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Abs t r ac t .  Let {X~,n _> 1} be a strictly stationary sequence of associated 
random variables defined on a probability space (f~, B, P) with probability den- 
sity function f (x)  and failure rate function r(x) for X1. Let f,~(x) be a kernel- 
type estimator of f (x)  based on X1 , . . . ,  X~. Properties of f,~(x) are studied. 
Pointwise strong consistency and strong uniform consistency are established 
under a certain set of conditions. An estimator rn(x) of r(x) based on fn(X) 
and P,~(x), the empirical survival function, is proposed. The estimator rn(x) 
is shown to be pointwise strongly consistent as well as uniformly strongly con- 
sistent over some sets. 

Key words and phrases: Density estimator, failure-rate estimator, kernel es- 
timators, associated sequences. 

1. Introduction 

Let {Xn,  n >_ 1} be a strictly s ta t ionary sequence of associated random vari- 
ables defined on a probabili ty space (ft, B, P)  with density function f ,  distr ibution 
function F ,  survival function F = 1 - F and failure rate function rF  = f / F ,  re- 
spectively, for X1. The random variables X1, X 2 , . . . ,  X~ are said to be associated 
if for every pair of functions h(x)  and g(x)  from R ~ to R, which are nondecreasing 
componentwise, 

Cov(h(X) ,  9 ( X ) )  >_ O, 

whenever it is finite, where X = (X1, X 2 , . . . ,  X~). An infinite family is said to be 
associated if every finite subfamily is associated. 

Several types of estimators for a density function of i.i.d, observations have 
been proposed in the literature. However, the most commonly used density estima- 
tor is the kernel-type estimator.  It has been extensively studied (see, for example, 
Rosenblatt  (1956), Parzen (1962), Prakasa Rao (1983), Silverman (1986)) espe- 
cially when Xi ,  X 2 , . . .  is a sequence of i.i.d, random variables. Roussas (1969) 
and Prakasa Rao (1978), among others, considered density est imation for sta- 
t ionary Markov processes satisfying Doeblin's condition. However, most often in 
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reliability studies, the random variables, which are generally lifetimes of compo- 
nents, are not independent but are associated. For example, if the failure times of 
a system follow the multivariate exponential distribution (cf. Marshall and Olkin 
(1967)), then they are associated. If independent components of a system are 
subject to the same stress, then their lifetimes are associated. Another example 
is when the failure of one component increases the chance of failure for its neigh- 
bouts and the related lifetimes are associated. Thus, there is a need to study the 
problem of density estimation for a sequence of associated random variables. First 
we establish the strong law of large numbers for sums of functions of stationary 
associated random variables which is used to study the properties of an estimator 
f~(x) of f (x) .  Then, the kernel-type estimator f~(x) of f(x) is proposed and 
its properties are discussed in the next section. Finally, an estimator r~(x) for 
the failure rate function r(x) based on f~(x) and P~(x), the empirical survival 
function, is proposed. It is shown to be strongly consistent pointwise as well as 
uniformly strongly consistent over certain sets. 

Roussas (1991) studied strong uniform consistency of kernel estimates of r-th 
order derivative of f under some regularity conditions on the kernel and band- 
width. He has also obtained rates of convergence. A preliminary version of 
this paper was prepared independently around the time Roussas (1991) appeared. 
Techniques of proofs given here are essentially the same as in Roussas (1991) and 
Bagai and Prakasa Rao (1991). 

2. Preliminaries 

First we obtain a strong law of large numbers for functions of stationary as- 
sociated random variables {Am, n _> 1}. For a sequence of stationary associated 
random variables, a strong law was obtained by Newman (1984) and another one 
for nonstationary sequence of associated random variables by Birkel (1989). 

Let c denote a generic positive constant in the sequel. For simplicity we write 
Var(Z) : Coy(Z, Z). 

LEMMA 2.1. (Lemma 3 in Newman (1980)) Let (X, Y) be associated random 
variables with finite variance. Then, for any two differentiable functions f and g, 

(2.1) I Coy(f (x), g(Z))l ~ sup If'(x)l sup tg'(y)l Coy(X, Y) 
x y 

where f '  and g' denote the derivatives of f and g respectively. 

We now prove a strong law of large numbers for sums of functions of associated 
random variables. 

LEMMA 2.2. Let {Xnln >_ 1} be a sequence of stationary associated random 
variables. Let S m n , n  = m n  ~ j = l f n ( X j )  where fn is differentiable with 
sups supx If~(x)l <_ c < c~. Further suppose that 

O O  

(2.2) Z Cov(X , xj)  < c < 
j = l  
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Then, 

V a r ( S m ~ , n )  _< 2 e m ~ .  

PROOF. Observe that 

= , , = 1  

= ' ~  Var(f~(Xl)) + 2 Z Z 
l<_i<j<_mn 

(by stationarity) 
77% n 

< 2.~ Z Cov(f~(xl), f~(x~)), 
j = l  

and hence 

oo 

Var(Sm,~,n) <_ 2cmn E C°v(XI 'Xj)  
j=l 

<_ 2crnn (by (2.2)). 

Cov(A(x,), A(xj)) 

(by Lemma 2.1) 

THEOREM 2.1. Let {X~,n >_ 1} be a stationary sequence of associated ran- 
k X dora variables. Let Sk,~ = }-~-y=lf~(J) where f~ is differentiable with 

SUPnSUpz If'(x)l <_ c. Suppose E [ I ~ ( X J ]  -- O, Var[f,~(X1)] < ~o and condition 
(2.2) holds. Then, 

S n ' n  ÷ 0 a.8. as ?% ----+ CO. 
n 

PROOF. Using Chebychev's inequality and Lemma 2.2, we note that 
y~Pr[IS~2,~ I > n2e] < oc for all c > 0 and hence, by Borel-Cantelli lemma, 
it follows that 

(2.3) S~,,~ 
n 2  ~ 0 a .S.  a s  ?% --+ oo .  

Let 
Dn = max 

n2<k~(n+l )  2 

Then, by Chebychev's inequality, 

(2.4) 

Isk,n - Sn~,nl -  

Pr{D,~ _> n2c} < n--~c2E(D~). 
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F u r t h e r m o r e  

E[D~] = E 

= E  

< E  

[n2<k<(n+l)  2 

m a x  ISk,n - S~ ,~ [2 [  
n2<k<(n+l) 2 J 
(r~+1)2 ] 

k=n2+l 

---- E [ ( f n ( X n 2 + l ) )  2 "b ( f n ( X n 2 + l )  --k f~(X~:+2)) 2 + ' "  

+ ( fn (Xn2+X)  + f~(Xn~+2) + " "  + f n ( X ( n + l ) 2 ) )  2] 

(n+l) 2 

f ~ ( X k ) +  E 
~:n2+l n2 + l <_i,j,iT£j<_ (n+ l ) 2 

= 2n Var[S(~+l)2,~ - Sn2,~] 

< cn 2 (by L e m m a  2.2). 

A(xdA(xj)] 

T h e r e f o r e  }-~n P { D ~  > n2e} < ~ for all e > 0. Again ,  us ing  Bore l -Can te l l i  

l e m m a ,  we get  t h a t  

Dn 
(2.5) Tt 2 --~ 0 a.s. as 7% ---+ oo. 

F u r t h e r m o r e  

ISk,, l < IS,,2,nl + D , ~  for 
k -- n 2 

Hence,  f rom (2.3) a n d  (2.5), it follows t h a t  

Sn,n ~ 0 a.S. as 
?% 

n 2 < k <  ( n + l )  2 . 

7% --+ (X). 

O t h e r  resu l t s  which  will be  used  l a te r  are  s t a t e d  be low for comple t eness .  

THEOREM 2.2. For every a E J,  an index set, let { X j ( a ) , j  > 1} be an 
associated sequence. Let fn, 7% >- 1 be functions of bounded variation which are 
differentiable and suppose that supn>  1 supx I tS(x)]  _< c < oc. Let E ( f n ( X j ( a ) ) )  = 
0 for every n >_ 1, j > 1 and a E J.  Suppose there exist r > 2 and 6 > 0 
(independent of a, j and n) such that 

(2.6) sup  sup sup EIf~(X j (a))[~+~ < oc. 
n_>l aeJ j_>l 

Let 

(2.7) 
kkl  j:Dj-klkn 
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Suppose that there exists c > 0 independent of a E J such that 

u(n,  a) <_ cn -(r-2)(~+~)/2~. 

Then there exists a constant B not depending on n, m and a, such that 

(2.8) sup sup sup ElSn+k,m(~) - Sk,,~(a)[~ _< B n  ~/2 
m>_l aEJ k>_O 

where 
mn 

j = l  

PROOF. Since fn is a function of bounded variation, we can express fn as 

where fn,1 and fn,2 are two monotone functions. Observe that monotone functions 
of associated random variables are associated (Esary et al. (1967)). Note that 

= E fn(Xj(ce 
Ll~:k+l 

LlJ=k--1 

c E fn , l (Xj(oO) + E fn,2(Xj(oO) 

LlJ=k+l klj=k+l 

(by Cr-inequality, Rao (1973)). The result then follows from Lemma 2.1. and a 
uniform version of Theorem 1 of Birkel (1988a). 

THEOREM 2.3. For any a E J, an index set, let { X j ( a ) , j  >_ 1} be an as- 
sociated sequence. Let fn,  n > 1 be functions of bounded variation which are dif- 

! 
ferentiable and suppose that supn_> 1 SUPx Ifn(x)l < ~ ,  and sups>_ 1 supx If~(x)l < 
e < oc. Let E ( f n ( X j ( a ) )  -- O, n > 1, a E J and j > 1. Assume that there exists 
r > 2 such that 

: O(n-(r-2)/2). 
Then (2.8) holds. 

PROOF. The proof follows from Theorem 2.2 and Theorem 2 in Birkel 
(1988a). 
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3. Kernel-type density estimator 

Here we propose a kernel-type estimator for the unknown density function f 
of X1, when {X~, n _> 1} is a stationary sequence of associated random variables. 
We assume that the support of f is a closed interval I = [a, b] in the real line. Let 
us consider 

1 E K  x - X j  
(3.1) fn(X) -- nhn j = l  h n  , x E I 

as an estimator for f(x),  where K(.) is a suitable kernel and hn is a bandwidth 
sequence. 

The asymptotic behaviour of f~ (x) is discussed later under the assumptions 
(A) listed below. 

(A1) K(.) is a bounded density function and of bounded variation on R satis- 
fying (i) liml~l~ ~ lulK(u) = O, (ii) f _ ~  u2K(u)du < oc. 

(A2) K(x) is differentiable and supx ]K'(x)I < c < ec. 
Further it is assumed that the covariance structure of {X~} satisfies the fol- 

lowing condition. 
(B) For all g and r > O, ~J:le-Jl>_~ Cov(Xj,  Xe) < u(r), where u(r) = e -c~r 

for some a > 0. 

Remark 3.1. Cox and Grimmet (1984) and Birkel (1988a, 1988b), among 
others, observed that, in any asymptotic study of a sequence of associated random 
variables, the covariance structure plays an important role. Cox and Grimmet 
(1984), while considering the asymptotic normality of a triangular array of asso- 
ciated random variables, assume that there exists a function, 

u(r) o a s  r oc 

such that 

(3.2) E Cov(X~j,X~t) <_ u(r) for all g,n,r >_ O. 
j:lg-jl_>r 

The condition (B) imposes restrictions on the covariance structure of {Xn} analo- 
gous to (3.2). It can be easily seen that (B) implies (2.2). Roussas (1991) assumes 
a weaker condition similar to that in Bagai and Prakasa Rao (1991). 

Assume that f is thrice differentiable and the third derivative is bounded. Let 
hn ~ 0 and nh 4 ~ oc as n ~ oo. Then, under (A) and (B), following Parzen 
(1962), it can be checked that E[fn(x)] and Bn(x), the bias of fn(x), are given by 

(3.3) 

where 

(3.4) 7j = xJK(x) dx, 

E [ f n ( X ) ]  = f ( x )  - h n f ' ( x ) ~ / 1  + y f  (x)72 + O(h~) 

j = 1, 2; 
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and 

(3.5) 

Furthermore 

(3.6) 

B~(x) = E[fn(x)] - f(x) 

hl ""'x" O(h~). = -h~f ' (x )~ l  + ~ j  ~ )'Y2 + 

(~(x ~ 
Var f~(x) = nh~nn Var hn ) )  

- Xi (~(x (x~ 
l <_iT~j<n 

Observe that, 

1 
(3.7) ~h~ 

where 

(3.8) 

and 

where 

(3.9) 

_ w ~ ( ~ - ~  1 {~E~(x-~ 
--/~2 [/£ (XhX1)l } 

1 
~- _ _  I! 2 

nhn [f(x)~o - f ' ( x )h .~ l  + f (x)hn~2 ] 

- l [ B ~ ( x )  + n f(x)]2 + O ( ~ )  

F ~j = xJK2(x)dx, j = 0,1,2 

?.@ E E  C ° v { l I ' ( (  x - x i  , 1 ( x - X j  
l<_i<j<_n hn -h-i ) ~nn/( hn )} 

<- 7 ~ sup W(x,y) Cov(X~,Xj) 
l<_i<j<_n y 

(by Lemma 2.1) 

~(x ~) 
¢~(x, y) = h~ ~ - ~  

c 
<- n2h 4 E ~ Cov(Xi,Xj) (by (12)) 

l<_i<j<_n 
c 

_< ~nU(O) (by (B) and stationarity) 

c < - -  
- ~h~" 
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Substituting (3.7) and (3.9) in (3.6), we have 

(3.10) Var f~(X) = n ~  [f (x)/~o + O( h~)] + O ( n ~  ) . 

From (3.3) and (3.10), it follows that f~(x) is asymptotically unbiased and weakly 
consistent for f(x).  And, following Prakasa Rao ((1983), pp. 35), it can be easily 
verified that the optimal choice of hn, which minimizes the mean square error, is 
0(n-1/5), same as the one in the i.i.d, case. 

3.1 Pointwise strong consistency of fn(X) 

THEOREM 3.1. Let {Xn, n > 1} be a stationary sequence of associated ran- 
dom variables. Suppose that (A) and (B) hold. Then, for x e I, 

f~(x) - E f t ( x )  ~ 0 a.s. as n --* co. 

PROOF. Set 

= Cn(x, Xi) - E[¢n(x, Xi)], 1 < i < n. 

Then E(Xni) = 0, Var(X~i) < co, and 

I Cov(X j, x, e)l 
j:lg--j]>_r 

z E IC°v(~2n(x'Xj)'~)n(X'Zl))l 
j:lg--j[>_r 

0 2 
~ sup { ~yCn(X,y) } E Cov(Xj, Xg) 

j:]g--j]~r 
(by Lamina 2.1). 

The conditions of Theorem 2.1 hold because of (A2) and (B). Hence the result 
follows. 

COROLLARY 3.1. Under the assumptions of Theorem 3.1, f~(x) ~ f(x)  a.s. 
at continuity points x of f(.) as n ~ oc. 

PROOF. The result follows from the conclusion of the above theorem and the 
fact that E[f~(x)] ~ f (x)  at continuity points x of f(.).  
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3.2 Uniform strong consistency of fn(x) 

THEOREM 3.2. Let {X,~, n _> 1} be a stationary sequence of associated ran- 
dom variables. Suppose that (A) and (B) hold and there exists ~ > 0 such that 

( 3 . 11 )  h~ 4 = O(n~). 

Then, for all c > O, r > 1, 

supPr[if~(x) - Efn(X)l > c] < c~-2rn -~. 
x 

PROOF. Observe that  

u(n,  x) - sup ~ C o v ( ¢ n ( x ,  x j ) ,  ~n(X, x~)) 
g>l j:[j_~l>_n 

<sup _ Cov(Xj, x~) 
~>_1 j:lj_tl>_, ~ y 

__ supsup  On(X,y) sup y ~  Cov(X j ,X t )  
x y ~,>_1 j:lj_~"'~kn 

= O(n-~),  for any /3 > 0 (by (3.11) and (3.12)). 

Then, using Chebychev's inequality and Theorem 2.3 with 

/~ = ( r -  1), r >  1, 

we have 

(by Lemma 2.1) 

supPr[lfn(X ) - Efn(X)l > e] 
x 

= sup Pr n (x, X j )  - E ~ ( x ,  
x 

< sup(nc) -2rE 
x 

< ~(n~)-2rn ~ 
5£-- 2r n - r .  

> (n~) 2r 

THEOREM 3.3. Let {X,~, n _> 1} be a stationary sequence of associated ran- 
dom variables satisfying the conditions (A), (B) and (3.11). Further, suppose that 
the following condition holds: 

( c )  If(x1) - f(x2)l  <<_ clxl - x~l, Xl,X2 e I. 
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sup[If~(x) - f (x) l ;  x¢I] ~ 0 a.s. 

The proof  of the theorem is based on the following lemmas which are easy to 
prove and it is a slight variation of a similar proof  given in Roussas (1988). 

LEMMA 3.1. I f  the condition (C) holds, then 

sup{I f (x  ) - E f n ( x ) l ,  x e I }  << chn. 

LEMMA 3.2. If (A) holds then 

Ifn(Xl) - fn(X2)l < ch~21xl - x21, X l , X 2  E I .  

PROOF OF THEOREM 3.3. Let 5~ -- n -2° where 0 is chosen so tha t  0 < 0 < 
r-1 Such a choice is possible since r > 1. Divide the interval I = [a, b] into bn 2 " 
subintervals Ins = (xn~, xn,~+l], g = 1 , . . . ,  bn = N of length 5n. Notice tha t  

(3.12) bn < c S ~  1, 

and 

sup IA(x)  - f ( x ) l  <<_ max sup I[f~(x) - fn(X*~)] + [A(x*~) - Ef~(x*~)] 
xEI  ~ xEIn~ 

+ [Efn(x*~) -/(x*~)] -If(x) - f(x*z)]l 

where x*s is an arbi t rary  point in Ins. Hence, 

(3.13) sup Ifn(x) - f ( x ) l  < max sup If~(x) - f~(x*t)  I 
xCI ~ xCIn~ 

+ max  Ifn(X*~) -- Efn(X*z)  g 

+ m a x  

+ m a x  sup  I f ( x )  - f(x: )l 
g x E I ~  

Note that  

(3.14) Ix - x*~l < cSn, which implies tha t  I f (x)  - f (x*~) I <<_ cSn. 

Then, by Lemma 3.1, it follows tha t  

(3.15) I f ( x ' z )  Efn(x*~)  I < ehn 



D E N SI T Y  E S T I M A T I O N  F O R  ASSOCIATED S E Q U E N C E S  

and, by Lemma 3.2, we have 

(3.16) If~(x) - fn(x*e)l <_ ch-~26n. 

Substi tut ing (3.14) to (3 .16)  in (3 .13) ,  we have 

(3.17) sup{lfn(x)  - f (x) l}  
xEI 

<_ ch~2 6,~ + chn q- e(bn -q- Ingax [fn(x~e ) - E fn(X~e)l. 

Let c > O. Choose h~ = n -°,  where 0 > 0 and 

~n- eh~ 
4c 

(3.18) 

Then, for large n, 

and 

chn2~bn < el4, 

eb,~ = Ceh~ < g/4, 
4 - 

chn = cn -°  < e / 4. 

Then, for large n, (3.17) reduces to 

3c 
x* sup{If~(x)xez - f(x)l} <_ 7 + meax If~(~e) - Ef~(x~e)l. 

Hence, 

Pr [sup{Ifn(x)-- f(x)]} > 

N 

<_ E P r [ I f ~ ( x ~ e ) -  Ef,~(z;e)l > ~/41 
g=l 

<_ cbne-2rn -~ (by Theorem 3.2) 

< Cbnln -r.  

263 

Then the result follows using Borel-Cantelli l emma in view of the fact ~ 6~1n -r  < 
OO. 
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4. Kernel-type failure rate estimator 

(4.2) 

where 

The failure rate r(x) is defined as 

r(x) = f (x) /F(x) ,  T" > O. 

The distribution function F(x)  is uniquely determined by r(x) by the relationship 

F(x) = exp { - . L [  r(t)dt } • 

The problem of estimating r(x) on the basis of i.i.d, observations X1, X2 , . . . ,  X~ 
from F has been discussed by Watson and Leadbetter (1964a, 1964b), Rice and 
Rosenblatt (1976) and Prakasa Rao and Van Ryzin (1985), among others. An 
obvious estimate of r(x) is rn(x) given by 

(4.1) rn(X) = f~(x)/[Z~(x), 

where fn(X) is the kernel-type estimator of f (x)  discussed above and Fn(x) is the 
proportion of Xi, 1 ~_ i <_ n that exceed x. The properties of Fn(x) based on 
stationary associated sequence {X~} have been discussed by Bagai and Prakasa 
Rao (1991). 

Roussas (1989) discussed the need for estimating r(x) when the lifetimes 
X1, X2 , . . . ,  Xn are identically distributed but not independent. He discussed the 
consistency properties of r~(x) for a stationary sequence of random variables sat- 
isfying any one of the four standard modes of mixing random variables. In what 
follows, we prove analogous result for a stationary sequence of associated random 
variables. 

It is easy to see that 

rn(X) -- r(x) ---- /~(x)[fn(X) -- f(x)] -- f(x)[~'n(X) -- F(x)] 
On(x) 

and 

Dn(x) = _P(X)_P~(X), 
n 

i----1 

Y / ( x ) - - { 1  i f X i > x ,  
[ 0 otherwise. 

Note that Dn(X) > 0 almost surely for all x in S = {x E R;/~(x) > 0}. 

LEMMA 4.1. (Bagai and Prakasa Rao (1991)) Let {Xn, n > 1} be a station- 
ary sequence of associated random variables with bounded density for X1. Assume 
that, for some r > 1, 

(4.3) ~ {Coy(X1 ,  Xj)}  1/3 = O ( n - ( r - 1 ) ) .  

j=nq-1 
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Then, for every x, 
~ . ( x ) - ~  p (x )  a.s. as n - ~  ~ .  

265 

THEOREM 4.1. Let {X~,n >__ 1} be a stationary sequence of associated ran- 
dom variables satisfying the conditions (A), (B) and (4.3). Then, for all x • S 
which are continuity points of f ,  

r~(x) ~ r(x)  a.s. as n ~ c~. 

PROOF. For every x • S and for all sufficiently large n, Dn(x)  > 0 a.s. Using 
Corollary 3.1, f~(x)  ---+ f ( x )  a.s., when x is a continuity point of f .  Then, the 
result follows from Lemma 4.1 and Corollary 3.1. 

LEMMA 4.2. (Bagai and Prakasa Rao (1991)) Let { X ~ , n  >_ 1} be a station- 
ary sequence of associated random variables satisfying the conditions of Lemma 
4.1. Then 

sup[l_Pn(x) - F(x) l ,x  • J] ~ 0 a.s., 

where J is any compact subset of S. 

THEOREM 4.2. Let {X~,n _> 1} be a stationary sequence of associated ran- 
dom variables satisfying the conditions (A), (B), (C), (3.11) and (4.3). Then, 

s u p { i r n ( x ) - -  r(x) l  : x • J }  -~  0 a.s. 

where J is any compact subset of S. 

PROOF. The proof follows from the following facts by means of the relation 
(4.2): 

and 

sup[ l fn(x  ) - f ( x ) [  : x  • J] --+ 0 a.s., 

s u p [ l - P n ( x )  - P ( x ) l  : x  • J] -~  0 a.s., 

s u p [ f  (x) : x  e J] < oc, 

inf[F(x) : x e J] > 0. 
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