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A b s t r a c t .  Joint distributions of the numbers of failures, successes and suc- 
cess-runs of length less than k until the first consecutive k successes are obtained 
for some random sequences such as a sequence of independent and identically 
distributed integer valued random variables, a {0, 1}-valued Markov chain and 
a binary sequence of order k. There are some ways of counting numbers of runs 
with a specified length. This paper studies the joint distributions based on three 
ways of counting numbers of runs, i.e., the number of overlapping runs with 
a specified length, the number of non-overlapping runs with a specified length 
and the number of runs with a specified length or more. Marginal distributions 
of them can be derived immediately, and most of them are surprisingly simple. 

Key words and phrases: Probability generating function, geometric distribu- 
tion, discrete distributions, Markov chain, waiting time, geometric distribution 
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1. Introduction 

We denote  by ~- the waiting t ime (the number  of trials) for the first consecutive 
k successes in independent  Bernoulli  trials with success probabil i ty  p. The  distri- 
but ion  of ~- is called the geometric distr ibution of order  k (cf. Feller (1968) and 
Phi l ippou et al. (1983)). Aki and Hirano (1994) studied the exact marginal  distri- 
but ions of numbers  of failures, successes and overlapping number  of success-runs 
of length 1 until  ~-. These  distr ibutions are the geometric distr ibution,  G(pk), the  
shifted geometric dis tr ibut ion of order  k -  1, Gk-1 (p, k), and the shifted geometric 
dis tr ibut ion of order  k - l, Gk- l (p ,  k - 1 + 1), respectively. Here, we denote  by 
Gk(p, a) the  shifted geometric dis t r ibut ion of order k so tha t  its suppor t  begins 
with a. 

* This research was partially supported by the ISM Cooperative Research Program (93-ISM- 
CRP-8). 
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In this paper,  we s tudy the joint  distr ibutions of waiting t ime ~- and number  
of outcomes such as successes, failures and success-runs until  ~- in more general 
situations. 

Let  X1, X2 , . .  • be a sequence of independent  and identically dis t r ibuted ran- 
dora variables taking values in { 1 , 2 , . . . , m } .  Let  Pi : P ( X 1  = i) for i = 
1, 2 , . . .  ,m.  We regard the value 1 as success and the remaining m - 1 values 
as failures. We consider m - 1 kinds of failures. If m = 2 then  the sequence can 
be regarded as the independent  Bernoulli  trials. We denote  by ~- the waiting t ime 
(the number  of trials) for the first consecutive k successes in X1, X2, . . . .  Let  rlj 
be the number  of occurrences of j among X1, X 2 , . . . ,  XT. For integers a l , . . . ,  am, 
let d ( a l , . . . , a m )  = P(~- = a1,~2 = a 2 , . . . , ~ m  = am). Then  we have 

d ( a l , . . . , a , ~ ) = O  i f a l < k  or a j < O  for s o m e j > l ,  

d(k, a 2 , . . . ,  am) = 0 if aj ¢ 0 for some j > 1, 

k m 

d(a l , .  . . , a m )  = E E d(al - j ,  a2 - 52i,. . . , a m  -- hmi)pj--lpi 
j=l i=2 

for al > k, 

by considering all possibilities of the first occurrence of one of the failures. Define 
the joint probabil i ty  generat ing function (pgf) of (% ~2 , - . . ,  ~m) by 

O<3 O<3 

¢ l ( t l ' t 2 " " ' t m ) =  E " "  E d ( a l ' ' ' " a m ) t ? l " " t a ~ "  
a l z 0  amzO 

Then  we can obtain a recurrence relation of ¢ 1 ( t l , . . . ,  tm) from the above equa- 
tions. By solving it, we have 

PROPOSITION 1.1. The jo int  pgf ¢ l ( t l , . . . , t ~ )  zs given by 

(1 - P l t ] )  (pl t l )  k 
(~1(t1'"" ' '  tin) = 1 - pit1 - t l  (~'.~=2 pit i)(1 - (p l t l )k)  " 

Since the result of Proposi t ion 1.1 is a corollary of Proposi t ion 2.1 in Section 2, 
we omit  a proof  of Proposi t ion 1.1. We can regard Proposi t ion 1.1 as a general 
version of Proposi t ion 2.1 of Aki and Hirano (1994). Moreover, some interest- 
ing results on marginal  distributions and moments  can be derived from it. For 
example, we can obtain the means, variances and covariances of T, r/2, . . . ,  rl,~ by 
differentiating the joint pgf. 

COROLLARY 1.1. The means, variances and covariances of T, ~2, . . . , ~?m are 
given by 

I - pl  k 
- 

( 1  - -  p l  )Pkl ' 
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E ( ~ j )  = pj  . E ( ¢ ) ,  f o r  j = 2 , . . . , ~ ,  

Var(r)  = 1 - (2k + 1)(1 - pl)Pkl - p~k+l 

(1 - Pl)2P~k 

Var(~j) = {E(~j)} 2 + E(~j) 
; j ( 1  - p~ ) {p j (1  - pkl) + (1 - p l ) p  k } 

(1 - p l )2p  2k 

Cov(r,  r/j) = p j {1  - p~ - k ( 1 -  pl)pkl} 
(1 - Pl)2P2k 

; ~ ; j ( 1 -  pl~) 2 
Cov(~,~j )  = E ( ~ , ) E ( ~ j ) =  ~ = ) ~ ) ~ - ~ 1  ~ , 

for  j = 2, . . . , m ,  

for  j = 2, . . . , m ,  

f o r l  ¢ j .  

We can easily check that  the covariances in Corollary 1.1 are non-negative and 
hence the variables 7, r ]2, . . . ,  r],~ are positively correlated. 

COROLLARY 1.2. For any fixed posit ive integer k (k > 1), the jo in t  distribu- 

t ion of  ~ 2 , . . . ,  ~m is m - 1 d imens iona l  geometr ic  dis tr ibut ion (cf. Johnson  and 
Ko t z  (1969)). 

It may be noted that  Corollary 1.2 generalizes Corollary 2.1 of Aki and Hirano 
(1994). 

In Section 2, the joint distr ibution of the numbers  of successes and failures 
until the waiting t ime r is investigated. Section 3 t reats  more general case tha t  
the joint distr ibution of the numbers  of success-runs of length 1 (l = 1, 2 , . . . ,  k) 
and the numbers  of failures until r .  It is well known that  there are different 
ways of counting the numbers  of success-runs (cf. Hirano and Aki (1993)). The 
joint distr ibutions of them are studied on the basis of three ways of counting. In 
Section 4, the corresponding results are given based on some dependent  sequences. 

2. Jo int  d i s tr ibut ion  of  n u m b e r s  o f  s u c c e s s e s  and fai lures 

In this section, we s tudy  the joint distr ibution of (w, r]l,T]2,... ,  ~]m). Let 
¢2(r, t l , . . . , t m )  be the joint pgf of ( r , ~ l , ~ 2 , . . . , ~ m ) .  For i = 0, 1 , . . . , k  - 1 and 
j = 2, 3 , . . . ,  m, let A~ be the event tha t  we start  with a " l " - run  of length i and "j" 
occurs just  after the "l"-run.  We denote by C the event tha t  we start  with a " l " -  
run of length k, i.e., { r  = k}. Let ¢2(r,  t l , . . . , t , ~  I A j )  and ¢2(r, t l , . . . , t , ~  I C) 
be pgf 's  of the conditional joint distr ibutions of (r, ~1, ~]2,.. . ,  ~],~) given that  the 
event A~ occurs and given that  the event C occurs, respectively. Then we can 
easily see that  

and 

¢2@, t l , . . . ,  t m  ] A j )  = r i + l t ~  t j O e ( r ,  t l ,  . . . , t,~), 

¢2(r, t l , . . . , t ~  p c )  = r~t~. 
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Since A~, i = 0, 1 , . . . , k  - 1, j = 2, 3 , . . . , m  and C construct a part i t ion of the 
sample space, we have 

42(r, t 1 , . . . , t m )  -= 

m k - 1  

E E P ( A ~ ) ' ¢ 2 ( r ,  t l , . . . , t m l A ~ )  
j = 2  i----0 

+ P(c). ¢2(r, t l ,  . . .  ,tin I C)  
m k - 1  

E E p i p ' r i + l t i t ' ' ¢ 2 ( r ,  3 1 3 . . .  ,tin) +Plrk k ktl 
j = 2  i=0 

~ i ,t~) + (p l r t l )  k r p j t j  p l t l r  ¢2(r, t l , . . .  
\ i = 0  / 

Then we obtain 

PROPOSITION 2.1. The jo in t  pgf  ¢2(r, t l , . . . , t m )  is given by 

( 1 - p l t l r ) ( p l r t l )  k 
¢2(r, t l , . . .  ,tin) = 1 -- p i t l r  -- r(}-~.j=2pjtj) { (Pl t l r )  k} "~ 1 - " 

If we set t l  ~- l in ¢2(r, t l , . . . ,  t,~), we have the joint pgf of (T, ~12,..., ~,~), 
¢l(r ,  t 2 , . . .  , t , 0 .  

If we set r = 1, t2 = 1 , . . . ,  and t,~ = 1, then  we obtain the pgf of the 
(marginal) distr ibution of 71. Let ql = 1 - Pl. Then we see tha t  

Pl t l )P l  t l  ¢2(i,ti,1, i)= (i- k-1 k 
• " " ' k - l ~ k "  1 -  t l + q l P l  ~1 

The last expression is the well-known pgf of the geometric distr ibution of order 
k - 1 multiplied by t l ,  i.e., the pgf of Gk- l (p l ,  k). 

3. Joint distribution of numbers of success-runs and failures 

Let l be a positive integer no greater than  k. In many situations, numbers 
of success-runs with length 1 are counted in various ways. Usually, the number 
of non-overlapping success-runs is counted as in Feller (1968) for technical rea- 
sons. Recently, however, some other ways of counting numbers of runs are t reated 
for practical reasons. For example, Ling (1988) studied the exact distr ibution of 
the number of overlapping runs of a specified length until the n- th  trial in inde- 
pendent  Bernoulli trials with success probability p (cf. also Hirano et al. (1991) 
and Godbole (1992)). Schwager (1983) also obtained the probability of the occur- 
rences of overlapping runs in more general situations. Goldstein (1990) studied 
the Poisson approximation for the distr ibution of the number of success-runs with 
a specified length or more until the n-th trial. Hirano and Aki (1993) obtained the 
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exact distr ibution of the number  of success-runs with a specified length or more 
until the n- th  trial in a {0, 1}-valued Markov chain. 

Aki and Hirano (1994) showed that  the distr ibution of the number  of over- 
lapping success-runs with length l until the first consecutive k successes in in- 
dependent  Bernoulli  trials is the shifted geometric distr ibution of order k - l, 
Gk- l (P ,  k - l + 1). Let X1, X 2 , . . . ,  r and ~1, ~72,..., ~,~ be defined as in the pre- 
vious sections. Let ~l, l = 1 , 2 , . . . , k  be the number  of overlapping "1"-runs 
with length l until r .  We denote by ¢3(r, t l , . . . , t k , s 2 , . . . , S m )  the joint pgf of 
(~, 6 , . . . ,  ~k, ~ , . . . ,  ~,~). 

THEOREM 3.1. The jo in t  pgf ¢3(r, t l , . . .  ,tk, s 2 , . . . ,  sin) is given by 

~ k ~ k ÷ k ÷ k - 1  " " ~ k  

¢3(r, t l , . . . , t k , s 2 , . . . , S m )  = t ' l "  ~1~2 " 
m - -  " . • " - -  " 1 - ~(Ej=~pjsj) E~_-0 lp~t~t~ 1 t ~  

PROOF. Let C3(r, t l , . . .  , tk ,  s 2 , . . .  , s ~  ] A~) and ¢3(r, t l , . . . , t k , 8 2 ,  . . .  ,S m I 
C) be the pgf 's  of the  conditional joint distr ibutions of ( r , ~ l , . . .  ,{k, ~2 , . . . ,  ~m) 
given tha t  the event A j occurs and given that  the event C occurs, respectively. It 
is easy to see that  

and 

, 3 ( ~ , t l ,  , t ~ , s 2 ,  , ~  I A~) 
= ?~i÷lti lti2 - 1 . . . t i s j . ¢ 3 ( l . , t l , . . . , ~ k , s 2 , . . . , s r n ) ,  

¢3(r, t l , . . , t k , s 2 ,  S m ] C )  k-k-k-1 . . . .  , ~--- ~" /;1/:2 . . . t  k. 

Since the events A j ,  i = 0, 1 , . . . ,  k -  1, j = 2, 3 , . . . ,  m and C construct  a part i t ion 
of the sample space, we have 

¢ 3 ( r ,  t l ,  . . . , t l c ,  8 2 , . . . ,  8 r n )  = 

(kl )) 
_ i  _ i q - l ~ i  ~ i - - 1  

E / i l l  blb 2 " " " t i p j s j  

\ i = 0  

k k - k - k - 1  x ¢ 3 ( r , Q , . . . , t k , s 2 , . . . , S m ) + P l  r ~i~2 " "  tk. 

This completes the proof. 

By  sett ing r = 1, t l  = 1 , . . . ,  tz-1 = 1, tl+l = 1 , . . . ,  tk = 1, s2 = 1 , . . . ,  8m = 1, 
we obtain the pgf of ~t as follows: 

- -  1 ) 1 ~ 1 ) 1 9 1  b I ¢ 3 ( 1 , . . . , 1 , t 1 , 1 , . . . , 1 ) =  (1 _ , ~ _ k - Z , k - l + l  
q l ~ k - - l ~ k - - l + l  

1 - t l  + v 1  1 

where ql = 1 - Pl. Thus, we see that  the marginal distr ibution of ~z is the shifted 
geometric distr ibution of order k - l, G k - l ( p l ,  k - l + 1). A direct and intuitive 
proof  of the fact was given in Aki and Hirano (1994). 
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Let ut, 1 = 1, 2 , . . . ,  k be the number  of "1"-runs with length greater than 
or equal to l until T. We denote by Ca(r, t l , . . . , t k ,  s 2 , . . . , S m )  the joint pgf of 
(T, / /1 , . . . , / Jk ,?]2 , . . . , i ]m).  

THEOREM 3.2. The jo in t  pgf Ca(r, t l , . . . ,  tk, 82 , . . . ,  Sin) is given by 

Ca(r, t l , . . . , t k ,  8 2 , . . . ,  S i n )  = pkl r k t l  t 2  " " " t k  
m x-'~k--1 i i '  ' " 

1 - r(~-'..j=2pjsj) 2_,i=o Pl r ~1~2"'" ti 

PROOF. Let C4(r, t l , . . .  , t k , 8 2 , . . . , 8 r n  I A~) and C4( r , / : 1 , . . . , t k , 82 , . . . , 8 rn  I 

C) be the pgf 's  of the conditional joint distr ibutions of (% U l , . . . ,  uk, r]2, . . . ,  rim) 
given that  the event A~ occurs and given that  the event C occurs, respectively. It 
is easily seen that  

and 

C4(r, t l , . . . , tk,se, . . . ,Sm [ A~) 
= r i+l t l t2  . . .  t i s j  • C4(r, t l ,  • • . ,  tk, s2, • • •, s~) ,  

C4(r, t l , . . . , t k ,  s 2 , . . . , S m  [ C )  = r k t l t 2  . . . t k .  

Then, we have the desired result by the same way as in the proof of Theorem 3.1. 
This completes the proof. 

COROLLARY 3.1. For every 1 = 1, 2 , . . . ,  k, the (marginal)  distribution of ut 
is the shifted geometric distribution with parameter  pk - t  so that its support begins 
with 1. 

PROOF. By setting r = 1, t l  = 1 , . . . ,  t l-1 =- 1, h+l  = 1 , . . . ,  tk = 1, s2 = 
1 , . . . , s , ~  = 1 in C4(r, t l , . . . , t k , s 2 , . . . , s , ~ ) ,  we have 

¢ 4 ( 1 , . . . , 1 , h , 1 , . . . , 1 ) =  P~-Ztt 
1 - (1 - p k l - 1 ) h '  

This completes the proof. 

Let #l, 1 = 1, 2 , . . . ,  k be the number  of non-overlapping " l"- runs  with length 
l until ~- by Feller's way of counting. We denote by Cs(r, t l ,  • . . ,  tk, s2, . . . ,  Sr~) the 
joint pgf of ( % # 1 , . . .  , #k,  r]2, . . . , r],~). 

THEOREM 3.3. The jo in t  pgf C5(r, t l , . . . , t k ,  s 2 , . . . , s m )  is given by 

k k.k.[k/21 ..t[kk/k] 
Cs(r, t l , . . . , t k ,  s2 , . . . , s ,~) - - - -  P l r  / ; 1 / ; 2  " 

m X - ~ k - 1  ~i r i t  ~ t[i/2] .. t~/k] " 1 - r(~-~j=2pjsj)  z-,i=o t'l  1 2 " 

PROOF. Let Cs(?~,tl , . . .  ,~k ,82 , . . .  , S i n  I n J )  and C5(r, t l , . . .  , t k , 8 2 , . . .  , S i n  I 

C) be the pgf 's  of the conditional joint distr ibutions of (~-, # 1 , . . . ,  #k, r12,.. . ,  ~,~) 
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given that  the event A~ occurs and given that  the event C occurs, respectively. 
By using the same argument  as the proofs of the previous theorems, it suffices to 
check that  

and 

*5(r,  t l , . . . , t k , s 2 , . . . , s ~  I A~) 
_ ri+lt~t[~/2 ] .[i/k] . . . .  ~k sj .Os(r, t l , . . . , t k , s2 , . . . , s ,O ,  

 5(r, s2 , . . ,  l C)--rkt t  " 

This completes the proof. 

COROLLARY 3.2. 
tion of #Z is given by 

For every l = 1, 2 , . . . ,  k, the pgf of the marginal distribu- 

pkt[k/t] 1 1 

1 - ql E~_~  piltl i/l]" 

In particular, i f  k = l (m + 1) holds for a positive integer m,  then the distribution 
of #t is the shifted geometric distribution of order m, G,~(ptl, m + 1). 

PROOF. By sett ing r = 1, t l  = 1 , . . . , t t _ l  = 1, t l+l = 1 , . . . , t k  = 1, 
s2 = 1 , . . . , s i n  = 1 in ¢5(r, t l , . . . , t k , s 2 , . . . , s , ~ ) ,  we have the above formula im- 
mediately. When  k = l (m + 1), it holds tha t  

pl "~mtrn+ l 
1/ l C a ( i , . . .  1, tl, l , . . .  1 ) =  

' ' 1 - -  }-'~mOl(p/1)i(1 pl ) t i+X" 
- -  1 l 

This completes the proof. 

4. Dependent sequences 

In this section, we consider the problems t rea ted in the previous sections 
based on some dependent  sequences. For simplicity, only sequences of {0, 1}- 
valued random variables are considered. However, it is not difficult to s tudy  them 
based on sequences of { 1 , . . . ,  m}-valued random variables. 

First, let X0, X1, X 2 , . . .  be a {0, 1}-valued Markov chain with P ( X o  = O) = Po, 
P ( X o  = 1) = Pl, P ( X i + l  = 0 [ X i  = O) = Poo, P ( X i + l  = 1 I X i  = O) = Pol, 
P ( X i + l  = 0 I X~ = 1) = Pl0, and P ( X i + I  = 1 I Xi = 1) = P11. We also 
denote by X~ the outcome of the n- th  trial and we say success and failure for 
the outcomes "1" and "0", respectively. We denote by 7 the number  of tri- 
als until the first consecutive k successes in X 1 , X 2 , . . . .  Let ~ be the number  
of occurrences of "0" among X 1 , X 2 , . . . , X ~ .  Let ~t,~l and #t, l = 1 , 2 , . . . , k  
be the numbers  of overlapping 'T ' - runs  with length l until % the number  of 
"1"-runs with length greater than or equal to l until T, and the number  of non- 
overlapping 'T ' - runs  with length 1 until 7, respectively. For j = 0 and 1, let 
¢~(r, s, t l , . . . ,  tk), ¢~(r, s, t l , . . . ,  tk) and CJ(r, s, t l , . . . ,  tk) be the joint  pgf 's  of the 
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conditional distributions of (% q, ~ 1 , . . . ,  ~k), (7, ?], /21, • • • , Pk) and (% r], ~ t l , . . .  , #k)  
given that X0 = j ,  respectively. 

THEOREM 4.1• The conditional joint pgf's are given as follows; 

and 

k - 1  k . k . k - 1  
¢ O ( r , s ,  t l , . . . , t k  ) = P O l P l l  /" /;1/:2 " ' ' t k  

~--~k-1 ~ i - l ~  ~ i ÷ l  ~.~i ~ i - 1  ' 
1 - P o o r s  - z _ . J i = l / ) 0 1 P l l  / ) 1 0 ~  ~ 1 c 2  " • " t i  

~k-l~k÷k÷k-1 ..tk{(POlPlO PooP11)rs - ~ - P l l }  
¢i(~,8, ti,... , t k )  = gll " ~i~2 " 

v ~ k - l ~  i - l ~  ~ i + 1 ~ i ¢ i - 1  
1 - P o o r s  - z _ , i = l / ) 0 1 P l l  / ) 1 0 ~  ~v1~2 • • • t i  

k- -1  k 
¢ O ( / . , S ,  t l , . . . , t k )  = P O l P l l  / '  t l t 2 " ' ' t k  

1 - Poors - ~-~kill PolP~11plori+lstl t2 . . .  t i '  

¢~(r, s, t l , . . . ,  tk) = Pkl l l rk tz t2" '"  tk{(PolPlo -- PooPll)r8 H- P11}, 
k--1 1 - Poors - ~ i = l  PmP~111plori+lstlt2 "'" ti 

~k-~k,k,[k/2]  .. t~/~] 
¢ O ( I . , S , t l , . . .  , t  k)  : / )01/)11 " b l t ' 2  ' 

X-~k-1 . . . .  i -  l ,~ .~r i+  l s t i  t[i/2] .. t[~/k] ' 1 - Poors - A--, i=I  P ' O Z F l l  / ~ u  1 2 " 

~ k -  l~k÷k÷[k/2] "" t~k/k] { ( P o l P l O  - -  P o o P 1 1 ) r s  H- P 1 1 }  
¢ 8  l ( r , s , t l , . . . , t k )  = F11  " VlV2 ' 

N-~k-1 . . . .  i - l ~ r i + l s t  it[i~2] . .  t[~/kl " 1 - P o o r s  - A-~ i= I  f m / ~ l l  /~ lu  1 2 " 

PROOF. For i = 0 , 1 , . . . , k - 1 ,  let Ai be the event that we start with a 
"1"-run of length i and "0" occurs just  after the "1"-run. Let C be the event that 
we start with a "1"-run of length k, For j = 0  and 1, let ¢~(r, s, t l , . . . ,  tk I Ai) 
and ¢~(r, S, t l , . . . ,  tk I C) be the pgf's of the conditional joint distributions of 
(T, r], ~ 1 , . . . ,  ~k) given that the event Ai N {X0 = j }  occurs and given that the 
event C n {X0 = j }  occurs, respectively. Note  that 

and 

¢°(r , s ,  t l ,  . . . , t k  l A d  = r i + l s t ~ t ~  - 1  "" . t i ¢ ° ( r , s , h , . ,  . , t k ) ,  

¢O(f . ,S ,  t l ,  " , t k  I C )  ._k~k lk -1  • . = r b 1 ~ 2  " ' ' t k .  

Since Ai,  i = O, 1 , . . . ,  k - 1 and C construct  a part i t ion of the sample space, we 
have 

= 

k - 1  

E P(A~)¢°(r '  s, t l , . . . ,  tk I Ai) 
i = 0  

+ P ( C ) d ) ° ( r , s ,  t l , . . . , f i k  I V )  

Poors¢°(r,  s, t l , . . . ,  tk) 
k--1 

-~- ~ . . i / ) 0 1 / ) 1 1  / ) 1 0 1  ~ 1 v 2  • S, . . . 

i = 1  

_~_ k - 1  k . k . k - - 1  
polPn P 7;1~; 2 - - - r~ .  
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Thus, we have 

~ k - l ~ k . & ~ / c - 1  
(/)6 t , ' ] ' O / r , s , t l , . . .  ,t/c ) = p01P11 , Vlt.2 ' ' ' t / c  

k--1 i--1 i+1 i i--1 " 1 - Poors - ~ = 1  P01Pll PlOr st ir  2 . . . t i  

Noting that 

¢ l ( r , s ,  t 1 , . . •  , t /c) = P l 0 r s ¢ ° ( r ,  8, t l , . . .  , t /c) 

/C-1 
~i _ f i + l  ~ i 4 i - 1  

-1- ~...~/311/3101 ~l'l v2 - . .  
i=1 

~_ k / c . k . k - 1  
p11r ~1~2 • . .  ~--, 

t J ( r ,  8, t l , . . ,  t/c) 

we obtain the second equality of the theorem. The remaining equalities in the 
theorem can be proven similarly. 

COROLLARY 4.1. The conditional jo int  distributions of ( ~ l , . . . , ~ k ) ,  ( P l , . . . ,  

~k) and (P l , . . . , Pk )  do not depend on the value of Xo. Especially, for  1 = 
1,••.  ,k  - 1, the marginal distributions of ~t and ~l are G k - l ( P l l , k  -- l + 1) and 
G1 (pSi -1, 1), respectively. 

PROOF. By setting r = s = 1 in the formulas of Theorem 4.1, we see that 
¢°(1, 1 , h , . • . , t k )  = ¢1(1, 1 , t l , • • • , tk) ,  ¢°(1, 1 , t l , . . • , t k )  = ¢1(1, 1 , h , . . . , t k )  and 
¢°(1, 1, t l , . . • ,  tk) = ¢8t(1, 1, t l , . . . ,  tk), since PolPl0 -- P00P11 + Pll = P01. The 
second statement is easy to prove by substituting 1 for all arguments except for h. 
The marginal distribution of ~l was obtained by Aki and Hirano ((1994), Theorem 
3.3)• This completes the proof• 

Remark• By comparing the forms of ¢°(1, 1, t l , . . . ,  tk), ¢0(1, 1, t l , . . . ,  tk) 
and Cs°(1,1,t l , . . . , tk)  with ¢ 3 ( 1 , t l , . . . , t k , 1 , . . . , 1 ) ,  ¢4 (1 , t l , . . . , t k ,  1 , . . . , 1 )  and 
¢5(1, t l , . . . ,  tk, 1 ,• . . ,  1), respectively, we see that the joint distributions of (41,. . . ,  
~k), (~1,. . . ,  uk) and (#1, . . . ,  Pk) based on the Markov chain are the same as those 
based on independent Bernoulli trials, if we put Pll = P. 

Next, we consider the problems based on another dependent sequence called a 
binary sequence of order k. The sequence was defined by Aki (1985) and studied 
by Hirano and Aki (1987), Aki and Hirano (1988, 1994) and ak i  (1992). The 
sequence is closely related to the cluster sampling scheme (el. Philippou (1988) 
and Xekalaki and Panaretos (1989)). When we consider the reliability of a system 
called consecutive-k-out-of-n:F system, the dependency in the sequence is related 
to ( k -  1)-step Markov dependence which was studied by Fu (1986). The definition 
is the following: 

DEFINITION. A sequence {Xi}i%0 of {0, 1}-valued random variables is said 
to be a binary sequence of order k if there exist a positive integer k and k real 
numbers 0 < Pl, p2, • • -, pk < 1 such that 
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(1) Xo = 0 almost surely, and 
(2)  P ( X n  = 1 I Xo = xo, X1 = X l , . . . , X n - 1  = Xn--1) = py  is satisfied for 

any positive integer n, where j = r - [(r - 1)/k] • k, and r is the smallest positive 
integer which satisfies Xn-r = O. 

Let X o , X l , X 2 , . . .  be a binary sequence of order k defined above. Let % 
r], ~l, ul and #l, 1 = 1 , 2 , . . . , k  be random variables defined as before. Let 
¢ 9 ( r ,  s, t l , . . . ,  t k ) ,  ¢ l o ( r ,  s, t l , . . . ,  t k )  and e l l ( r ,  s, t l , . . . ,  tk)  be the joint pgf's of 
(% 7, {1 , . . - ,  {k), (% r], u l , . . . ,  uk) and (T, r~, # 1 , . . . ,  #k), respectively. 

THEOREM 4.2. T h e  j o i n t  p g f ' s  a r e  g i v e n  a s  f o l l o w s ;  

a n d  

- k r k t k t k - i  P l P 2  " " " P i 2 " " " t k  
¢9(r, S, t l , . . . ,  t k )  = k - 1  . . . i+1 i i - 1  ' 

1 - q l r s  - ~ i = 1  P i P 2  • • p ~ q ~ + l r  s t l t  2 • •. t i  

P i P 2  • • • P k r k t l  t2  • • • t k  
¢1o(r, s, h , . . . ,  tk) = k - 1  • ' 

1 - q l r s  -- E i = I  P i P 2  "" " P i q i + l r Z + ] s t l t 2  • " " t i  

~ l i ( r , s ,  t l , . . . , t k )  = 

~ k ~ [ k j  2 ] 
•.  tk/k][k PlP2"" "pkt~ blb 2 " 

k--I . ' 
1 - qlrs - E i = I  PlP2"" "Piqi+lri+lst i l~i /2]  "" ~ / k ]  

w h e r e  q~ - -  1 - p ~ .  

PROOF. Note tha t  P ( A o )  = ql, P ( A i )  = p z p 2 " "  " p i q i + l ,  for i = 1 , . . . ,  k - 1, 
and P ( C )  = p l p 2 " " p k .  Then, by the same argument  as in the proof of Theorem 
4.1, we can prove this theorem. 

COROLLARY 4.2. F o r  I = 1, 2 , . . . ,  k - 1, t h e  m a r g i n a l  d i s t r i b u t i o n s  o f ~ l  a n d  

ul a r e  E G k - z ( p z + l ,  . . . , p k ,  k - 1 + 1) a n d  GI(pz+I ' '  p k ,  1), r e s p e c t i v e l y .  

PROOF. We can obtain the result by substituting 1 for all arguments except 
for t l  in ¢ 9 ( r , s ,  t l , . . . , t k )  and ¢ l o ( r , s ,  t l , . . . , t k ) .  In particular, the marginal 
distr ibution of ~z was given by Aki and Hirano (1994), alternatively. This completes 
the proof. 
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