following representation for On follows 
from Theorem 3.2 of Chaudhuri  (1992). 

(2.3) On - 0 = A - i n  -1 f i  U(Xc~ - O) ÷ Rn 

where 
Rn = O(n -l+e) a.s. for any e > 0. 

From this representation and the CLT and LIL we have (under Assumption B), 

(2.4) 

and 

(2.5) 

O n -- 0 = O p ( n  - 1 / 2 )  

On -- 0 -= O(n-1 /2( log logn)  1/2) a.s. 

The relations (2.4) and (2.5) motivate the following results on the asymptotic 
properties of the plug in estimators. In the following theorems the estimator 0n 
which is used to define A~ and B~ need not necessarily be that  defined by (1.1). 

THEOREM 2.1. Suppose Assumption A holds. For any estimator On~ 
(a) I f  (2.4) holds then B~ - B = OR(n-I~2).  
(b) I f  (2.5) holds then Bn - B = n-1/2( loglogn)  1/2 almost surely. 

The behaviour of the function Q is quite different from that  of U. The above 
rates are achievable by An only under further restrictions. We introduce the 
following assumptions. 
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ASSUMPTION C. EF[IX1 -- 01-2] < exp. 

oo  e i  ASSUMPTION D. 2 i = 1 P { I X :  - 0[ -2 _> ~ }  < oc for any  smal l  e. 

THEOREM 2.2. (a) I f  Assumpt ion  C and (2.4) hold then A~ - A -- 
Op( n - 1 /2 ) .  

(b) I f  Assumpt ion  D and (2.5) hold then A ~ - A  = O ( n - : / 2 ( l o g l o g n )  1/2) a.s. 

We defer a discussion of our results till the end of the proofs. 

PROOF OF THEOREM 2.1. Define Bn(O) as in (2.2) with 0n replaced by 0. 
Note that B~(O) - B is a mean of i.i.d, bounded random variables. Hence 

(2.~) 

(2.7) 

B ~ ( 0 )  - t3 = O ( n  -1 /2  (log log n) -1/2) 

B ~ ( 0 )  - B = O ~ ( n - 1 / 2 ) .  

a.s. 

On the other hand, from the inequality I U(x  - ¢:)  - U(x  - ¢2)1 -< 1(~1 - -  021 min{ IX -- 
¢11-1, I x -- ¢21-1}, it follows that 

(2.8) I B m ( 0 ) -  B~I ~< K l O ~ - O l n  -1 ~--~ IX~ - 01-1. 
c ~ = 1  

Using Assumption A, the second factor is bounded by the strong law of large 
numbers. The theorem then follows from the relations (2.6), (2.7) and (2.8). 

PROOF OF THEOREM 2.2. Define A~(O) as in (2.1) with 0n replaced by 0. 
Then A~(O) - A is the average of zero mean i.i.d, variables with finite second 
moment. Hence by the CLT and LIL, 

(2.9) 

and 

(2.10) 

A ~ ( O )  - A -- O(n  -1/2 (log log n) 1/2) 

An(O) - A = Op(n -1 /2 ) .  

a . s .  

Note that IQl(X - ¢1) -- QI( x -- ¢2)l ~ 2l¢: - ¢2[ max{Ix  - ¢1l -2,  Ix - ¢2[ -2 } and 
by a simple manipulation, the same bound holds for Q2 with 2 replaced by a larger 
constant. Hence for a constant K, 

= KIO~ - 01 max(T:~,  T2n) say. 

By the strong law of large numbers, T2~ is bounded almost surely. To tackle 
the other term, define for sufficiently large K:,  N = {10~ - 0] < K i n  - : / 2 }  and 
for sufficiently small K2, Y~ - 0 = (X~ - O)I(IXi - 0[ -2 _> K2i).  Observe that 
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Ei~__l P(Y~ - 0 # X{ - 0) < oc since E F I X  - 01-2 < oc. Hence Tin  is bounded a.s. 
if T** n = n -1 }-~2=1 I Y~ - 0hi -2 is so. 

On the other hand it is easy to see if lul <_ K i n  -1 /2  and K2 is such that 

4 K I K ~ / 2  _< 1 then, 

IY~ - 0 + u[ 2 >_ Ig~ - 012 - 2IY~ - O l K l n  -1/2 >_ 2-1Iy~ - 012. 

Hence on the set N, we have almost surely for large n, 

(2.11) T~* <_ K n  -1 £ IX~ - 0[ -2 which is bounded a.s. 
oe=l 

Part  (a) of the theorem follows by combining (2.4), (2.10) and (2.11). 
To prove the second part, redefine N = {[0n - 0 ]  _< K l r Z - 1 / 2 ( l o g l o g n ) - l / 2 }  

and Yi - 0 = (X i  - O) I ( IXi  - 01-2 _> K2i(log log i)-1) where K 1 is sufficiently large 
and K2 is sufficiently small and follow the above argument. 

Remarks .  (a) It is easily checked that if d _> 3 Assumption B implies As- 
sumption D (and hence Assumption C too). Hence for d > 3, the best possible 
probability and almost sure rates hold for the estimator defined in (1.1) under 
Chaudhuri's condition. 

(b) For d = 2 Assumption B guarantees E I X  - 01 -(2-~) for any e > 0. This 
may tempt one to believe that even though Theorem 2.2 is not applicable, perhaps 
a slower rate is achievable. That this is not the case is clear from a careful scrutiny 
of the proof. One needs to "kill" the maximum fluctuation in 0n and since this is 
of the order n -1/2 in probability and n-1/2(log log n)  1/2 almost surely, appropriate 
truncation levels are those given in the theorem. For d = 2, the estimates of Bose 
and Chaudhuri (1993) are available which achieves the rate in O v ( n  -1/2+~) for any 
e > 0 .  

(e) Prom the proof of the Theorems it is also clear that with extra (inverse) 
moment conditions our estimates will be asymptotic normal (for 0n defined by 
(1.1)). One simply would use a Taylor expansion, and tackle the remainder as in 
the proofs of the Theorems. 

(d) Our approach shows that the inverse moment conditions EF[IXI- 01-I] < 
oc and EF[]X1 -- 01-2] < oc are crucial for the plug in estimators to work. It is 
plausible that Chaudhuri's representation remains true solely under Assumption C 
and the boundedness of the density as such is not needed. However most common 
distributions do satisfy Assumption B. 
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