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A b s t r a c t .  When the variance is a known function of the mean, as in quasi- 
likelihood applications, the sample variance also contains information about 
the mean and extensions of quasi-likelihood functions have been suggested that 
incorporate this additional information. In order to be sure these extensions 
are an improvement, further assumptions are made typically on the higher 
moments of the data so that there is a trade-off between the greater robustness 
of the quasi-likelihood estimates and the potentially improved estimates based 
on the extended quasi-likelihood functions. Improvement is often measured 
by relative efficiency but more insight can be gained by considering optimality 
of estimating functions, information loss, and sufficiency. All these measures 
can be described using the dual geometries of the quasi- and extended quasi- 
likelihood estimators. For a substantial range of models, the extended estimates 
offer little improvement when the coefficient of variation is small. 

Key words and phrases: Information, sufficiency, efficiency, extended quasi- 
likelihood, generalized linear model, dual geometries, angle, curvature. 

i .  Introduction 

We compare  est imat ion using a quasi-likelihood (ql) function (Wedderburn  
(1974), McCullagh (1983)) to est imation using an extended quasi-likelihood (eql) 
funct ion (Fir th  (1987), Crowder (1987), Godambe  and Thompson  (1989)) in  terms 
of their  geometric properties,  certain curvatures  and angles, which measure how 
well the quasi-likelihood est imators  summarize the informat ion contained in the  
data.  Efron (1982) discusses this dist inction for the maximum likelihood statist ic 
which is bo th  an optimal  est imator  and a superior summary  of the data.  When  
the extended quasi-likelihood is the log likelihood of an exponential  family, the 
geometry  is related to the ideas of Fisher informat ion and sufficiency. We sug- 
gest extensions of these terms to quasi-likelihood and extended quasi-likelihood 
functions. 

We shall use the following quasi-likelihood model  for observations Yij where 
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i = 1 , . . . ,  N and j = 1 , . . . ,  r~i: 

(1.1) 
(1.2) 

where/3 is a p dimensional vector and Xi is a vector of k covariates. Often, the 
argument of the function h is X~/~ but we shall not require this. In (1.1) we have 
assumed there are replications since this will be useful in motivating our discussion. 
In Appendix 1 we show what changes are required for unreplicated data. Notice 
that  (1.1) defines a quasi-likelihood, we include (1.2) since this is commonly how 
quasi-likelihoods are used and because it illustrates how information agruments 
can be used when asymptotic methods are not applicable. 

The quasi-likelihood estimates for 3 are functions of the data only through 
. . .  - v , n ~  y ~ .  

the vector of sample m e a n s  (~/~1, , YN)'  where Y/ = a i 1 z_~j=l ~3" When the 
quasi-likelihood corresponds to the log likelihood of a one parameter exponential 
family this vector is sufficient for # = (#1 , . . . ,  #N)'. 

The extended quasi-likelihood allows for 'sufficient' statistics beyond (Y1,.. . ,  
YN)'; for example, (YI, , ~/N, $2, , S2N) ' where S/2 = (ni -1)  -1 v ' ~  ( Y ~ . - ~ 2  . . . . . .  A - @ = I \  ~3 ~] " 

Since S/2 is an unbiased estimator for ~ = CV(pi), a function of #i, it is reasonable 
to suspect that  S/2 might contain information or evidence for Pi. The eql estimator 
is a function of (Y1 , . . . ,  fZN, $2, . . .  , S2N) '. In order to choose this function so that 
the eql estimator is an improvement of the ql estimator, assumptions beyond 
the second moment are made. Hence, there is a tradeoff between the greater 
robustness of the ql estimators and the potentially better eql estimators. We shall 
see that  in many cases eql estimators offer little improvement. In particular, when 
the coefficient of variation c is small (say, c < 0.5) the two estimates and their 
estimated standard errors are very similar as are other inferential procedures based 
on the ql and eql. 

The next section states the main results for the geometric properties of the 
estimators. The remaining sections relate the geometric features to statistical 
properties. Proofs and technical details appear in Appendix 2. 

2. Geometric results 

Before giving the main results we emphasize that we are comparing the es- 
timators for/~ by considering how well (f'1,..., f'N)' summarizes the evidence or 
information in the data compared to (]~1,..., ])N, $ 2 , . . . ,  S 2) ' .  We are, in effect, 
comparing the ql and eql estimators for the mean vector p = (#1,.-- ,  PN)' rather 
than/3. If the vector of sample means is a poor summary for #, it may still do an 
adequate job for/3--this will depend on h and X. The advantage of considering 
# is that it can be done componentwise. That is, ~ and (~, S~) can be compared 
as summaries for #i. 

Since we study the ql and eql estimators for /3 in terms of the components 
for p, we fix a single point of replication and for notational economy drop the i. 
So, for the rest of this paper, p is a real number, the mean of the random sample 
Y1,. . . ,  Y~ where n was previously hi. 
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Let Y1, . . . ,  Y~ be a random sample from a distribution where for j = 1 , . . . ,  n 

~;3(~j)  t~4 ( ~ j )  
(2.1) # = E(Yj), 0.2 = Var(Yj), ")/1 - -  0" 3 , '~2 - -  O" 4 

and 

( 2 . 2 )  = 

where s3 and s4 are the third and fourth cumulants. We assume qS, 71 and 72 
are known and that # is the single parameter of interest. The ql estimate is the 
root of the estimating equation (Y - #)/(@V(#)) = 0. That  is, the ql estimate/2 is 
simply Y. 

There are several ways to derive estimating equations from (2.1) and (2.2); 
we shall do so by considering the ordinary quasi-likelihood function for the two 
dimensional statistic (Y, S2). That is, the quasi-likelihood with mean vector and 
covariance matrix given by 

(2 .3)  

~ = E  $2 = ; 

E = n C o v  $2 ~10. ) 
The covariance structure of (I?-, S2) ' and its relationship to # is given by (2.1) and 
(2.2). The estimating equations are obtained from the fact that the residual vector 
for the (maximum) ql estimator is orthogonal to the derivative of the expectation 
vector in the inner product defined by the inverse of the covariance matrix; i.e., 
the eql for # is a root of 

(9  - s - = 0 

where ~ = (#, 0.2),, ~ = d~/d#, and ~ and X are functions of #. Notice ~ is the 
ordinary ql estimate based on (I?-, S 2) but we shall call ~ the eql to distinguish it 
from the ql estimate/2 based on Y alone. 

We shall compare the^quasi-likelihood estimator /2 = Y and the extended 
quasi-likelihood estimator/2 =/2(Y, S 2) geometrically. We begin with the subset 
of the real plane E = {(~1, ~2)' : ~1 E 21~ ~2 E 2 2 }  where 21 is the space of allowable 
means (for the ql function) and 22 is the space of allowable variances. Notice that 
each point in ~ C E represents the distribution (or class of distributions) having 
mean equal to the first component ~1 and variance equal to the second component 
~2. The quasi-likelihood assumption that the variance is a function of the mean 
is represented by the submanifold 2t4 = {(~1, ~2)' : ~2 = ~bV(~l)} and the quasi- 
likelihood estimator /2 by the auxiliary submanifolds A,  = {(~l, {2)' : ~1 = /2}. 
See Fig. 1. Since/2 = 9 does not depend on ~2 = s ~, At, is a 'vertical' manifold for 
each #. In the same way, the extended quasi-likelihood estimator is represented 



52 PAUL W. VOS 
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Fig. 1. Q1 and extended ql estimation. 

2 

by its auxiliary manifold A ,  = {(El, ~2) ! : ; ( { 1 ,  {2) = ~}" From the extended 
quasi-likelihood est imating equations (2.4) we see that  

2 
A, = {~ E E :  (El  - ~ , ~ 2  - o 2 ( ~ t ) ) Y ] - l ~  = 0}  

where E -1 and ~ are both  evaluated at # so that  ) u  is linear in ~. 
The geometric comparison of the quasi-likelihood and extended quasi-likeli- 

hood est imators is summarized in the following two theorems. 

THEOREM 2.1. Suppose YI , . . . ,Y~ is a random sample from a distribution 

having moments specified by (2.1) and let A ,  and f i ,  be the auxiliary subrnanifolds 

for [~ and ~, respectively. Then the tangent of the angle between f i ,  and ~ is 

( 2 . 5 )  m = 
I (2~ - ~1) 2 

(~2 - ~ )  + 2 ~ - L -  
n - - 1  

where (~ = da/d#. 

Under the following extended quasi-likelihood s t ructure  

(2.6) # -= E ( ~ ) ,  o 2 = V a r ( ~ ) ,  71 = kle, 72 = k2 c2, 
( 2 . 7 )  o -2 = O ~  d 

where c = o-/# is the coefficient of variation, we have the following result. 

THEOREM 2.2. Let Y1,.. •, Y~ be a random sample from the quasi-likelihood 
2 

specified by (2.6) and (2.7). Then the tangent of the angle between A~ and A ,  is 

(2.8) 

i ° + c2(k2 - k~) 
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and the statistical curvature of 34 is 

c 2 
(2.9) 7 = x/~" 1 v ~ l d -  kll 

Notice that  the term under the radical in (2.8) and (2.9) is approximately nnl 
and 1, respectively, for small c. Although the angle and curvature depend on d, kl 
and k2, in general, when the coefficient of variation c is small so are the curvature 
and angle. 

One parameter quasi-likelihood functions share important properties--such 
as one dimensional 'sufficient' statistics--with one parameter exponential families 
and we shall see that extended quasi-likelihood functions have similar properties 
with respect to two parameter exponential families. 

3. Geometry and curved exponential subfamilies 

To relate the geometric results given in the previous section to statistical 
ideas we consider one parameter (i.e., #) quasi-likelihoods as subfamilies of sev- 
eral two parameter exponential families where the relationship between geometric 
quantities (such as angle and curvature) and statistical quantities (efficiency and 
sufficiency) is well understood (see e.g., Efron (1975), Amari (1985), and Kass 
(1989)). For each subfamily, we discuss the adequacy of/2 = Y as an estimator in 
terms of efficiency and as an information summarizer in terms of sufficiency. 

An estimator 0 is efficient if its variance attains the Cram~r-Rao lower bound 
CR = (nIo) -1 where Io = - E ( O ~ )  and ~ is the log likelihood obtained from 
a single observation. Departures from fully efficient estimators can be measured 
with the efficiency which is simply the ratio of CR over the variance. In many 
cases the variance is difficult to calculate exactly and the (first order) asymptotic 
efficiency is defined by replacing the exact variance with the asymptotic variance; 
we need not do this here, since the ql estimator for p is simply the sample mean. 
A statistic T is sufficient if the log likelihood can be recovered up to an additive 
constant from a function depending on the parameter and T alone. That is, there 
is a function h depending on the data w only through T and a K which is not a 
function of the parameter such that 

(3.1) g(O; w) = h(O; T(w)) + K(w).  

The 1-imbedding curvature ~/can be used to measure departures from sufficiency 
for reasons given following Summary 1. 

We show that the ql estimator has efficiency near one and is nearly sufficient 
when the coefficient of variation c is small. The results for the three exponential 
families are similar so we present them together. 
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Summary 1. Let Y1,. . . ,Y~ be a random sample from either the normal, 
inverse Gaussian, or gamma distributions such that the variance a s is a known 
function of the mean p. Then the efficiency of/2 = 1~ is given by 

1 
(3.2) Eff(~t) = 1 ~- ]~(]~1c - 2dr)2" 

In (3.2), kl = 0, 2, 3, for the normal, gamma, and inverse Gaussian distributions, 
respectively, and k = 1/2 for the normal and inverse Gaussian, while for the 
gamma distribution k = k(c) = c-4G'(c -2) - c -2 is a function of the coefficient of 

c 2 1 ~ c 2 c 2 
variation c satisfying k(c) > ~ and k(c) < (1+  1--4--~J 1-T~ < 2 I~V~" If °r2 = Cpd 
then 

1 
(3.3) Eff(ft) - 1 + m 2 

where m = v/kc[d-  kl] is the tangent of the angle between the auxiliary subman- 
ifolds associated with 12 and the role. 

Note that the efficiency of/2 is near one for each of the three exponential 
families and for a reasonable range of d provided the coefficient of variation is 
small. In particular, for 0 < d < 4 and c < 1/9 the efficiency is better than 90%. 
The relationship between the angle and efficiency described in (3.3) is a special 
case of the same description for asymptotic relative efficiency discussed by Kass 
(1989) and others. 

One motivation for the geometric approach is the failure of asymptotic meth- 
ods in small samples. Since this failure led Fisher (see Hinkley (1980)) to define 
sufficiency (and its relationship to information loss), we consider the geometric 
description of sufficiency. Efron (1975) noticed that 7 is identically zero for all 
p when 34 is an exponential family. Since the role 12 is a sufficient statistic for 
exponential families, it is reasonable to expect that 12 is approximately sufficient 
when the curvature 7 is small. Following Efron, we say there is a one dimensional 
statistic that is approximately sufficient for # when the curvature is small (over 
the appropriate region). 

Again, we can summarize the results for the three exponential families. 

Summary 2. Let Y1, . . . ,  Yn be a random sample from a distribution in A/[ 
lying in either the normal, inverse Gaussian, or gamma family of distributions. 
We assume further that cr 2 = ¢#d. Then the tangent of the angle between the 
auxiliary submanifolds A ,  and A ,  is 

(3.4) m =  v ld- kll 

and the statistical curvature of 34 is 

c 2 ~/ { d -  1} 2 
(3.5) = v ld - kll v { 1  + - 

c 2 [ d -  1] c2 
< for _< 6 
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where k and kl depend on the exponential family and are given in Summary 1. 

There are obvious similarities between Theorem 2.2 and Summary 2; that is, 
between eql functions and two parameter exponential families. In particular, m 
and 7 both tend to zero as c --* 0. 

Comment A. The expression for m and 7 in the summary above differ from 
Theorem 2.2 because (IF, S 2) is not sufficient for the gamma or inverse Gaussian 

n 1 2 distribution. The expression for m differs by the factor (N-=U + ~c (k2 - k12)) 1/2. 

When c is not small, say c = 1, then the angle between A and ~ is different from 
the angle between A and A. For example, for the inverse Gaussian distribution 

(k2 - k 2) = 6 so that the tangent of the angle between .4 and ~ is about half that 
between A and A. In other words,/2 = ~ may be a reasonable estimator compared 
to the eql estimator/2 where only functions of ( ~  Yi, ~ Y~) are considered but  not 
compared to the ml estimator/2 which in this case is a function of (y~ y~, y~. y~-l). 
Therefore, when (k2 - k~) is large it may be worthwhile considering nonquadratic 
extended estimators. 

4. Ql-information and ql-sufficiency 

In this section we discuss how the geometry of quasi-likelihood functions is 
related to statistical ideas. In Section 2 we saw that the extended quasi-likelihood 
could be viewed as a two dimensional ordinary quasi-likelihood so that this dis- 
cussion also holds for eql functions. 

For obtaining point estimators and establishing properties such as asymptotic 
normality and asymptotic relative efficiency one needs to assume little more than 
the functional relationship between mean and variance. In this ease the quasi- 
likelihood function is equivalent to a special class of estimating functions. To 
discuss ql-information we also assume that the ql is a good approximation to 
the true log likelihood function. With this assumption the ql-information can be 
interpreted as describing the local behavior of the true log likelihood function. 
The @information is simply the expectation of the second order derivative of the 
ql function so that ql-information is a natural extension of Fisher information. In 
particular, the ql-information for the eql is 

(4.1) I~ ~'s2) = (1, 20-(~)E-1(1, 20-dr) ' 

while the ql-information for the ql is 

1 
(4.2) I~ ~) - 

0-2" 

Using (2.3), (2.5), and (4.1), the relationship between these information func- 
tions is 

(4.3) = (1 + 
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where rn is the tangent of the angle between A and ~ and is a function of #. 
Calculating the ql-information for/3 we see 

f~ 

(4.4) ±(1) 
~-  ~ t t t~zt~z ,  

i = 1  

i(•) 
- ~ 

i = 1  

2 is small for each case i, (4.3) where ft~ = (0#~/0/31,..., cO#i/O/3p). Clearly, if m i 

shows I (yd and I (u~' ~) are close so that and will also be close. 

Comment B. The role of I (~) and I (~'82) can also be described in terms 
estimating functions. An unbiased estimating function g(#, w) is a function of the 
data and the parameter # such that E~(g(#, W)) = 0 and 0 < E,(~(#,  W)) < oc 
for all # where t) = d9/d#. We only consider g(#, w)'s that are linear in w. 
Godambe and Kale (1991) call an estimating function g* optimal in a class of 
estimating equations G if 

Var(g)) <_ Var(gs) for all g E G 

where 9s = g/E()) .  The ql estimating function having minimal variance 1/I(S 5 is 
optimal in the class of estimating functions depending on the data only through 

Y- The eql estimating function has variance 1/I(~ y'82) and is optimal in the larger 
class of estimating functions that depend on the data through both y and s 2. 
The optimality condition of Godambe is related to asymptotic optimality of the 
resulting estimator but can also be motivated without asymptotics (see Godambe 
and Kale (1991)). In the larger class of estimating functions the eql is optimal 
while the ql generally is not; however, when m is small equation (4.3) shows little 
is gained by allowing the estimating function to depend on s 2. Bhapkar (1972) 
calls (Var gs) -1 the information of g. See also Bhapkar (1991). 

Equation (4.4) and the comment above show the amount of information lost 
by the ql statistic and the suboptimality of the ql estimating functions can both 
be measured using the angle between the auxiliary submanifolds for the ql and eql 
estimators. 

The geometry is also useful for measuring departures from ql-sufficiency where 
ql-sufficiency is defined as follows. Let w = (wl , . . .  ,w j)  ~ be observations having 
quasi-likelihood function ~(~; w). A statistic T(w) is ql-sufficient if 

(4.5) w) = ev(¢; T) + K(w) 

where K(w) is not a function of~. Comparing (3.1) and (4.5) we see ql-sufficiency is 
an extension of ordinary sufficiency. Heuristically, a ql-sufficient statistics contains 
all the information (for the quasi-likelihood) since it recovers the quasi-likelihood 
function. The results for the curvature 7 and sufficiency in exponential families also 
holds for ql-sufficiency. When the curvature of A4 is zero, the eql function f(~; Y, s2) 
with ~ = (#, crY) ' satisfies (4.5) and so ~ is ql-sufficient. When the curvature 3' is 
small, ~(~ I ~0; Y, s2) can be approximated by a function that depends on the data 
only through/2. We discuss this in more detail in the next section. 
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5. Quasi-likelihood decomposition 

The ql-information for the ql and eql provide local quadratic approximations 

to the ql and eql, respectively; that is, I(~ 's2) ( # - # 0 )  2 is a quadratic approximation 

to twice the difference of the eql evaluated at p and #0 while I,(~ ) (# - #o) 2 is an 
approximation to twice the difference of the corresponding ql functions. Equation 
(4.3) shows there is a simple relationship between these approximations and we 
show now that there is a simple geometric relationship between the exact ql and 
eql functions provided ~/is small. 

We use the following notation: 

z = = and ~ = = = 
z2 s2 ~ \ E ( s ~ ) / "  

Notice that (Y, s2) ~ is defined on the sample for the i-th case and that when we 
consider all cases at once we shall write (Yi, s~)'. Under mild assumptions on the 
ql-function there exists a dual parameter 0 = (01, 82)' and a function ¢(8) such 
that 

o¢ a~ 
- ~, - C o y ( Z )  z r, 

08 08 

and 

(5.1)  e(0; z)  = 0% - ¢ ( 0 )  + h(~) .  

In other words, z is ql-sufficient, ~ is the expectation parameter and 0 is its dual. 
This duality exists because the eql function can be characterized as a divergence 
function which has the required duality properties as found in Amari ((1985), 
pp. 80-81). Details can be found in Vos (1992). 

The eql for 9 is e(9; z) = ~(0(9); z) and we write 

e(9 1 9o; z) = e(9; z) - e(9o; z). 

Next, we assume that the relationship between mean and variance is such that 
34 = {~ : ~2 = ¢V(~1)} has vanishing exponential curvature ~. In this case the 
eql estimator • is ql-sufficient since e(9 I 9o; z) depends on z only through ; .  Using 
(5.1) we see that  

2 2 

(5.2)  e ( 9  1 90; z)  - e ( 9 1  90; ~) = (z  - ~ ) ' ( 0 ( 9 )  - o ( 9 0 ) )  

z 0 .  

2 
The last equality holds because/~ is defined so that  the residual z - ~  is orthogonal 
to 34. 

We evaluate to what extent ~ is ql-sufficient by seeing how well g(9 I 9o; z) 
2 

can be approximated by a function of/2 alone. Replacing ~ with ~ = (/2, ~2(~)), 
in (5.2) gives 

(5.3)  e ( 9  1 90; z) - ~ ( 9  1 9o; ~) -- (z - ~ ) ' ( 0 ( 9 )  - 0 (90 ) ) .  
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If we let C be the angle between A and A4 at ~, then  the right hand side of (5.3) 
becomes 

c o s C .  I1= - ~11  11(o(/3) - o(/~o)11 

where 

IIz - ~JI ~ --  (z  - ~ ) ' ~ - ~ ( z  - ~) = r ~ ( ~  ~ - ~ ( ~ ) ) ~ ,  

IIO(~) - O(~o)II ~ :  ( o ( 9 )  - O ( 9 o ) ) ' ~ ( o ( 9 )  - O(~o)) ,  

E 22 is the second diagonal element of E - I ,  and E and E - I  are evaluated at the 
same #. Combining the above results together with cos C = m / v / i  + m 2 we see 
tha t  (5.3) becomes 

(5.4) g(/3 I / 3 0 ; ~ ) - e ( 9  I 90;4) = m • I I z - ~ l l "  110(9)-0(90)1t.  
v/1 + m 2 

The left hand side of (5.4) is the difference in the eql and ql function for 

the i-th sample and since this is zero when ~ is ql-sufficient departures from ql- 
sufficiency can be measured by (5.4). The last factor is a function of t3 and /30 
tha t  tends to zero as/3 ~ / 3 0  just  like the difference in quasi-likelihood functions. 
The other two factors do not depend on /3 or /3o and the size of these can be 
used to describe the magni tude of the difference between the eql and the ql. The 
factor ]lz-~)l] is proportional to Is 2 -a2(12)1 and describes how well the da ta  fit the 
assumed relationship between mean and variance. The value of this factor will vary 
from sample to sample but  should not be too large or else we would suspect the 
assumption about  the variance and mean. The first factor m / v / - 1 +  m 2 describes 
the relationship between inference based on the ql and the eql. 

The decomposition in (5.4) is exact but  assumes 7 2 = 0; when 7 2 is small the 
decomposition holds approximately. When the coefficient of variation c is small so 
is the angle m (except for extreme values of d or extreme kurtosis or skewness). 
Writing the curvature given in (2.9) in terms of c and m, we find 

o 1 
n - 1 + c2(k2 - k~) 

")/2 = T t - l c 2 m  2 X 

n - - ~  n + ~cl 2[k2 - k~ + (d - k l )  2] 

2 
n n i + l c 2 ( d -  1)(k2 - ]gl d)  

Notice tha t  the last fraction is near one for small c and the first fraction must be 
less than  one. Thus, for small c, 7 - n - l c 2 m 2  and in particular if we take c < 1/2 
and m ~ 1//2, then 

72 -- 1 
16n 

which is clearly less than  1//8, the value Efron (1975) suggests tha t  should be 
considered small enough to make linear approximations adequate. Following this 
guideline, we can use (5.4) as an approximate decomposition of the difference 
between the quasi-likelihoods when c is small. 
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6. Discussion 

The dual geometries described above were introduced by Efron (1978) and 
developed by Amari (1985). An important feature of the dual geometries is that 
statistical ideas such as sufficiency and efficiency can be characterized in terms of 
the flatness (linearity) and orthogonality of certain manifolds. Departures from 
sufficiency and efficiency are then measured by departures from flatness using cur- 
vatures and from orthogonality using the angle. Amari (1985) and others exploit 
these useful properties for exponential families; in this paper, we have tried to do 
the same for the theory of quasi-likelihood but have placed a greater emphasis on 
the information and sufficiency aspects of the ql and eql estimators. 

Dual geometries have more to offer than an interpretation of the efficiency 
of the ql-estimator and this is illustrated best by ql-sufficiency. If the ql and 
eql estimators have relative efficiency, asymptotic or non-asymptotic, near one 
then these estimators have nearly the same variance. That is, the ql and eql 
estimators have similar distributions but the individual estimates could be quite 
different. Geometrically, a first order efficient estimator has auxiliary families that  
are orthogonal and -1-flat  at their point of intersection with M (Amari (1985)). 
The ql and eql have more structure than this: their auxiliary manifolds are -1 -  
flat everywhere and it oRen happens that the 1-imbedding curvature of A4 is 
small. This additional structure cannot be described by relative efficiency. The 
ql estimate is approximately ql-sufficient when the eql can be approximated by 
a function depending on the data only through the ql estimate. Equation (5.4) 
shows that when 7 = 0, then the difference between the eql and this approximation 
is small. Since the eql and this approximation are close, so are their maxima-- the  
eql estimate and ql estimate, respectively. Thus, the geometry shows when the 
est imates themselves are similar not just the variance of their distributions. 

The estimating equations in (2.4) are very similar to other quasi-likelihood ex- 
tensions but are not exactly the same. Crowder (1987), Firth (1987), and Godambe 
and Thompson (1989) replace 9 in s 2 with # and discuss the optimality of the re- 
sulting estimators. The optimality properties of the estimators obtained from (2.4) 
are those of the ordinary quasi-likelihood for the observation (I >, $2). In this re- 
spect, (2.4) seems to be a more natural extension of the quasi-likelihood function 
for 1> alone. We note that  Crowder (Section 5) gives a more general discussion 
of estimating equations and (2.4) is a special case and is optimal in the sense 
described there. 

The motivation for considering the extended quasi-likelihood expressed in (2.6) 
and (2.7) is that for several common two parameter exponential families we have 

at+2 _ krcr r = 1 , 2 , . . .  (6.1) % a~+2 

where ~r+2 is the (r + 2)-th cumulant and a~+2 = (cr2)(~+2)/2. For the normal 
distribution k~ = 0 for all r, for the gamma distribution k~ = (r + 1)!, and for 
the inverse Gaussian ks = (2r + 1) • (2r - 1 ) . . .  1. Equation (6.1) is also satisfied 
by the Poisson distribution. The reason (6.1) is satisfied by these distributions is 
that  the variance is proportional to some power of the mean. Notice that kl and 
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k2, like ¢, are estimated using information from other points of replication, not 
just Y1,. •., Y~. The quasi-likelihood extension in (2.6) and (2.7) differs from other 
extensions (Crowder (1987), Firth (1987), and Godambe and Thompson (1989))in 
that t~3 and n4 are not assumed fixed nor are they assumed to vary freely from one 
set of replications to another. We note that Nelder (1989) predicted that higher 
moments would be a function of the mean for exponential quasi-likelihoods. 

The size of the angle between A and ) depends on several factors but in 
many cases it will be small when the coefficient of variation c is small. This is 
consistent with the asymptotic results obtained by others. For the special case 
where the coefficient of variation is constant, Firth (1987) shows that for various 
distributions the asymptotic relative efficiency is close to one when c is small. For 
distributions from the log normal and inverse Gaussian families, the asymptotic 
relative efficiencies are greater than .90 for c = ~ = .45. McCullagh (1984) 

compares /31, the ql for /~I and the ml estimator /~1 for the special case where 
Y~ ~ N(#~, ¢#2). When the normality assumption fails to hold, McCullagh shows 
that the asymptotic relative efficiency tends to one as the coefficient of variation 
v~ becomes small. Lee and Nelder (1992) compare ql and extended ql estimators 
in terms of robustness and MSE ratios. They provide numerical results for the 
negative binomial and inverse Gaussian families and these show that the MSE 
ratios approach one as the coefficient of variation becomes small. For the inverse 
Gaussian, the ratios are greater than .90 for c = ~ = .45. 

Appendix 1 

We shall now assume there are no replications and once again use the subscript 
i to distinguish between observations. The geometric argument can again be used 
with some modification. First, the motivation now is the incorporation of the 
information about the third and fourth moments, not the information in the sample 
variance. Second, S 2 = S~ is replaced with Yi 2 and the information about the 
higher moments is used to construct the covariance matrix E2 for (Y/, y/2). We 
drop the subscript i on the covariance matrix, but of course E2 depends on i. 
Third, the estimating equations are obtained using E2 instead of the covariance 
matrix for (!)/, S~)' 

1 ) 
(A1.1) (Yi - #i, Y~ - ~r~ - #i )E2 = O. 

2~ibi + 2#i 

Finally, we replace iV, the expectation space for (Yi, $2) ', with the expectation 
space for (Y~, Yi2) ', call it iV1. 

From (A1.1) we see that the auxiliary submanifold for the extended estimator 
is a line in iV1 and so it is reasonable to compare this estimator and Yi using the 
angle between their auxiliary submanifolds. Since 

( Y i - # i  ) = ( 1  0 ) ( (  Y i - P i  2)  
y~ 2 2 2#~ 1 - # i )  2 - a  

- a i  - # i  Y~ 

(AI.1) is equivalent to 

(A1.2) (Yi - {li, (Yi - #i) 2 - {2i)E1-1~i = 0 
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(,,. cr 2v and where ~i = ~ ,  i /  

2 ( 1  71cri ) 
2) (A1.3) E1 = (7 i "/10"i O-i (~2 @ 

The est imating equations for 3 = ( 3 1 , . . . ,  3p)' are obtained by replacing ~i with 
the two dimensional vector c9~/c9/~ for a = 1 , . . .  ,p in (A1.2) and summing over i 

n 

( A 1 . 4 )  E(Yi --  ~1i, (Yi -- /~i) 2 -- ~ 2 i ) ~ 1 1  ~ - -  0. 
O/Ja 

i=1 

The est imating equations (A1.4) are those given in McCullagh and Nelder ((1989), 
Section 10.6). Comparing (A1.2) and (2.4), we see that  the modifications given 
above result in replacing y with y~, s 2 with (y~ - #~)2, and E with 21. From (2.3) 
we see that  E and Y]I a r e  the same if n / ( n -  1) and n -1 in E are set equal to 
1. Wi th  these modifications the angles in Theorem 2.1 and Theorem 2.2 are the 
same as the ones expressed in (2.5) and (2.8) after n/(n - 1) is replaced by 1. The 
curvature  in (2.9) becomes 

(A1.5) 
I {l+~c2(d-1)(k2-kld)+(kl-d)} 2 

Notice that  for the normal distr ibution kl = k2 = 0 and (A1.5) and (3.5) are 
identical as they should be. 

Appendix 2 

PROOF OF THEOREM 2.1. The angle between A and ~ is defined to be 
the angle between their tangent  vectors, or, equivalently, the angle between their 

^ 

normal vectors. Clearly, ~ = (1, 2a#) '  is normal to A and an easy calculation 
shows (1, 71cr) ~ is normal to A. We use the following identi ty which holds for any 
two vectors g and v7 

/ 115'H • I[~H) 2 
(A2.1) tan 2 a =  \ (g,w} - 1  

where a is the angle between 5' and ~.  Calculating the right hand side with 
5' = (1, 2or/r)' and ~ = (1,71cr)' and using the inner product  defined by E -1, we 
find 

(2~ - ~1) 2 tan  2 a =- [] 
2 _n • (')'2 - -  ~ 2 )  ~_ n-1 
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PROOF OF THEOREM 2.2. Efron's statistical curvature (also called the l- 
imbedding curvature Amari (1982)) is defined by 

i InM(/~)l n--1/2 ~ IM(P)I 
(A2.2) 3` = ,(nMl1(#))3 - (Mll( f t ) )3  

where 

(A2.3) M(#)---- <M21(#  ) M22(#) / = g,E~) 0 'Eg 

and 0 = dO(#)/d#. Equations (12.2) and (52.3) can be found in Efron (1975). 
Equat ion (2.8) follows from (A2..1) upon making subst i tut ions for 3`1 = ]~1 c, 

3'2 = k2 c2, and 2h = dc. Writing 0 = E-a~  where E is given in (2.3) a n d ~  = 
(1, dO#d-1) ' in terms of p and differentiating we find 

O = D - t  ( A#-d + BP2-2d) 
< Cpl_2d ] and 

= D _  1 { [ - 2  + E]A# -d-1 + [-d + E]B#I-2d~ 

k [-d - 1 + z ] c ~  -2d  ] 

where A = (k2 - kld)(~ -1, B = 2 n ¢-2,  C = (d - k l )¢  -2, D : (~2 - ]gl 2) ~- n--1 
2K~_len - - l p 2 - d ,  and E - (2-d)(k2-k~)D . Notice d/dff(D -1) = D - I ( d - 2 + E ) .  Using 

the fact tha t  IM[ = [El(0102 - 0251) 2 and [E I = ¢ 4 / ~ 4 d - 2 D ,  w e  find 

IMI = ¢-4~2-4dD-3[(d - 1)(k2 - kld)(d - k l ) ¢ ~  d-2 + 2 ~ _  1 (d - kl)] 2, 

Notice that  M 11 = ~)t~ = D-I[(A + d¢C)p-d + Bp2-2d]; evaluating M 11 and 
subst i tut ing the above expression for IMI into (A2.2) gives (2.9). [] 

We provide a few details for the calculations of efficiency and statistical curva- 
ture given in Section 3. We notice that  the normal, gamma, and Gaussian distribu- 
tions are two parameter  exponential  families with natural  parameter  0 = (01, 02)'. 
Each of these families can be parameterized by the mean # and variance ~r 2 by 
taking 0 equal to 

~-2  - 1 / 2  ' , 2  , \ _ , 3 / 2 ]  

respectively. Since ~2 = CV(p) is a function of p and ¢ is known, the variance 
s tructure of the quasi-likelihood function defines a one parameter  curved exponen- 
tial family. Since the details are similar, we just  consider the gamma family. 

Details for Summary 1. Let Y1,. • •, Yn be a random sample from the gamma 
distr ibution 

f(yl, . . . ,yn;Ol,O2) : [Hyi]-lexp{01~l + 0 2 u 2 -  ?~Y(O1, e2)} 
t ~  J 
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where ul = ~ Yi, u2 = ~ log(y/), and 

//)(01,02) = --02 log(--01) + log r(02). 

The Fisher information for 0 is 

(02(--01) -2 (--01) -1 ) ( # ;  /t ) 
TtI 0 = Tb ~ (__01)_ 1 at(02) -~- nC 2 c_2G, (c_2)  

where G(x) = r ' ( x ) / r ( x )  is the digamma function and G'(x) is its derivative. 
From this we find the Fisher information for p, n i  t, = ha-2{1 + 4(c-2G'(c -2) - 
1)(1 - ~/c)2},  so that 

(A2.4) 
1 

En~2)'~f~' = 1 + 4(c-2G'(c  -2) - 1)(1 - it~c) 2" 

We obtain bounds for the efficiency in the gamma model by using the following 
identity found in Spiegel (1968) 

(A2.5) G(x) = F'(1)+ (~  - 1 )  + (~  
1 ) ( 1  1 ) 

x + l  + ' " +  " x + n - 1  +" " 

Differentiating (A2.5) the following bounds are easily established 

(A2.6) x -1 -- (x + 1) -1 < x G ' ( x )  - 1 < X - 1  - -  (X + 1) -1 + (X + 1) -2. 

Upon substitution of (A2.6) into (A2.4) we find 

1+  

1 1 
( 1 ) c  2 -<Eff(]7)-< c 2 

1 + ~ 1--4V(2c-  2~) 2 1 + l ~ - j ( 2 e -  2~) 2 

Details of Summary  2. Equation (3.4) follows from the relationship Eft(l?) = 
(.1 + m2) -1 and (3.3). Equation (3.5) follows from (A2.2) and (A2.3) with ~) and 
0 obtained from 0' = or-2(-#, #2) and with E = Io. The bound in (3.5) follows 
from the fact that 

k ( d -  kl) 2 
( l + c 2 k ( d - k l ) 2 )  3 

maximized over all values o f k ( d - k l )  2 is less than or equal to (3-c2)2/27which 
is less than 1/3 provided c 2 < 6. 
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