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A b s t r a c t .  Let (Po : 0 C JR p) be a simple shift family of distributions on 
El p, and let K C R p be a convex cone. Within the class of nonrandomized 
tests of K versus R P \ K ,  whose acceptance region A satisfies A = A + K ,  a 
test with minimal bias is constructed. This minimax test is compared to a 
likelihood ratio type test, which is optimal with respect to a different criterion. 
The minimax test is mimicked in the context of linear regression and one-sided 
tests for covariance matrices. 
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1. Introduction 

Let  (Po : 0 E O) be a s tat is t ical  exper iment  consisting of d is t r ibut ions  Po on a 
measurab le  space X and an open subset  (9 of R p. We consider hypotheses  O A K 

with  some closed, convex cone K in R p. For example ,  one often wants  to test  
whether  the  unknown p a r a m e t e r  0 belongs to one of the  following cones: 

K I : = { T E R P :  m a x  7i _< 0}  
l <i <_p 

K 2 : = { 7 E R P : 7 1  ~ m a x ? ] i ~ ,  2<_i<p J 
K 3  := {n e RP : nl >- n2 >_'" >_ %}. 

There  is an extensive l i tera ture  on such problems;  see the  book  of Robe r t son  et al. 
(1988) or A k k e r b o o m ' s  (1990) lecture notes. In  par t icular ,  l ikelihood rat io  (LR) 
tests  have received a lot of a t tent ion.  I t  is not  clear, however, in wha t  sense these 

tests  or its compet i to rs  are opt imal .  The  main  goal of the  present  pape r  is to  find 
nonrandomized  tes ts  

X ~ x ~ l { x  ¢ A} 

of (~ M K versus O \ K  with  small  risk 

R(A) :=  sup PoA 
Oee\g  

155 



156 LUTZ D~IMBGEN 

under the restriction 

(1.1) PeA >_ 1 - a VO • @ N K 

for some fixed level a • ]0, 1/2[. In other words, we look for a nonrandomized 
test of O N K versus O \ K  with level a and small bias R(A)  - (1 - a). Typically 
R(A)  > 1 - a, because the boundary of K is not smooth; see problem 7 in 
Chapter 4 of Lehmann (1986). 

In Section 2 we consider a simple shift model and minimize the risk R within 
the class of all acceptance regions A C R p such that  

A = A + K  := {x +~] : x • A,~ E K}  

and (1.1) holds. The monotonicity constraint A = A +  K is a natural requirement, 
especially when considering the cones Kj  mentioned above. It is also mathemat- 
ically convenient, although there might be decision theoretical arguments against 
it. It turns out that  the corresponding minimax test is constructed according to 
Roy's (1957) union-intersection (UI) principle, where K is represented as an in- 
tersection of a minimal family of halfspaces. In a normal shift model this test is 
different from the LR-test in general. The latter test is optimal with respect to a 
different, but weaker criterion. All proofs are deferred to Section 4. 

In Section 3 we imitate the minimax test of Section 2 in the context of lin- 
ear regression and one-sided tests for covariance matrices. In the latter case we 
consider a cone K which is not polyhedral (i.e. defined by finitely many linear 
inequalities) as are the examples Kj  above. 

2. A minimax result in shift families 

In this section let X = O = R p and Po := Po * 5o, where the probability 
distribution Po is absolutely continuous with respect to Lebesgue measure on R p 
and has full support. Now we consider the class A ( K )  of all Borel sets A C R p 
such that  A = A + K .  Further let A s ( K )  be the set of all A • A ( K )  such that  
PoA _> 1 - a. One easily verifies that  

(2.1) PeA < Po+nA VO • R p V~7 • K VA • A ( K ) .  

In particular, any A E A(~(K) satisfies (1.1). 
Let us introduce some notation. The support function of a set B c R p is 

defined as 
z):= sup<x, (z • 

xGB 

where (x, z} := x 'z  is the usual inner product on R p, and ]]. ][ is the corresponding 
norm. The set 

B* := {z • RP:  ~(B,z)  _< 0} 

is the so-called dual cone of B. With the closed halfspaces 

g (r) := {x e RP:  <x,z> _< r} (z e RP, r • 



TESTS FOR CONVEX CONES 157 

one can also write B* = NzEB Hz(O) • The convex hull of B is denoted by conv(B),  
and c o n e ( B ) : =  {Ax: A >_ 0, x e conv(B)} is the smallest convex cone containing 
B. Finally l e t /~  be the closure of B, and define dist(x, B) := infycB II x - yii- 

Wi th  the help of Stein's (1956) theorem one can show tha t  the convex sets in 
A ( K )  define reasonable tests of K versus R V \ K .  

PROPOSITION 2.1. A closed, convex set C c R p belongs to A ( K )  if, and 
only if, 

(2.2) {z E R v : z) < c K * .  

In that case the test 1{. ¢ C} is admissible in the following sense: Let Po be a 
nonsingular Gaussian distribution, and let ¢ : X ~ [0, 1] be another test such that 
Poe < 1 - PoC and Poe > 1 - PoC for all 0 E R P \ K .  Then ¢(x) = l { x  ¢ C} for 
Po-almost all x E R p. 

Now we construct some special sets in A ~ ( K ) .  Let S ( R  p) be the unit sphere 
in R p, and let M = M ( K )  := K* M S(RP) .  For x E R p and z C M define 

Tz(x) : :  PoHz((X, z)). 

We regard Tz as a test statistic for testing the simple hypothesis Hz(O). The 
distr ibution Po o T~ -1 of Tz under Po is the uniform distr ibution on [0, 1]. For 
0 ~ B c M let 

T B ( x ) : =  sup Tz(X). 
zcB 

Then I{TB(.) > /3} defines a UI-test of the hypothesis B* in the sense of Roy 
(1957). If Po is a nonsingular Gaussian distribution, then T M is equivalent to the 
LR-test  statistic. Let us summarize some properties of TB. 

PROPOSITION 2.2. TB equals TB, and the distribution PoOTB 1 is continuous. 
Let/3B be a minimal number in ]0, 1[ such that 

P o A B = I - c ~  where A B : = { x E R  p ' T B ( x ) < / 3 B } .  

Then AB is a closed, convex set in A a ( K ) .  

One might wonder, whether there is a smallest closed subset B of M such 
tha t  B* = K .  Let E -- E ( K )  be the set of all e C M,  which are extremal in the 
following sense: If e = )~y + #z for )% # > 0 and y, z E M,  then y = z = e. 

PROPOSITION 2.3. 
cone(E) and K = E*. 
E c B .  

Suppose that K has nonvoid interior. Then K* = 
If  B is any closed subset of M such that K = B*, then 

Thus/9 has the above minimality property. More important is that the cor- 
responding set AE minimizes R over Aa(K) and defines a consistent test. 
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THEOREM 2.1. 

For E C B C M,  

LUTZ DOMBGEN 

Suppose that K has nonvoid interior. Then 

R ( A E ) =  min R(A). 
AGAa(K) 

R(AB) = ~B, 

and the test 1{. ~ AB} is consistent in that 

PoAB --+ 0 as dist(0, K)  --+ ~ .  

For the special cones Kj  mentioned in the introduction, one can easily deduce 
from Proposition 2.3 that  

E(K1) = {e(i) : 1 < i < p}, 

E(K~) = {2-~/~(e({) - e(~)) : 2 < i < p}, 

E ( K 3 )  : { 2 - U 2 ( e ( i + x )  - e ( i ) )  : 1 < i < p - 1 } ,  

where e(1), e(2),. •., e(p) is the standard basis of R p. Let Po be the standard normal 
distribution N'(0, Ip). Then T~(x) = O({x, z)) with the standard normal distribu- 

tion function ~. Hence one can also write AB = {x E R p : SUpzeB(X, z} < ~B}, 
and fiB = ~(/gB). For instance, the set AE(Ka ) equals {x E R p : maxl<i<p xi <_ 

~E}. Using the standard expansion ~(r) = 1 - exp( - r2 /2  + o(r2)) as r ~ c~, one 
can show that 3 E ( ~ ) =  ~ ( 1  + o(1)) and 

R(AE(K1)) = CP(~E(K1)) : 1 - - p - 1 + o ( 1 )  a s  p --+ oo .  

P + 2 -2  On the other hand, AM(K1 ) = {X E R p : E i=l (X i  ) < ~M(K1)}' The Law o f  

Large Numbers for p-1 z_~i=lV'P ~fx+~2i J yields/~M(KJ = V / ~ ( 1  + o(1)) and 

R(AM(K1)) = 1 - exp( -p /4  + o(p)) as p ~ ~ .  

Hence the risk of As  can be considerably smaller than the risk of AM. Similar 
arguments apply to /£2 and K3. 

In the standard Gaussian shift model, dist(0, K)  is a measure of how good 
a test ¢ of K versus {0} can be. One might argue that  instead of R(1 - ¢) one 
should consider the risk 

R~(1 - O) := sup P0(1 - 4) 
OERP:dist(O,K)~5 

for some (but what?) 6 > 0. This is an interesting open problem. Presumably 
neither AE nor AM are optimal with respect to this criterion. So far we can 
only show that  AM is approximately optimal as 6 --+ ~c by modifying Stein's 
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(1956) arguments. However, this is admittedly a weak optimality result, because 
Rs(1 - ¢) --* 0 as 6 -+ oc for most reasonable tests ¢. 

THEOREM 2.2. Let Po = N(O, Ip), and let ¢ be any test such that Po¢ : a.  
Then 

R (1 - ¢) 
+ ~ as 6 - -4oo  

unless ¢(x) = l{x  ¢ A M }  for Po-almost all x E R p. 

Since the two criteria R(.) and ' R ~ ( . ) '  lead to different answers, one could 
combine the two tests AE and AM via the UI-prineiple or use AB for some set B 
strictly between E and M. 

3. Modifications 

3.1 Linear regression 

Let us describe briefly how one can modify the tests AB of the preceding 
section in the context of linear regression: Let 

Y = DO + E,  

where 0 E R p is an unknown parameter, D C R nxp is a given design matrix 
with rank p < n, and E C R n is an unobserved vector having independent, 
Gaussian components with mean zero and unknown standard deviation G > 0. As 
in Section 2 let K be a closed, convex cone in R v such that  interior(K) # 0. With 
V := (D'D) -1 let 

= ( ] ( Y )  : =  V D ' Y ,  fr = a(Y) := x/ l lY - DVD'Y I I2 / (  n - p) 

be the usual estimators for 0 and or.  The distribution of'~ = ~(Y) : =  o ' -10  depends 
only on the parameter 0/:= G-10, and 0 E K if, and only if, ~, E K .  For z E M 
and E C B C M let 

2r~(x) := ( z ' V z ) - l / 2 @ ( x ) , z }  and 2rB(x) := supTz(x). 
z C B  

All random variables 2rz(Y), z E M, have a student distribution with n - p  degrees 
of freedom if 7 = 0. One easily verifies that  

% (x + Dr;) _< % (x) V x C R " \ D R  p V ~ K .  

Hence, if ~B > 0 is chosen such that  

P~:o{TB(Y) > 3B} = c~, 

then I{TB(.) > ~B} defines a test of K at level ~. For B = M this is just the/~2 
test as defined in Robertson et al. (1988). In view of Theorem 2.1, however, we 
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favor the test I{TE(.) >/3E}. In fact one can easily modify the proof of Theorem 
2.1 in order to show that this test has minimal bias among all tests of the form 
l{;y(.) ~ d},  where A is a set in A ( K )  such that Pe=0{~/E A} > 1 - a. In case 
of K = K2 we end up with Dunnet's (1955) test (extended to arbitrary design 
matrices D), which rejects the hypothesis if 

m a x  
2_</<p 6-gV/i - 2V/1 -]- Vii 

is too large. 

3.2 One-sided tests for covariance matrices 
Let X be the space of all symmetric matrices in R dxd equipped with inner 

product {x, z} := trace(xz) and norm Ilxll := {x, x} 1/2. It can be identified with 
R d(d+l)/2. Let O be the set of all positive definite 0 E X.  Suppose that one ob- 
serves a random matrix S E O having Wishart distribution W(E, n) with unknown 
matrix parameter E E O and n _> d degrees of freedom. 

There are various test hypotheses in multivariate analysis involving closed, 
convex cones in X .  For instance consider the hypothesis I + O, where I is the 
identity matrix in R dxd, and (~ is the closed, convex cone of nonnegative definite 
matrices in X.  In other words one wants to test, whether u'Eu >>_ u'u for all 
u E S(Rd). A natural test statistic for such a simple hypothesis is u'u/u~Su, and 
Roy's (1957) UI-principle leads to the test statistic 

max (u'u/u'Su) = /~min(S) -1  
uES(R~) 

where /~min(X) stands for the smallest eigenvalue of x E X.  Kuriki (1993) consid- 
'ered the LR-test for a similar testing problem. 

Now it is shown that )~min(S) -1  is indeed a reasonable test criterion. First of 
all one can easily show that 

/~min(S) -1 ~ )~min(S) -1 if E E I + (~, 

where S is the unobserved random matrix E-I /2SE-1/2  having a standard Wishart 
distribution with n degrees of freedom. Thus the test l{Ami~(S) -1 > /3n} with 
the (1 - a)-quantile/3n of £(Amin(S) -1) has level a. Note also that this test leads 
to confidence 'intervals' 

{ H  E (~) : / ~ m i n ( H - 1 S )  -1  < /3n} : /3aS -- ~) 

for E with coverage probability 1 - ct. 
As n tends to infinity, n 1/2 ( S - I )  converges in distribution to a random matrix 

3~ such that 2-1/~J( has a standard normal distribution on X ,  and nl/2(/3~ - 1) 
converges to the (1 - a)-quantile/3 of £(--Amin(3~)). Suppose that 

E = I + Tt--1/20n, 
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where 0~ E X converges to some 0 E X.  Then n l / 2 ( S - I )  converges in distribution 
to 0 + X, and 

~{/~min(~) -1 ~ fin} --+ []3){0 q- .f( ~ A}, 

where 
A := {x E X :  -/~min(X) ~ fl} e ~t(O). 

Thus Roy's test behaves asymptotically as the test 1{. ¢ A} of the hypothesis ~) 
in the shift model (£(0 + f()  : 0 E X) .  It is optimal in that 

A = A E ( ~ ) .  

For one can easily show that A = AB with the set B := { -uu '  : u E S(Rd)}  C 
S ( X ) .  Further, one can deduce from the spectral representation of points in X 
that f)* = -f~ and B -- E(f~). 

4. Proofs 

Before proving the results of Section 2 let us recall some well-known facts 
from convex analysis. 
cr(conv(B), .), and 

More generally, 

The support function a(B, .) of B C R p coincides with 

cony(B)= A 
zCRP 

dist(x, conv(B)) = sup ((x, z) - or(B, z)) V 0 
zcS(Rp) 

for all x e R p. Similarly, B* = cone(B) , and cone(B) = B** 

PROOF OF PROPOSITION 2.1. Suppose that x + ~ ~ C for some pair (x, r]) C 
C x K .  Then there exists a z C R p such that a(C, z) < (x + ~, z}. Since (x, z) < 
a(C, z), this implies that z e {a(C, .) < o c } \ g * .  

On the other hand, if C e A(K) ,  then (r(C, .) _= or(C, .) + or(K, .), and (2.2) 
follows from the fact that a ( K ,  .) E {0, oe}. 

The admissibility of 1{- ~ C} is a direct consequence of (2.2) and Stein's 
(1956) theorem. [] 

PROOF OF PROPOSITION 2.2. Since Tz(X) = f l{(y,  z) <_ (x, zl}Po(dy ) and 

lim l{(y,  z> _< (z, z>} = l{(y,  Zo> <_ (Zo, Zo>} 
(x,z)~(~ ... .  ) if (y, Zo) ¢ (Xo, Zo), 

it follows from dominated convergence that Tz(x) is a continuous flmction of 
(X, 2:) E R p X M.  Thus TB = T D =- maxz~t~ Tz. 

Since Po has full support, the latter representation of TB implies that for 
any fl E [0, 1] the set {TB(.) = fl} has nonvoid interior. Moreover, since both sets 
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{TB(.) < fl} and {Ts( ' )  < fl} are convex, their boundaries have Lebesgue measure 
zero. Thus Po{TS(.) = fl} = 0, whence Poo T~ 1 is continuous. 

The set A s  is closed and convex, and for all x E R p and ri E K ,  

TB(x + ri) = sup PoHz((X, z} + (ri, z}) < Ts(x), 
zEB 

because B C K*.  Consequently AB ~ A(K). [] 

PROOF OF PROPOSITION 2.3. Let rio be an interior point of K .  Then 
{rTo, Z} < 0 for all z E K*\{0} ,  and rr(z) := I(rio, Z)[-lz defines a homeomor- 
phism from M onto the compact, convex set re(M) = K* N P,  where P := {x E 
R p : (x, rio} = -1} .  One can easily show tha t  r~(E) is the set of all extreme points 
of re(M). Therefore re(M) equals conv(rc(E)); see Corollary 18.5.1 of Rockafellar 
(1970). Consequently, 

K* = {)~x: ), > 0, x E re(M)} = cone(re(E)) = cone(E), 

K = K** = cone(E)* = E*. 

Now let B C M be closed such tha t  B* = re(B)* = K .  Then ~r(M) equals 
cone(re(B)) N P.  Since 7r(B) is a compact subset of the hyperplane P ,  and since 
0 ~ P ,  one can write 

cone(re(B)) = cone(Tr(B)) = {Ax: A > 0, x E conv(rr(B))}. 

Consequently, re(M) = conv(rr(B)). But  this implies tha t  re(E) C re(B), because 
re(E) is the set of extreme points of re(M). [] 

PROOF OF THEOREM 2.1. Let A be any set in As(K). We first prove the 
following expression for R(A), where Ao is a dense subset of the boundary  OK of 
K to be specified later: 

(4.1) R(A) = sup lim P~oA. 
e E A o  r--+ c~ 

It follows from the absolute continuity of Po tha t  R p ~ 0 ~-+  Re is continuous with 
respect to total  variation. In particular, 

R(A) >_ sup PeA = sup PeA. 
eEOK e~Ao 

But  rOE OK for all 0 E OK and r >__ 0, and PreA is nondecreasing in r by (2.1). 
Hence 

sup PeA = sup lira P~eA. 
P E A °  e C A o  r ---+ oo 

On the other hand,  let rio be a fixed interior point of K ,  and let 0 be any point 
in R P \ K .  Then 0 + r r l o  =r(r-lO+rlo) E OK for s o m e r  = r(O) > 0, and (2.1) 
implies tha t  

PeA <_ Po+~voA <_ sup PeA, 
eEAo 
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which completes the proof of (4.1). 
Specifically, let Ao be the set of all 0 E OK such tha t  

( K -  0)* = {re(O):r _> O} 

for a unique e(O) E S(RP),  where K - O  := { ~ / - 0  : ~ E K } .  The fact tha t  
Ao is dense in OK can be seen as follows: For 0 ~ OK and e > 0 let r] C 
in ter ior(K)  n B(O, e), where B(O, e) denotes the closed ball around 0 with radius 
e. Let R = R(j]) be the maximum of all r E (0, e] such tha t  B(~], r) C K .  Then 
there exists a 0 E OK such tha t  I]0 - ~1[[ = R; in particular, II0 - 011 _< 2~. But  

( K  - c • )  - 0)*  = { r ( 0  - _> 0 } .  

Since ( K  - 0)* necessarily contains a point different from 0, this implies tha t  
( K  - 0)* equals {r(t) - r/): r _> 0}, whence a E Ao. 

An important  fact is tha t  

(4.2) Eo := {e(0) : 0 E Ao} is a dense subset of E.  

For one can easily show tha t  ( K  - 0)* = K* C~ {0} ± for all 0 E OK. This implies 
tha t  Eo c M.  Further,  for 0 E Ao let e(0) = Ay + #z with A, # > 0 and y, z E M. 
Since (0, e(0)} = 0 and (0, y}V(0 ,  z} _< 0, it follows tha t  y = z = e(0). Thus 
Eo C E. According to Proposit ion 2.3 it suffices to show tha t  E* = K .  Obviously 
E o D K ,  and 

tOE* D {x E E~ : (x,e} = 0 for some e E Eo} D Ao. 

Consequently OK C cOE*. This implies tha t  Eo* C K .  For if 0 E E * \ K  and 
~o E in ter ior(K)  C interior(E*), then there would exist a A = A(0) 4]0, 1[ such 
tha t  (1 - A)0 + A~o E 0 K  n interior(E*). 

Next we deduce the crucial formula 

(4.3) R(A) = sup T, (x ) .  
x E A  

For any fixed 0 E Ao and r > 0, 

ProA = Po(A - rO) = Po(A + r ( K  - 0)). 

The set K - 0 is convex and contains 0. Hence r ( K  - O) C s ( K  - O) for 0 < r < s, 
c one (K  - 0) = U~>0 r ( K  - 0), and it follows from monotone convergence tha t  

lim P~oA = Po(A + cone (K  - 0)). 
T - - - +  O ~  

But interior(He(0)(0)) c cone (K - 0) C He(o)(0), whence 

Po(A + cone (K  - 0)) = PoHe(o)(cr(A, e(0))) = sup Te(o)(X). 
x E A  
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Consequently (4.3) follows from (4.1) and (4.2) together with the first s ta tement  
of Proposi t ion 2.2. 

Formula (4.3) shows that  A can be replaced with the larger set {x E R p : 
TE(X) < R(A)} wi thout  increasing R(A). Since PoA > 1 - a,  it follows from the 
definition of ~gE tha t  

R(A) >/~E = sup TE(X) = R(AE). 
x 6 A E  

For E C B C M it follows from (4.3) and Tn > TE tha t  R(AB) is not greater 
than supxed B TB(x) =/3n .  On the other hand, for 0 E Ao and A c R,  

TB(~O + h e ( 0 ) )  - ~  T ~ ( 0 ) ( ~ ( 0 ) )  as  ~ - ~  o~.  

This follows straightforwardly from the fact tha t  {0, z} _< 0 for all z ~ M with 
equality if, and only if, z = e(0). Consequently, if T~(o)(Ae(O)) < 3B, then rO + 
he(0) E An for sufficiently large r > 0. Since TE(rO+Ae(O)) >_ T~(o)(rO+Ae(O)) = 
T,(o)(Ae(O)), this shows that  s u p ~ A  . TE(x) >_ 3B. 

As for the consistency of An it suffices to show that  TE(X) tends to one as 
dist(x, K )  --+ oo. But  

TE(X) >_ PoB (0, sup(z, e) V 0~ and dist(x, K) = sup (x ,  z)  v 0. 
',, eEE ) z c M  

With  ~r(z) := [(rio, z}[ - lz  as in the proof  of Proposi t ion 2.3 the assertion follows 
from the inequalities 

sup(x,  e} V 0 > min 1(~?o, z)l sup(x,  7r(e)) V 0 
e E E  z E M  e E E  

= min 1{~7o, z}] sup (x,Tr(z)} V 0 
z c M  z CM 

-> \z~M(minl(v°'z)l /z~M/maxl(v°'z)l) z~MSUp (x, ~> v 0 .  [] 

PROOF OF THEOREM 2.2. Since P o ( 1 - ¢ )  = PoAM = 1-c~, one may assume 
that  Po{x E RP\AM : ¢(x) < 1} > 0. But  AM can be wri t ten  as [']~cn H~(~M) 
for some tIM > 0 and a countable, dense subset  B of M.  Hence 

/ l{x ¢ H~(~.)}(I - ¢(x))dx > 0 co 

for some z C M,  and for 5 >/~M, 

dist(Sz, K )  = 5, 

P~z(1 - ¢) _> / l { z  e B(Sz, 5 M)}(1 ¢(z))P~z(dz) I 

>_ ( 2 ~ ) - ~ / 2  e x p ( - ( ~  - ~M)2/2) 
f l{x C B(~,  ~ -- ;?M)}(1 -- ¢(z))ex o 

= (27r) -p/2 e x p ( - ( 5  - }~M)2/2)(CO J- O(1)) as 6 --+ oo. 
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On the other hand, if 0 is any parameter with dist(0, K )  _> 5, then there is a 
z(O) E M such that  (0, z(0)} > 5. Hence 

PeAM << P o H z ( o ) ( a v )  < - 5), 

and the assertion follows from the well-known fact that  e x p ( r 2 / 2 ) ~ ( - r )  ---, 0 as 
r ---+ cx3. I-q 
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