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Abst rac t .  The geometric type and inverse Pol~a-Eggenberger type distribu- 
tions of waiting time for success runs of length k in two-state Markov dependent 
trials are derived by using the probability generating function method and the 
combinatorial method. The second is related to the minimal sufficient partition 
of the sample space. The first two moments of the geometric type distribution 
are obtained. Generalizations to ballot type probabilities of which negative 
binomial probabilities are special cases are considered. Since the probabili- 
ties do not form a proper distribution, a modification is introduced and new 
distributions of order k for Markov dependent trials are developed. 
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1. Introduction 

The study of success runs of length k in independent Bernoulli trials (see Feller 
(1968), p. 322) has led to a series of papers on discrete distributions of order k 
and their properties, more particularly, the relation with Fibonacci sequences (see 
Turner (1979), Philippou and Muwafi (1982), Philippou et al. (1983), Philippou 
(1984), ak i  et al. (1984), Charalambides (1986), Hirano (1986), Philippou and 
Makri (1986)). Some multiparametric generalizations and extensions to Polka 
and inverse Polka distributions (also called Pol~a-Eggenberger distributions, see 
Johnson and Kotz (1977), pp. 176 194) are dealt with by Philippou (1988) and 
by Aki and Hirano (1987), Philippou et al. (1989) respectively. 

A generalization of independent Bernoulli trials has led to the consideration of 
two-state Markov dependent trials under which various probability distributions 
have been derived. Our interest in this paper being on binomial and negative bino- 
mial type of distributions (which include ballot type or first passage type of distri- 
butions (see Mohanty (1979), p. 128)), we only refer to Gabriel (1959), Narayana 
(1959), Narayana et al. (1960), Narayana and Sathe (1961), Seth (1963), Mohanty 
(1966a) (1979, p. 132), Jain (1971, 1973), Klotz (1972, 1973), Nain and Sen (1979), 
Bhat and Lal (1988) and Lal and Bhat (1989). Some authors (Seth, Jain, Nain 
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and Sen, Bhat and Lal) have formulated Markov dependent trial as correlated 
random walk problems and some others (Narayana, Narayana et al., Mohanty) as 
two-coin tossing games. In fact, Blackwell and Girshick ((1954), p. 222) provided 
the two-coin tossing formulation as an example for minimal sufficient statistics 
and this way of presentation was later followed by others. 

In this paper, we extend the study of success runs of length k from the case of 
independent trials to the two-state Markov dependent trials. Some distributions 
arising out of this situation are recently obtained by Balakrishnan et al. (1992) and 
Balasubramanian et al. (1994) as generalizations of a problem of practical interest 
in Hahn and Gage (1983) and by Aki and Hirano (1993) and Hirano and Aki (1993). 
Also see Rajarshi (1974). In our case, we formulate the Markov dependent trials 
or correlated random walk as a two-coin tossing game in the line of Narayana. In 
Section 2 we derive the geometric type distributions and the corresponding means 
and variances. A natural correspondence is shown to exist between geometric types 
and inverse Polj~a-Eggenberger type of distributions. There is some overlapping 
between this section and results in the first two papers referred in this paragraph. 
In particular the geometric type distributions and the moments have been derived 
in those two papers. In Section 3, we generalize the geometric types to ballot type 
of probabilities of which negative binomial types are special cases. A binomial 
type of random variable is also considered. Unfortunately these probabilities do 
not form a distribution. Therefore, in Section 4, a modification is introduced so 
as to get a distribution. Keeping earlier nomenclature is mind, we call it a ballot 
type distribution of order k and from it derive other distributions of order k. In 
their two papers Aki and Hirano have dealth with the geometric type and three 
binomial types of proper distributions. 

A standard approach to analyze these problems is to treat the underlying se- 
quences as Markov chains and to use the probability generating function (p.g.f.) 
technique right at the outset without looking into the structure of the chain (see 
Feller (1968)). This is what may be termed as a "top-to-bottom" analysis in which 
the equation on the p.g.f, has to be solved and then the solution is expanded in 
order to derive the desired probabilities. On the other hand, we may use tools 
from discrete mathematics (in particular, enumerative combinatorics) in which a 
problem is split into sub-problems that are solved to be recombined for giving a 
solution to the original problem. This approach in contrast to the earlier one, 
may be called a "bottom-to-top" analysis. The fact that the latter which is com- 
binatorial in nature is quite effective in many situations (see e.g. Mohanty (1979) 
in counting lattice paths within general boundaries, BShm and Mohanty (1994) 
in queueing problems) is not new but being formally emphasized in this paper. 
One can trace back to the origin of these two approaches viz., the p.g.f, technique 
essentially comes from the random walk formulation (see Feller (1968)) whereas 
the combinatorial technique is a natural one to apply when a minimal sufficient 
partition is under consideration in a coin tossing formulation (see Blackwell and 
Girshick (1954)). In the second case, the sample space or the set of sequences of 
outcomes is divided into subsets on the basis of minimal sufficient statistics and the 
cardinality of each subset is determined combinatorially--this is what we meant 
by a "bottom-to-top" analysis. (We remark that Bhat and Lal have adopted a 
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different procedure for computing the probability distribution.) Narayana (1959) 
recognized the efficacy of the combinatorial methods, the use of which was subse- 
quently exploited in papers by Narayana et al. (1960, 1961) and Mohanty (1966a). 
In this paper however, we use both methods of analysis and show the respective 
advantages. Our present combinatorial argument is in the line of Philippou and 
Muwafi (1982) and is led through the structure of minimal sufficient partition. 

Thus the paper has several objectives which are listed as follows: 
(i) to find the geometric type distribution of success runs of length k under 

two-stage Markov dependent trials; 
(ii) to connect these to Pol:~a-Eggenberger type distributions; 

(iii) to use both p.g.f, and combinatorial techniques and to relate the second 
one to a minimal sufficient partition; 

(iv) to generalize the approach in order to get ballot type distributions; 
(v) to bridge the gap of communication among (1) those interested in Fi- 

bonacci sequences and distributions of order k, (2) those who work through ran- 
dora walks, (3) those who work through coin tossing games, and (4) those who 
arrive at these types of distributions through applications (see Philippou (1986), 
Viveros and Balakrishnan (1993) for further references on applications). 

2. Waiting time for a run of length k 

Consider Markov dependent trials, each trial being either a success (s) or a 
failure (f) ,  which is governed by the transition probability matrix 

To 
From s f 

s Pl ql 
f P2 q2 

where qi = 1 - p i ,  i = 1, 2. Here we are interested in success runs of length k. 
We may reformulate the above as a two-coin tossing game (see Mohanty (1979), 
p. 132). Let there be two coins, coin 1 and coin 2. Toss coin 1(2) if a head 
(tail) has appeared in the previous trial. If s and f correspond to a head (H) 
and a tail (T) respectively, it is clear that P ( H  [ coin i) = Pi, i = 1, 2. Because 
of this equivalence, henceforth we use the terminology of the coin tossing game 
(sometimes both without causing any ambiguity). 

Let Xi represent the number of trials needed to get k successive H ' s  for the first 
time given that the game starts with coin i, i = 1, 2. We will find the probability 
generating function (p.g.f.) of Xi for which let us introduce the following notations: 

Gi(z): p.g.f, of Xi, 
Hn#: P (in n trials the number of successive heads at the end is i, i = 0 , . . . ,  k -  

1 and at no time there are k successive heads), 

If {Ha#} is a proper distribution, then ~p~(z) is the p.g.f. 
Suppose the game starts with coin 2. Then 

(2.1) IIo,o = 1, 
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(2.2) 

(2.3) 
(2.4) 
(2.5) 

k-1  

IIn,0 = q2IIn-l,0 + ql E Fin-l ' i '  
i=1 

I ln ,  1 ~- p 2 [ I n _ l , 0 ,  

Hn,i = p l U n - l , i - 1 ,  2 < i < k - 1, 

P(X2 = n) = pll-In_l,k_l. 

From these relations, we get 

(2.6) 

(2.7) 
(2.8) 
(2.9) 

k -1  

¢O(Z) : q2Z~o(Z) + qlZ E ¢i(Z) + IIo0, 
i=1 

~)I (Z) = p2Z~)o(Z), 

¢i(Z)  = p l Z ¢ i - l ( Z ) ,  2 < i < k - 1, 

G 2 ( z )  = plz¢k- l (Z) .  

Therefore 

(2.1o) G 2 ( z )  = p2Pkl-lzk¢O(Z) 

where 

(2.11) 1-q2z-qlp2 p{z j+2 ¢o(z)=Ho,o=l. 
j=o / 

Hence we obtain 

(2.12) G2(z) = P2Pkl-lzk 

1 - q2z - qlP2 E ~ - {  p~zJ+2" 

Notice that we have derived G2 (z) through the probabilities of outcomes at 
the end of a sequence. For determining Gl(z), such probabilities need further 
elaboration. On the other hand, if we consider the outcomes at the beginning of a 
sequence the derivation becomes straight forward for both Gl(z) and G2(z) .  Let 
us call the subsequence H . . .  H T  (there are i H's,  i = 0, 1 , . . . ,  k - 1) the i-th 
type of subsequence and the subsequence H . . .  H (k in number) the k-th type 
of subsequence. Divide sequences in G1 (z) into those starting with the i-th type 
subsequence (i = 0, 1 , . . . , k  - 1) and followed by a sequence in G2(z) ,  or one 
sequence of the k-th type. Thus, we have the following lemma: 

LEMMA 2.1. 

(2.13) 
k l ] 

Gl(~)=q~ ( ~ J ÷ ~  c~(~)+p~ ~, 
V =o / 



SUCCESS RUNS IN MARKOV DEPENDENT TRIALS 781 

where G2(z) is given by (2.12). 

Note tha t  an argument  similar to the one leading to (2.13) gives rise to: 

LEMMA 2.2. 

(2.14) a 2 ( z ) =  q 2 z ÷ q l p 2 E p j - l z  j+l G2(z )÷p2p~- l z  k 
j = l  

which leads to (2.12). 

On taking derivatives of G1 (z) and G2 (z) and put t ing z = 1, we obtain 
k--1 

(2.15) a ; ( 1 )  = ql ÷ p2 - p2pl 
k-1  

qlP2Pl 

(2.16) C~'(1) = 2p2(1 - kp~ -1 + ( k -  1)p~) 

+ 2 ( ql + p2 - - kp2Pkl-1) G~(I)' 

Ci(1  ) = (1 -P~)(ql  +P2) 
qlp2p~ -1 

(2.17) 

and 

(2.18) G~P(1) = 2p1(1 - kp~ -1 + ( k -  1)Pl k) 

k-1  
-}- 2(1 -- (]~ -~- 1)p l  k -+- ~Pl ) G ~ ( I )  + (1 - p k ) G g ( 1 ) .  

ql 

Obviously (2.14) and (2.17) give the means and expressions for the variances can 
be obtained from (2.16) and (2.18) by using the well known formula 

Variance = G~'(1) + Ci(1 ) - [G~(1)] 2. 

So far as the exact distribution of Xi is concerned, an expansion of Gi(z) as 
a power series in z will give P(Xi  = n). It is easier to start  with G2(z) in (2.12) 
and get 

o~ oo 
(2.19) G2(z ) : E "'" E (no -Jr-'"+'rtk-l'~/_ _,no 

n o : O  n k - - l : O  \ no, • ~ ?~k-1 J ~(t2~} 

[ J 
j=O { (no , . . . ,nk- -1) :no+'"÷nk--  l = j  } 

k - 1  
~ " ~ [ ~  ~ ~ i - - l z i + l , n l  • (q2z) no Z. ~,¢/lp2/~1 ) 
i=1 
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from which we get 

PROPOSITION 2.1. 

(2.20) P ( X 2  = x )  

{(no,...,nk-1):no+2nl+'"+knk--l-}-k=x} \ nO' ,f~k--1 J 

~no [~ ~ ~,nl~-'"~-nk-1 n2+2n3+...+(k--2)nk_l 
• (/2 I,t/1P2) iUl 

x = k , k +  l , . . . .  

An examination of (2.19) suggests tha t  ni represents the number of the i-th 
type subsequences (i = 0, 1, . .  •, k - 1) in a sequence of G2. Let a subsequence H T  

be called a right turn  and its number be denoted by Y. (Since a sequence can be 
represented by a lattice pa th  when H and T correspond to a horizontal unit  and 
a vertical unit,  we have used the word "turn",  being appropriate for a path•) Also 
let W denote the number of T's. If X2 = x, Y = y and W = w, then the following 
relations hold good: 

(2.21) 

Thus we have 

n 0 H - n l - F " ' H - n k - 1  = w ,  

n l  + • • • + n k - 1  = y, 

no + 2hi + . . .  + k?Zk-1 -Jr- k = X. 

P R O P O S I T I O N  2.2 .  

(2.22) P ( X 2  = z ,  Y = y, w = w)  

_y_y+l w--y x - y - w - - 1  
c/1P2 (/2 P1 

E ,/~O,nl, ' ' "  nk_ 1 
A(x,y,w) 

where  A ( x ,  y, w) = { ( n o , . . . ,  nk-1) : (2.21) is sa t i s f ied} .  

COMBINATORIAL PROOF• Any sequence of outcomes is an arrangement of 
ni subsequences of type i, i = 0, 1 , . . . ,  k - 1, followed by a k-th type subsequence, 
such tha t  (2.21) is satisfied. Similar to a right turn  let us call a subsequence T H  a 

left turn.  Observe tha t  (i) every left turn  following the first right turn  contributes 
qlP2 to the probabili ty of each sequence (T in a right turn  H T  contributes ql and 
H in the following left turn  T H  contributes P2) and there are y of them; (ii) for 
each of the remaining w - y T's  (which do not appear as a part  of a right turn) the 
probability is q2; (iii) the first H has probability P2; (iv) the probability of each of 
the remaining H ' s  is PI- Therefore the probability of each sequence is 

y w--y x--w--y--1 
(qlP2) q2 P2Pl 
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Expression (2.22) is verified when we realize that the number of such sequences is 
given by the sum in (2.22). The proof is complete• 

For obtaining P ( X 1  = x),  we expand (2•13) and use (2.19) to get 

pkzk (2.23) GI(Z)  : 1 

+ P2Pl ql Z E J 
j=0 {(no,...,nk_ ~_lni=j}  no , . . . , nk -1  

• q;~o (qlp2)E: -1 ~,p?:+2~+ +(~-~)~-1 ~no+~l + +~-~/ 
J 

k-1 
~ "  ~ ~ k + i - 1 . .  ~ k + i + l  

i=1 

• E E 

• q ~ O ( q l p 2 ) 2 ~ - ~ p ~ + 2 ~ + ' " + ( k - 2 ) ~ - ~  z~O+2~l+...+k~k-al . 

PROPOSITION 2.3. 

(2.24a) P ( X 1  = k) = p~, 

(2.24b) P ( X 1  = x, starts with a T )  

= p2pkl- 1 ql 

, [ k ~  1 ( r to~- ' " - i -nk - l~  

L{(no ..... n k _ l ) : E o -  (j+l)nj+k+l=x} \ n0, .~ rtk-1 ] 

• nj m E : - 1  ( j  _ 1 ) n j  

q;°(qlP2) E : - ~  t"1 

x = k + l , k  + 2 , . . . ,  

(2.24c) P ( X 1  = x, starts with an H )  
k--1 

= E P 2 P  k+i- lq l  
i=1 

\ no, , nk - i  / 
L((no ..... nk-1):Y~- (j+l)nj+k+l=x-i} 

Vk--1 . ] 
) E  ~-1 ~jp • q~°(qap 2 1 2 (j-1)nj 
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x = k + 2, k + 3, . . . .  

Let us determine the contr ibut ion of the second par t  toward P ( X 1  = x, Y = 

y, W = w). For fixed x, y, w, let us consider ( n o , . . . ,  nk-1)  such tha t  

no + 2nl  + . . -  + k n k - 1  + k + 1 = x,  

no + n l  + . . .  + n k - i  + 1 = w, 

n l  + - . .  + n k - 1  = y. 

In any general t e rm of the second part ,  clearly the left sides of the first two 
equations respectively represent the  number  of trials and the number  of T 's  in a 
sequence respectively. Also note  tha t  n l  + . .  • + n k - 1  + 1 being the exponent  of qlp2 

is the number  of left turns  which is one more than  the number  of right turns.  This  
justifies the th i rd  equality. The  implication is tha t  the number  of sequences, each 

[~ ~ \ y + l  w- -y - -1  x - - y - - w - 1  w--1 
of which has probabil i ty  ~,ulp2/ u2 F1 , is E A ( x - l , y , w - 1 )  (no . . . . .  nk--1)" 

We can have a similar implication of the last part .  All these lead to the following: 

PROPOSITION 2.4. For x = k, P ( X 1  = x )  = p~; and f o r  x > k, 

(2.25) 

(2.26) 

P ( X 1  = x, Y = y, W = w,  s tarts  with a T )  

= ( q l P 2 ) y + l q ~ - Y - l P l - Y - ~ - i  E 

A ( x - l , y , w - 1 )  

P ( X 1  = x, Y -= y, W = w,  s tarts  with an H )  

k - 1  

----(qlP2) q2 Pl E E / ' t o , . . . , n k - 1  
i = l  A ( x - i - l , y - l , w - 1 )  

w - 1  

(n0 ok i) 

where A is defined in Proposi t ion  2.2. 

COMBINATORIAL PROOF. It is natural  to separate  out  two possibilities, viz., 
those sequences s tar t ing with a T and those with an H.  For sequences s tar t ing 
with a T, the probabil i ty  of each sequence is obta ined as 

(ql;2)y+lq -y-1;  x > k, 

when we realize tha t  each of y + 1 left turns  contr ibutes  qlp2 and there  cannot  be 
any more ql and P2. Let  ni 's  be the same as before. If we fix the first outcome 
to be a T, then  the number  of sequences turns  out  to be the summat ion  in (2.25) 
and this checks the expression in (2.25). 

In the case of a sequence s tar t ing with a H ,  it can be verified tha t  the proba- 
bility for each sequence is 

y w - - y  x - - y - - w  
(qiP2) q2 Pl , x > k. 

However, for finding the number  of sequences consider ar rangements  of ni subse- 
quences of type  i, i -- 1, . . . ,  k - 1, such tha t  nl  + • .. + n k - 1  = y. The  number  of 
arrangements  is 

(Ol • 
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Given any such arrangement, we place w - y  remaining T's in between these 
subsequences and after the last subsequence, the number of placement being 

(::) 
Therefore the total number of sequences which start with an H is 

) 
W n 0 , n l , . . . , n k - 1  

A(x,y,w) 

What remains to prove for checking (2.26) is the following identity: 

k-1 ( w - 1  ) _ E y _ _  ( w ) 
(2.28) E E n 0 , ~ l , . . . , n k _ l  W T ~ O , n l , . . .  n k - -  1 ' 

i = 1  A ( x - i - l , y - l , w - 1 )  A(x,y,w) ' 

If we put mj = nj for j ¢ i and mi = ni + 1 of the inner summand of the left side, 
then it becomes 

w - 1  ) 

E mo, m l , . . .  , m i - l , m i  - -  1,?Tti--1,..., ?Ytk-1 
I 

A(x,y,w) 

Therefore, the leR side can be seen to be 

y, n l ,  - . .  , ~ k - 1  W - -  
)] 

y - 1 ,h i , . . .  ,nk-1 

which simplifies to the right side of (2.28) and this completes the proof. 

A direct combinatorial proof of (2.26) can be given by considering sequences 
beginning with a subsequence of type i, i = 1 , . . . ,  k - 1. However, our approach 
helps to simplify (2.26). 

A generalization of the inverse Pol:?a-Eggenberger urn problem along the line 
of dependent trials or two-coin tossing game can be formulated as follows: 

Consider two urns, urn I and urn II. Urn I contains al white balls and bl 
black balls whereas urn II contains a2 white balls and b2 black balls. Balls are 
drawn at random sequentially. If at any stage a white (black) ball is picked up, 
then the next draw is from urn I(II). When a ball is picked up from urn I(II), it 
is returned to the same urn with sl (s2) balls of the same colour added. 

We may easily identify urn I(II) as coin 1(2) and white (black) ball as H(T). 
If we retain notations Xi, Y, W for the new formulation without any confusion, 
then any sequence in {X2 = x, Y = y, W -- w} will have the probability 

~[y]  Ix--y--w--l] [y+l]n[w--y] 
1 Oil OL2 P2 (2.29) 

(oL 1 (oL2 w+l] 
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w h e r e a i =  a~ /3i= b~ i =  1,2, a n d r e  [u] = m ( m + l ) . . . ( m + u - 1 ) .  However, 
8 i ' 8 i ' 

the expression for the number of sequences will not change. Thus P ( X 2  = x, Y -- 
_y~y+l  w--y x--y--w--1 y, W = w) will be (2.22) where t/l/J 2 (/2 /J1 is replaced by (2.29). We 

can state the generalization as 

PROPOSITION 2.5. The jo int  probabilities P(X~ = x, Y = y, W = w) i = 1, 2 
in the inverse Pol~a-Eggenberger urn model are obtained by replacing 

^ k]As] 
(2.30) p q; by "j (Otj -~- ~j)[r+s] J 1, 2 

in the corresponding expressions in Propositions 2.2 and 2.3. 

At the end we offer the following remarks: 
(i) We assert that Xi is a proper random variable in the sense that ~-~x P(X~ = 

x) = 1. This will be proved in Section 4. 
(ii) If we think of the problem as of two-state Markov dependent trials with 

initial probabilities P(s )  = Po = 1 - P ( f )  then the distribution of X~ provides the 
conditional distribution of the number of trials. To make it unconditional, it is 
only an elementary step. Thus we have lost no information by considering a coin 
tossing game as an alternative. 

(iii) Propositions 2.2 and 2.4 are indicative of the fact (X2, Y, W) and (X1, Y, 
W, U) where U = 1 or 0 if the first trial is a T or H,  form minimal sufficient par- 
titions in the respective games (Blackwell and Girshick (1954)). By combinatorial 
methods what is being done is to count sequences for which the value of minimal 
sufficient statistics is fixed. 

(iv) From the relations between Proposition 2.1 and Proposition 2.2 and be- 
tween Proposition 2.3 and Proposition 2.4 it is not d i f cu l t  to obtain the distribu- 
tion of X2 from Proposition 2.2 or X1 from Proposition 2.4. 

(v) The replacement given in (2.30) can be utilized in an obvious manner to 
obtain further generalization. This is precisely what is suggested at the end of 
Section 3. Proposition 2.5 has the striking similarity with the relation between 
the binomial and the hypergeometric distributions. 

3. Generalizations 

An immediate generalization is to consider (negative binomial type) the prob- 
ability of the number of trials needed in order to get the r-th k successive H ' s  for 
the first time (i.e. at no stage there are more than k successive heads). We may 
go one step further to have ballot type of constraints on the outcomes. Let us 
introduce the following notations: 

nij: number of subsequences of type i in the first j outcomes. (When i = k, 
the subsequence is H . . .  H T  (there are k H's)  except the last subsequence which 
consists of k H ' s  without any T; this modification is necessary because every run 
of H ' s  of length k except the last one is always followed by a T), 

k--1 Xi(r): min{j : nkj = }-~4=0 #intj + r ,  game starts with coin i}, where #z's are 
non-negative integers and r a positive integer, 
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G~(r, z): E n  P(X~(r)  = n)z  ~. 
k - 1  

If X~ (r) = x, then  it is easy to check tha t  for every j < x, nkj < }-~-i=o #inij-~r. 
These are bal lot - type restrictions as enunciated th rough  latt ice paths  in Mohan ty  
(1979) (see exercise 10, p. 25) and Xi ( r )  represents the number  of trials needed to 

k--1 have nkj -- ~-~-i=o ¢tinij + r satisfied for the first time. Thus,  when #i 's  are zeros 
we have the s i tuat ion of the r - th  k successive H ' s  occurring for the first time. 

For reasons which will be clearer soon, let us first proceed with a combinatorial  
argument.  Assume tha t  there  are ni subsequences of type  i, i = 0, 1 , . . . ,  k when 
the game stops. Consider s tar t ing with coin 2. For X2 = x, Y = y (y > k - 1), 
W = w (w > r - 1, w > t), the  probabi l i ty  of each sequence as in Section 2 is 

qy , W - y p y + l p x - y - w - 1  
1 ~2 2 1 

and therefore 

I 
n0 + " "  + nk -- 1 = w, 

n l  + " -  + nk -- 1 = y, 

(3.1) no + 2nl  + . . .  + (k + 1)nk - 1 = x, 

k--1 

n k  ~--- E ~tini + r. 
i = 0  

(Note nix = ni for i = 0, 1 , . . . , k . )  
k - 1  

The  number  of sequences which satisfy nkj < ~-'~-i=0 #iniy + r, j < x and 
k - 1  

nk ---- ~-]~i=O #ini  + r is 

(3.2) (no + + 
no -4- + n k  \no,  n 1 , . . .  , n k /  

(see Mohanty  (1979), Exercise 10, p. 25). 
Thus,  we have a generalization of Proposi t ion 2.2. 

THEOREM 3.1. 

(3.3) P(X2(r )  = x, Y = y, W = w) 

= (/1(/2 P2 P l  W -~ 1 n O , .  
B(x,y,w) • • , ?~k 

where B(x ,  y, w) = { ( n 0 , . . . ,  nk): (3.1) is satisfied}. 
When #~ = 0 for all i, then we have 

(3.4) P ( X 2 ( r )  = x) 

=[ z 1) 
{(no ..... nk-1 ) :Ek- - l ( j+ l )n j=x- - (k+l ) r4 -1}  \ n ° ' " "  n k - l '  r - 1 

. q~O (qlp2)n~+'"+nk+~+r--lp2Pl--no--2(n~+'"+nk-~+r--1)--l]. 
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In case of Xi (r) consider those sequences starting with a T. An argument 
similar to the one in the previous section applies. The only change in (2.25) and 
(2.26) will be the number of sequences which by the application of (3.2) turns out 
to be 

W Tt  0 , . . . , ?Z k 
B ( x - l , y , w - - 1 )  

Therefore, Proposition 2.4 is generalized as follows: 

THEOREM 3.2. For  x > k, 

(3.5) P ( X i ( r )  -- x ,  Y = y,  W = w,  s tar t s  wi th  a T )  

--__ [ ~  ~ k y + l  w - - y - - 1  x - - y - - w - 1  X-" 
I , t / 1 P 2  ) ( / 2  /~1  

B ( x - l , y , w - 1 )  
W n o , . . . , r t  k 

and f o r  x > k 

(3.6) P ( X i ( r )  = x ,  Y = y,  W = w,  s tar t s  wi th  an H )  

k - - 1  
__ y w - - y  x - y - w  ( ) .  

W n O ,  . • . , ?%k 
i = l  B ( x - - l , y - - l , w - - 1 )  

Ifx = k, then r = 1 and ni = 0, i = 0,...,k- I. From (3.6) we have 

P(Xi(r) -- k) = PC which is the same as (2.24a). When #i = 0 for all i, (3.6) has 

an alternative form as given by 

(3.7) P ( X i ( r )  =- x, Y -- y, W = w, starts with an H) 

 wyx wz  ( w ) 
= (qiP2) q2 Pi  - -  , 

B ( x , y , w )  W n O ,  . . . , r t k _ l ,  r - -  1 

which is obtained by following the argument leading to (2.27). An expression for 
P ( X i ( r )  = x )  similar to (3.4) can be obtained but is omitted. 

Let us return to Gi (r, z). It is well known that the negative binomial distribu- 
tion is obtained as the r- th convolution of the geometric distribution with itself, 
i.e., the p.g.f, of the negative binomial distribution is obtained as the r- th power 
of the p.g.f, of the geometric distribution. However, Gi( r ,  z)  does not seem to have 
this regenerative property. On the other hand, if the k-th type subsequence which 
appears at the end becomes the usual k-th type subsequence (i.e., it consists of k 
H's followed by a T) then it looks reasonable to expect the regenerative convolu- 
tion property. With this change in mind, let the notations be )(i(r) and Gi(r, z). 
Then G2(r, z) is given by (see (2.19)) 

( 3 . 8 )  = Z P(2 (r) = x)z 
X 

((~o, .,~k):~=-o~(J+l)~j=x} no + + nk \ no , . . . ,  nk / 
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1 . q~O (qlp2)~l+'"+~kp~2+2na+'"+(k--1)nk Zno+2nl+'"+(k+l)nk I 

._l 

_= (qlP2Pkl-lzk+l) r 

. . . .  E k-1 
~o=O ~k-l=o r + ~-~-o (#i + 1)ni 

• r+~-~o ( # ~ + l ) n i  

• ( q 2 z ( q l v 2 v F l z  

" I I  (qlP2PJzJ+2(qlP2p~-lZk+I)'u'+I)n'~+' 
j=O 

By using (3.1) and the following implicit relation in Mohanty (1966b), we have 

(3.9) 02(r, z) = (qlP2Pkl-lzk+l)rv r 

where v satisfies the implicit relation 

(3.1o) v (1 - q2z(qlp2pkl-lzk+l)t~°v "° 

k-2 ) 
E ~ k-lzk+l -- qlP2 zJ+2(qlP2P ) t~j+lvt~j+l 
j=0 

= 1 .  

With a renewal argument one can show that )(2(r) is the sum of r 22(1)'s 
and therefore 

(3.11) d2(r, z) = [(~2(1, z)] r 

(see Mohanty (1979), p. 133). 
From (3.9) and (3.10) it follows that G2(1, z) satisfies the implicit relation 

(3.12) G2(1, z) = qlp2pk-lz k+l + q2z(G2(1, z)) "°+1 
k--1 

+ E qlP2PJl-lzj+l(d2(l 'z))~+l 
j=l 

which is like (2.14) and can be alternatively established in a similar way by having 
the relation 

k-1 
G2(1, z) = qlP2Pkl-lz k+l + q2zG2(#O + 1, Z) + E qlR2PJ--lzj+IO2(~J + I,Z) 

j=l 

and using (3.11). 
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In case of Gl(r ,  z), we have 

(3.13) G l ( r ,  z) ~- 01(1 ,  z)[G2(1, z)] r -1  , 

with the implicit relation stated in the following lemma. 

LEMMA 3.1. 

(3•14) 
k-1 

G1(1, z) -- qlPkl zk+l + E qlPJlzJ+I(G2(I'z))"J+I' 
j=O 

where G2(1, z) is given by (3.12). G2(r,z) and G l ( r , z  ) are expressed by (3.11) 
and (3.13). 

Note tha t  

(3.15) 
d,(r, z) = q~a~(r, z), 

P ( 2 ~ ( r )  = x + 1) = qlP(Xi(r) = x). 

Now we turn to the analogue of the binomial distribution• In a natural bino- 
mial type generalization we may require the probability of having x runs of H's  
of length k in n trials. Denote by Ti the corresponding random variable when the 
game starts with coin i. Assume that  the length of every run of H's  is not greater 
than k. As earlier, let ni be the number of type i subsequences i = 0, 1 , . . . ,  k 
(modified type k subsequences are considered) in a sequence. Then we have 

THEOREM 3.3• 

~ [  (no +. . .+nk]  
E 

j----1 [{(no ..... nk):E~=o(i+l)ni=n--j,nk=x} \ nO, . ,nk / 

. qr~O (qlP2)nl+...+nkp2Pl--no--2(nl+'"+nk)--I 

+ E 
[{(-o ..... ~) :~=o(i+l)~ '="n~=x} 

no + ""  + nk ) 
no~ • ~ nk / 

• q~O (qlpz)~+'"+nkp~--no--2(~+'"+~k) 

+ 
{(no ..... n~):~=o(i+l)-,=n-k,,~=~--l} \ no, • ,nk / 

• q~O (qlp2)nl+'"+nkp2p~--no--Z(nz+'"+nk)--l]. 
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In (3.16) j (j = 0, 1 , . . . ,  k) represents the number of H's  at the end of the sequence. 

It is remarked that the derivation of P(T2 = x) is not difficult and the same 
is true for P(T1 = x). Because of its length, the expression for P(T1 = x) is not 
given• 

Next we present another binomial type generalization. For this purpose, de- 
note by L~(n) the length of the largest run of H ' s  in n trials, given that the game 
starts with coin i. Let n~'s and j have the same meaning as in the previous case. 
For the event {L2(n) _< k}, the probability of each sequence is 

qno I~ ~ ~ n l + . . . + n k _  n 2 ÷ 2 n a ÷ . . . W ( k - - 1 ) n k ÷ j - - 1  
2 t,t/1/a2) P 2 P l  , if j = 1 , . . . ,  k 

and is 
q n o [ ~  _ "~nl+,. .+nk n i + 2 n 3 + . . . + ( k - - 1 ) n k  

2 [ t l lP2)  P l  , i f  j = 0.  

A similar expression for L1 (n) is obtained. 
Therefore, we have 

T H E O R E M  3 .4 .  

(3.17) P(L2(n) < k) = E 
{(no ..... nk):~=o(i+nn~=n} \ n 0 , . . . , n k  / 

,~no[_ ~ ~ n l ÷ ' " ÷ n k  n - - n o - - 2 ( n l ÷ . . . ÷ n k ) ]  
• ~ 2  ~ , t /1P2}  /J1 j 

j=l {(~o ..... nk):~=o(i+l)n~=n--j} 

no ( q l P 2  ) n l  +. . .+nk  p 2 p 1 2 +  2 n a + " ' +  ( k - -1)nk  + j - -1  
" q2 

and 

(3.18) P(LI(n)  < k) = [(o0+ 
nk) :~_~k_o( i÷l )n~=n n o --  1, h i , . . . ,  n k /  {(no 

[~ ~ ~ n l ÷ ' " ÷ n k _  _no--1  n - - n o - - 2 ( n l ÷ . . . ÷ n k )  
" ~¢/1P2 ] t / lg2  Y1 

_ n o , . . . , n u - l , T t u - - l ,  n u - l , . . . , n k  

• (qlP2),~+...+~k-l~ ,~o ,~-~o-t-2(,~l+...+nk-1) tl 1 t/2 P1 

k 

+E E 
j = l  

}] 
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[( no + • • • + nk 

no - 1, h i , . . .  ,nk 

• {~n l+ ' "+nk+l , - yno - - l~n - -no+l - -2 (n l+ ' "+nk+ 1) 
k ' / IFz  / ~/2 F1 

k 
+ E { (  no+ . . .+nk -1  ) 

u=l no , .  • • ~nu- l ,nu  -- 1 ,nu+l , . . .  ~nk 

(~ ~ ,nl+...+nk.~no,nn--no--2(no+'"+nk) ] ] 
" kql/32) qO F1 ~ J "  

Here and elsewhere some of the combinatorial methods are adaptations of 
those in Philippou and Muwafi (1982) and Philippou and Makri (1985). Following 
remark (v) at the end of Section 2, we can obtain extensions of the inverse Pol:~a- 
Eggenberger type by the use of (2.30). 

4. Distribution of order k 

So far, we have been deriving probabilities of events resembling geometric~ 
negative binomial and binomial distributions without checking whether or not 
such probabilities form a distribution. For instance let us examine (2.20). It is 
easily seen from (2.19) that 

(4.1) G2(1) . . . .  E 
~bO~0 ?%k--l~O 

1 /no + " " " -~- n k - - 1  + 1~ 
k ; no + ""  + nk-1 + 1 no , . . . ,  nk-1, 1 

.q~O H (qlP2p~-l)ni P2Pkl-1 
k i = l  

where the summand is of the form (2.30) in Mohanty (1966b) since 

k - 1  
i - 1  q2 -F E(qlP2Pl ) -F p2Pk1-1 

i=1 

= 1 .  

Similarly from (2.23) we have 

(4.2) 
k-1 p2pk+i_lql 

a1(1)  = pk 1 + E p2pk--1 - -  1. 
i=0 

Therefore we have the following: 

THEOREM 4.1. {P(X2 = x)} given in Proposition 2.1 and {P(X1 = x)} 
given in Proposition 2.3 are proper distributions. 

The distributions in (2.20) and {(2.24a), (2.24b), (2.24c)} are called geometric 
type distributions of order k. 
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In a ballot type  general case, consider (3.8) and get 

no:0 ( ) r r + Y~i=0 (#5 + 1)ni 
E k-1  ~k-l=o r + }-]i=0 (#~ + 1)n~ n o , . . . ,  nk 

k--i } )Ek__i /t,ni+r- 
q ; °  , r [ ( q ~ p ~ p ~ - l ) n '  (q~p~pl~_~ ,=o 

k i=1 

In the last factor replace qlP2P k-1 by p2Pk1-1. In other words, in addit ion to the 
transit ion probabil i ty P ( s  ] f )  = P2 we further assume that  P ( s  I there is a run 
of k - 1 successes each with probabil i ty  pl)  = p2. Then by Mohanty  (1966b) we 
prove the following: 

THEOREM 4.2• A new random variable X~(r )  where P ( X ~ ( r )  = x) is given 

by 

(4.3) P ( X ~  (r) = x) = Z 
{(~o . . . . .  ~_~):~-j(~+~)~+k~=~} 

( ) r r + >-]-i=o (#i + 1)ni 
k-1  r + Y~i=o (#i + 1)ni n o , . . . ,  nk 

f / 1 1 (  _1 nk • q~o q~p~p )n, (p~p ) , 
k i = l  ) 

x = kr, kr  + 1 , . . .  

has a proper distribution• 

The distr ibution of X~ (r) is called a ballot type of distr ibution of order k. 
k--1 When  #i = 0 for all i ( remember that  nk = Y]i=o #ini  + r), the distr ibution is 

called a negative binomial type distr ibution of order k. Let X ( r )  be the random 
variable having the negative binomiM type  distr ibution as suggested above. Then 
we have 

COROLLARY 4.1. 

(4.4) P ( X ( r )  -- ~) 

{(no ..... n k _ l ) : ~ ' ~ - - : ( i + l ) n ~ + k r = x }  \ n o , . . . ,  n k - 1 ,  r --  1 

• q2 qlP2P P2P , 

x = kr, kr  + 1 , . . . .  
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In (4.4) let ql and q2 -+ 0 such that rql --+ A1 and rq2 -+ A2. The limiting 
probability turns out to define a distribution. The corresponding random variable 
denoted by X(A1, A2) is said to have a Poisson type distribution of order k. 

COROLLARY 4.2. 

(4.5) P (X( /~ I ,  .,~2) : x) ---- E 
k - - 1  . 

{(nO ..... nk-1):E~=0 (z+l)ni=x} 

¢--(k-- 1)/kl ~11 +'"+nk-1 

n l !  " n k - l !  ' 

no! 

x = 0 , 1 , . . . .  

When Pl ---- P 2  ---- P, ql = q2 = q in (4.4) and/~1 : /~2 = .~ in (4.5), these reduce 
to the  respective distributions of order k for independent trials, as can be verified 
in Philippou et al. (1983). 

Finally, the logarithmic series distribution of order k in Aki et al. (1984) is 
extended to the case of Markov dependent trials. Take the limit of the conditional 
distribution of X ( r )  given X ( r )  > kr, as r --* 0 (use (4.4)). The limit turns 
out to provide a distribution which may be termed as a logarithmic series type 
distribution of order k (see Johnson and Kotz (1977), Chapter 7). Denoting by X 
the corresponding random variable, we have 

COROLLARY 4.3. 

(4.6)  P ( X  = x) = 
E - - ( n 0 + ' " + n k - l - - 1 ) !  

1]i=l hi! {(no ..... (log(p2p -l)) k-1  

k-1 
.q o x : 1 , 2 ,  . .  

i=1 

In developing distributions of order k we have dealt with games starting with 
coin 2. So far as games starting with coin 1 are Concerned, it is observed in (2.14) 
that the emerging geometric type distribution is obtained by compounding the 
geometric type distribution arising out of games starting with coin 2. Similar 
compounding will result in a new set of distribution of order k. Because of the 
length the new analogous distributions are not presented. 
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