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Abstract .  The problem of estimating regression coefficients from observa- 
tions at a finite number of properly designed sampling points is considered 
when the error process has correlated values and no quadratic mean derivative. 
Sacks and Ylvisaker (1966, Ann. Math. Statist., 39, 66-89) found an asymp- 
totically optimal design for the best linear unbiased estimator (BLUE). Here, 
the goal is to find an asymptotically optimal design for a simpler estimator. 
This is achieved by properly adjusting the median sampling design and the sim- 
pler estimator introduced by Schoenfelder (1978, Institute of Statistics Mimeo 
Series No. 1201, University of North Carolina, Chapel Hill). Examples with 
stationary (Gauss-Markov) and nonstationary (Wiener) error processes and 
with linear and nonlinear regression functions are considered both analytically 
and numerically. 

Key words and phrases: Regression coefficient estimation, sampling designs, 
correlated errors. 

I. Introduction, results and examples 

The problem of interest is to estimate regression coefficients from observa- 
tions at a finite number of appropriately designed sampling points when the error 
process has correlated values. The performance of an estimator is measured by 
its mean square error (MSE). The sampling points designed so as to minimize 
the MSE form an optimal sampling design which is generally difficult to find. To 
circumvent this difficulty Sacks and Y1visaker (1966) proposed an asymptotic ap- 
proach and showed that  the regular sampling designs, determined by a properly 
chosen sampling density, are asymptotically optimal when the best linear unbiased 
estimator (BLUE) is used and the error process has no quadratic mean derivative. 
Schoenfelder (1978) considered the median sampling design along with a sim- 
pler estimator, but the procedure is not asymptotically optimal for this problem 
(Cambanis (1985)). In this paper we adjust appropriately the median sampling 
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design and the simpler estimator and show that the adjusted scheme has an asymp- 
totically optimal performance. 

One parameter regression setup. We first consider the simple regression 
model 

(1.1) x ( t )  = 9 f ( t )  + N(t) ,  t e [0, 1], 

where f is a known regression function,/3 is an unknown parameter and the errors 
N(t) form a correlated random process with mean zero, EN(t) -- O, and known 
covariance function EN(t)N(s) = R(t, s). Here f is assumed to have comparable 
smoothness with the noise covariance and more specifically, to be of the form 

£01 (1.2) f(t) = R(t, s)¢(s)ds, 

where ¢ is a known continuous function on [0, 1]. The error process N(t) is assumed 
to have no quadratic mean derivative but its covariance function R(t, s) is assumed 
to have continuous mixed partial derivatives of order up to two off the diagonal 
of the unit square, and continuous limits for R °,l at the diagonal from above and 
below, denoted by R°'~(t,t+) = limpet4-0 OR(e, s)/Os. The function of jumps of 
R °,1 along the diagonal, 

~(t)  = R°,~(t, t - )  - R°, l(t ,  t+) ,  

is assumed to be continuous, >0 and not identically 0, and plays a crucial role in 
the asymptoties. 

If X(t) can be observed over the entire interval [0, 1], then the BLUE of 3 is 

where 

~o 1 = s -2 x ( t ) ¢ ( t ) d t ,  

s2 = fo 1Ji 1 ¢(t)R(t,s)¢(s)dtds (~  f /  ¢R¢) = fo 1 ¢(t)f(t)dt 

and its MSE is 
MSE(/3) = Var(/3) = s -2 

(see Parzen (1961), Sacks and Ylvisaker (1966)). Here, we want to estimate 
t n from observations of X(t) at n sample points Tn = { n,k}l in the interval [0, i] 

using a linear estimator 

k=l 

where C)~ = (Cn,1,..., C~,n) are coefficients and X)~ = (X(t~,l),...,X(tn,n)). 
Then MSE(gT~) = B i a s 2 ( ~ )  + V a r ( 9 ~ ) ,  where 

B i a s ( 9 ~ )  = ~(C~of~o - 1), Var(~Tn) = C~ R~ C~o, 
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f ~  = ( f ( t~ , l ) , . . . ,  f(t~,~)) and RT~ = (R(t~,k, tn,j))n×n is assumed to be invert- 
ible for every n. We wish to choose the coefficients CT~ and the sampling designs 
T~ in such a way that Bias(gTo) and Var(ZTn) are as close as possible to 0 and 
s -2, respectively. 

For a fixed sampling design Tn, the optimal coefficients CTn are those of the 
BLUE/)Tn, which minimize Var(/3T~) subject to Bias(/3T~) ---- 0, 

(1.3) ~,  t'/ R--1/t't R--I~' 
Tn = J Tn Tn / J Tn Tn J Tn , 

and the corresponding variance is 

(1.4) Var(/3T~) , -1 1 = (f~oR~o f ~ ) - .  

Asymptotically optimal sampling designs for BLUE. An optimal sampling 
design T ° = {t°k}~ of size n, which minimizes Var(/3~), is generally difficult 
to find. In order to avoid this difficulty, Sacks and Ylvisaker (1966) introduced 
sequences of sampling designs {T~}~ which are asymptotically optimal as the 
sample size n tends to infinity in the sense that 

(1.5) l i ra  {Var(/~T~)--S -2} / {i~fVar(/~Tn)- s-2} = 1, 

where the infinimum is taken over all designs of sample size n, and showed that 

lira n 2 _ i n f V a r ( ~ . ~ ) -  s -2 = ~--~ [ T~ 12 )h~(t) dr' 

where 

//01 (1.6) ho(t) = {a(t)¢2(t)} 1/3 {a(u)¢2(u)}l/3du, 
/ 

assuming that c~(t) is strictly positive and ¢(t) has no zeros. From this and (1.5) 
we can conclude that a sequence of sampling designs {Tn}~ is asymptotically 
optimal if and only if it satisfies 

s -4 /01  " " ¢2(t) dt (1.7) l i r a  n2{Var(/3T~)- s -2} -- 12 a ( t ) ~  . 

Regular and median sampling designs. Let h(t) be a positive density on [0, 1], 
with strictly increasing distribution H(t) = f~ h(s)ds, 0 _< t _< 1. The regular 
sampling design 

T~ {rn, k H-1 k -  I } n 

includes the endpoints rn,1 = 0 and r~,~ = 1. The median sampling design 

{m~,k H-1  (2k~n 1 ) } = , k =  1 , . . . , n  
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consists of the h-medians of each (r~+i,k, r~+l,k+i). With h(t) - 1, both regular 
and median sampling are periodic. 

Sacks and Ylvisaker (1966) showed that  the regular sequence of sampling de- 
signs determined by ho of (1.6) is asymptotically optimal when the BLUE ~T~ is 
used. In view of (1.3), the coefficient C~,k of each X(r~,k) depends on all sampling 
points and its computat ion may be liable to numerical instabilities. 

Schoenfelder (1978) and Cambanis and Masry (1983) have used simpler coef- 
ficients, which, for our problem, are 

Cn,k = n-ls-2(¢/h)(rn,k),  k = 1, . . . ,  n, 

along with regular and median sampling designs. The resulting estimators fin (r, h) 
and ~n(m, h) are generally biased. The median sampling design using simpler 
coefficients /~ (m,  h0) is asymptotically optimal for the integral estimation and 
the signal detection problems (Cambanis (1985)). However, for the regression 
problem, its asymptotic behavior is 

S-4 ~01 ~2(t) S -4 
(1.8) l im  n2{MSE[/~n(m,h)] - s-2} = -1~ a(t) h - ~ d t  + ~ - ~ ,  

where 

: f01 [ g0'l(~'0) K°' l ( t '  1)] h(t)dt 
L h(1) 

and K(t ,s)  = (¢/h)( t )R(t ,s)(¢/h)(s)(see Eq. (51) in  Bucklew and Cambanis 
(1988) which corrects Eq. (5.14') in Cambanis (1985)), so the median scheme is 
not generally asymptotically optimal. 

Modified median sampling designs. Here we modify the median sampling de- 
sign and the simpler estimator coefficients, so that  the resulting sequence of esti- 
mators ~n(mm, h) becomes asymptotically optimal, i.e. satisfies 

(1.9) 

(1.1o) 

lim nBias(/~n) = 0, 

8--4 jfO 1 " "¢2(t) . 
li~m~ n 2 { V a r ( ¢ ~ )  - s - 2 }  - 12 a(t) h-~at' 

or equivalently, 

(1.11) lim n2{MSE(/?n) - s -2} = - -  
T~---> OO 

s-4 f01 ¢2(t) 

The expression of ~ in (1.8) suggests that  proper use of the endpoints 0 and 
1 in the design may improve the asymptotic constant. Since the values at the 
sampling points are used to represent the values over each partitioning interval, 
using the endpoints will require choosing the two end intervals shorter than the 
remaining ones. We found that  with equal first and last partitioning intervals (of 
h-length a/(n - 1)) and equal remaining (n - 2) intervals (of h-length bn/(n - 1)), 
and with the natural choice of estimator coefficients (cf. (1.14)), a unique choice 
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(a 2 = 1/12) leads to the following asymptotical ly optimal design. We part i t ion 
[0, 1] into n intervals 0 = Sn,o < Sn,1 < "'" < Sn,~--i < S~,n = 1 determined by 

~0 8n'l fs  1 (1.12) h( t )d t  = h(t,)dt - 1 
S . . . .  1 2 V ' ~ ( n -  1)' 

1 ~ , k + l h ( t ) d t _  p ~ I ,  k = l , . . . , n - 2 ,  
n,k n - -  

where p~ = (n - 1 - 1 / v ~ ) / ( n  - 2). The modified median sampling points T~,m = 

{0 = tn , l ,m < tn,2,rn < "'" < tn,n--l ,m < tn,n,m = 1} are determined by 

(1.13) tn,k,~ = H -1 ( 1 k - 3/2 2 v ~ ( ~ -  1) + ~ ~)'  k = 2 , . . . , ~ -  1, 

i.e., each t~,k+l,,~ is the h-median of (s~,k, sn,k+l) for k = 1 , . . . ,  n - 2, and the 
two end points are included in the design (see Fig. 1). When  h - 1, then, with 
Atn,k,rn = t n , k + l , m  - -  tn,k,rn, 

Atn , l ,m  = A t n , n - l , n  = (Pn + 1 / V ~ ) / [ 2 ( n  - 1)], 

A t n , k , m = p n / ( n - - 1 )  for k = 2 , . . . , n - 2 ,  

and thus as n ~ oc, A t ~ , l , m / A t ~ , 2 , m  T (1 + 1 / v ~ ) / 2  ~ 79%. 

t n , l  , m =0~ , i n ,  2,ra,,, , t n [ 3  . . . . .  , , t x n , n - l , r a  l ~ t  . . . . .  

Sn,O=O Sn, 1 Sn,2 Sn,3 .-. Sn,n_ I l=Sn, n 

Fig.  1. T h e  p a r t i t i o n i n g  po in t s  {s~,k,  k = 0, 1 , . . . ,  n} and  t h e  modi f ied  m e d i a n  sam-  
pl ing po in t s  {tn,k,m, k = 1, . . . ,  n}. 

Modified s impler  es t imator  coefficients. 
are chosen by 

The modified coefficients {C~,k,~n} 

(1.14) Cn,k,,~ = 8 -2 tn,k,m) h( t )d t ,  k = 1 , . . . ,  n. 
n,k--1 

The resulting modified median est imator can be wri t ten as 

(1.15) Zn(-~m, h) = s -2 Z Wnlk X (tn,k,~) 
k = l  

where the weights {W~,k}~ are given by 

1 
Wn' l  = Wn'n  2 V / 3 ( n -  1)' 

w ~ , k -  1 {1 vv, l } .  k = 2 , . . . , n -  1, 



712 YINGCAI SU AND STAMATIS CAMBANIS 

and sum up to one. Thus the modified median estimator fl,~(rnm, h) takes a much 
simpler form than the BLUE flT~ (cf. (1.3)) in those cases when the function ¢ in 
(1.2) has an explicit and simple expression. 

THEOREM 1.1. Assume that ¢/h is twice continuously differentiable and R 
satisfies the assumptions stated at the beginning of the section. The estimator 
(1.15) with sampling points given by (1.13) satisfies 

s-4 / , 1  42 ( t  ) . 
(1.16) n-,c~lim n2{MSE[fln(mm, h)] - s -2} = --12 ]o c~(t) h ~ d t ,  

and thus the estimator fln(mm, ho) is asymptotically optimal. 

More general regression functions. As in Sacks and Ylvisaker (1966), Theo- 
rem 1.1 can be extended to more general regression functions of the form 

1 L 

(1.17) f(t) = fo R(t, s)¢(s)ds + E b e R ( t ,  ae), 
/ = 1  

where ¢ is a known continuous function, the be's are known nonzero constants 
and the ae's are known points in [0, 1]. For this model, the BLUE of fl based on 
observations over the entire interval and its variance are 

(1.18) fl = SL 2 X(s)¢(s)ds ÷ EbeX(ae )  , Var(/~) = SL 2 
g= l  ) 

where 

sg ~ f / ¢R¢  
L 1 L L 

+ 2 E b e  fo ¢(s)R(s, ae)ds + E E beR(ae'aj)bj" 
e = l  t = l  j = l  

The modified median estimator of fl is then 

fln(rnm, h, L) = SL 2 Wn,k X (tn,k,~) + beX(ae) 
k k = l  £=1 

where the sampling design {tn,k,,~} determined by (1.13) is augmented by the L 
fixed sampling points {ae}. As in Theorem 1.1, under the same conditions, we 
have 

(1.19) /01 8L 4 O[,[t \ ~)2 ( t )  2im n ~ {MSE[gn(m,% h,L)]- sZ ~} = 5 g  ~ JV(i~ dr 

Multiple regression. We extend Theorem 1.1 to the multiple regression model 

(1.20) X(t) = fl'f(t) + N(t),  t • [0, 1], 



REGRESSION WITH CORRELATED ERRORS 713 

where/Y = (/~1,.--,/~q) is a vector of unknown parameters and f ' ( t )  = (fl  ( t ) , . . . ,  
fq(t)) is a vector of known regression functions. The error process N(t)  and each 
regression function f i(t)  are as in (1.1). Specifically, each fi  satisfies (1.2) for some 
¢~. If X(t)  is available over the entire interval [0, 1] the BLUE of/~ and its MSE 
are 

~0 
1 

3' = s -~ x ( t ) ¢ ' ( t ) d t ,  MSE(/3) =- E( /3- /~) ' ( /3  - / 3 )  = t r ace (S- i ) ,  

where S = (sij = f f  ¢iRCj)q×q is assumed to be invertible and ¢'(t)  = (¢1 ( t ) , . . . ,  
Cq(t)) (Parzen (1961), p. 484). 

Here, we est imate /3 from the observations of X(t )  at the sampling points 
T~ = {t~,k}~, using linear estimators/3T~ of the form /3T~ = S-1DT~XT~, where 

i DT~ = (Dn,k)qxn are coefficient matrices. Then 

MSE(/3T~) = trace{S-1DT R% D~ S -1 } + ]l Bias(flT~)l] 2, 

where 

(1.21) II g i a s (~T~) l l  2 = {E( /~T~)  -- ~ } ' { E ( / ~ T ~ )  - - /~ }  

= / 3 ' { D T ~ f T ~  -- S } ' S - 2 { D T ~ f T ~  -- S } f l  

re  r t , / k= l  ..... n = (fl,T~,. , fq,T~) = (f( t~, l ) ,  f(t~,~))'. For the with fT~ = ~Ji~ n , k J ~ i = l  . . . . .  q . . . . .  , 

modified median estimator,  we choose D~, k as in (1.14), i.e., 

f 
S n , k  

D~,k = ¢i (t~,k,r~) h(t)dt, 
-- 'h J 8 n , k _  1 

k = 1 , . . . , n ,  i = 1 , . . . , q ,  

where {sn,k}~ and Tn,m = {t~,k,m}~ are as in (1.12) and (1.13), respectively. 
Then, the est imator can be wri t ten as 

(1.22) /~tn(mm, h ) = S 1 E W n , k  X ( t n , k , r n ) ,  

k=l 

where the weights {Wn,k}~l ~ are as in (1.15). We have the following result. 

THEOREM 1.2. If  Oi/h, i = 1 , . . . ,  q, are twice continuously differentiable and 
R(t, s) is as in Theorem 1.1, then 

1/ol (1.23) lim n2{MSE[/3,(mm, h)] - t r ace (S - i )}  = a( t )  ¢'(t)S-2O(t) rl ~ 

and the estimator fl~(mm, ho) is asymptotically optimal where 

//o 1 ho(t) = {c~(t)¢'(t)S-2¢(t)} 1/3 {a(u)C'(u)S-2¢(u)}l/3du. 
I 
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In Section 2, we establish (1.23) by showing 

lim n[[Bias[fln(mm, h)][[ = 0, 

l i i n  n 2 trace{S-1DT~,,~RT~,mD/T,~,,S-I -- S -x } 

fO ¢'( t)S-2¢(t)  d. 

Example 1. Quadrat ic  regression in Wiener process error. Consider the 
model (1.1) with R(t, s) = min(t,  s) and the quadratic regression function f ( t )  = 
t 2. Other power regression functions (along with BLUE estimators) were consid- 
ered in Eubank et al. (1982). In this case a(t) = 1 and t 2 can be writ ten in the 

form (1.17): t 2 = - 2  f~ min(t,s)ds + 2t, t E [0, 1], with ¢(s) = - 2 ,  L = 1, bl = 2 
and al  = 1. By direct calculations, we obtain s~ = 4/3 and ho(t) =- 1. 

For this example, we are able to obtain the optimal sampling design corre- 
sponding to the BLUE for every sample size n as follows. By (1.3), minimizing 

G 2 A / v  R - I ~ c  Var(/)T~) is equivalent to maximizing n=jT~ T~ JT~. From the general expression 
2 = X"~n--l[ t in Sacks and Ylvisaker (1966), it follows tha t  a n A~k=0t k+l -- tk)(tk+l + tk) 2 

2 is achieved by the where to = 0. It is easy to show tha t  the maximum of ~r n 
optimal design tk = k/n,  k = 1 , . . . ,  n, which is periodic with corresponding value 

2 4/3 1/(3n 2) The corresponding BLUE and its variance are O" n ~ - -  . 

^ 3 n  2 
f l T n , o p t  2 n ;  1 2 n -  1 ~ ' 

k = l  

3n 2 3 3 
Var[L~T~,opt) -- 4 n 2 ~  -- 4 + 4(4n 2 - 1)" 

The median sampling scheme gives 

{  1i: 11 } 3 _ 1 E X + X(1) , fin(m, ho)=  n 1 
k = l  

1 3 
fi--1 Bias{fin(m, ho)} -- 8(n - 1) ~' Var{fin(m, h0)} = ~ + 8(n - 1) 2. 

Wi th  ho = 1, the modified median sampling points and est imator are 

t~,k,m n - 1  + p~ k -  , k = 2 , . . . , n  1, 

fin(mm, ho) = ~ ~n--i~(n-----~) E X(tn'k"~) 1 2x/~(n--  1) X(1) . 
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In this special case, ~T~,opt takes the simplest form while #n (ram, ho) involves 
complicated coefficients and sampling points. In order to compare the performance 

^ 

of ~T~,opt, /~n(m, ho) and ~n(mm, ho) for small and moderate sample sizes, we plot 
the normalized Bias, ~ -1  Bias, and the variance difference, Var(/~n) - SL 2, of these 
estimators versus the sample size n = 3 , . . . ,  30 in Fig. 2. 

Example 2. Linear regression in Gauss-Markov process error. We consider 
the model (1.1) with R(t, s) = cr2e -)'ft-sl and the linear regression function f(t)  = 
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t. Then a(t)  = 2As 2 and 

A L 1 1 A + 1 --l(1--t) t = -~ e -X l t - s l sds  -- ~ e  -A t  + - - ~ e  , 

which is of the form (1.17) with O(s) = As/(2a2), L = 2, al = 0, a2 = 1, 
b l  = --1/(2/~O -2) and b2 = (A + 1)/(2A~2). By direct calculation, we obtain s~ = 
(A 2 + 3A + 3)/(6Act 2) and the asymptotically optimal sampling density ho(t) = 
(5 /3) t  z13. 

For a fixed sample size n, it is not easy to find the optimal sampling design 
(see the discussion in Morrison (1970)). The regular sampling design specified by 
ho(t) uses r~,k : {(k - 1 ) / ( n -  1)} a/5, k = 1, . . .  ,n, and the median sampling 
scheme gives the following estimator 

+ l O ( n :  1) k=l 2) 

1. ( 1 1 3 - )  

The modified median sampling design and estimator are 

tn,k,m= + P n  k -  ~ , k = 2 , . . . , n - 1 ,  

_ 3Ap~ 
/3n(mm, ho) = SL 2 -- X(O) + 10~---  1) E t l / ,~ ,mX(tn 'k 'm) 

k=2 

x(1)) 
+ --+ 20(n- i) 

We plot the absolute value of the normalized bias and the variance difference 
versus the sample size in Figs. 3(a) and (b), respectively. We have plotted these 
curves for a variety of values of the parameter A with a2 = 1 and found that over 
the displayed range of sample size, the modified median estimator performs better 
than not only the median estimator but also the BLUE (as. opt.) when A < 5, 
and that the improvement increases as A becomes smaller. To illustrate this here, 
we choose A = 1.5 and cr 2 = 1. Also we computed the variance difference of the 
modified median estimator up to the sample size 100 and found that it becomes 
negative at about n = 34, achieves a minimum at about n = 55 and then increases 
to zero from below. This is not surprising because the modified median estimator 
is biased, and thus it may have smaller variance than the BLUE ~. 
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2. Proofs 

We adjust the analysis in Bucklew and Cambanis (1988) (hereafter referred 
to as BC) the modified median designs and coefficients to prove that (1.9), (1.10), 
(1.24) and (1.25) hold. For simplicity, we drop the subscripts n and m in t~,k,,~, 
C~,k,,~, etc. 

By the mean value theorem of integrals and (1.12), we have 

(2.1) 1 /0Sl /1 
2 v ~ ( n  - 1) h = h ( w l ) 8 1  = h = h ( w n ) ( 1  - 8 n _ l )  , 
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(2.2) 

(2 .3)  

Pn _ f 8k+1 

n ~ 1 ~sk 

f in _ / t k + l  

f s k + l  

J t k + l  

h = h ( ~ ) ( ~ + l  - ~k) ,  

h = h ( ~ k ) ( t ~ + x  - s~)  

h = h(bk)(Sk+l - tk+l) ,  

where 0 < Wl < s1, Sn--1 < Wn < 1, Sk < Wk < Sk+~ and sk < ak < tk+l  < bk < 
sk+l ,  k = 1 , . . . , n -  2. It is easy to see t h a t  for k = 1 , . . . , n -  2, as n --* ec, 

(2.4) tk+x - sk _ h(wk)  1 and  Sk+x - tk+l h(wk)  1 
sk+l  - sk 2h(ak) 2 sk+l - sk 2h(bk) 2 

By the same arguments as given by BC ((1988), pp. 122-123), we have 

(2.5) Dk = (Sk+t -- tk+X) -- (tk+x -- Sk) 

_ 1 (h'(b;)  + h ' (4 )  ~ p~ 
8h(tk) \ h2 (bk )  h2(ak~J (n----l) 2' 

where h'(t)  = dh ( t ) / d t  and  sk < a~ < tk+l < b~ < Sk+x, and  then  for k = 
1 , . . . , n -  2, 

fo  ~1 1 h(int .)  1 1 1 1 
~ , h ( t ) d t  = 24 h 2 ( w l )  (?% - 1) ~ = 24 h (0)  (7/, - 1) ~ + ° ( n - 2 ) '  

~ + i  1 h'(tk+x) (Sk+l - s~)(n + °(~-2)' 
(2.6) ( t -  t k+l )h( t )d t  = 24 h2(tk+l)  

, - '8  k 

f l 1 h(int .)  1 
sn_~ ( t -  1)h( t )dt  - 24 h 2 ( w ~ ) ( n  - 1) 2 

1 1 1 
= - -  - -  -t- O(n-2),  

24 h(1) (n - 1)2 
and 

(2.7) 

fo ~1 t2h(t)dt  = o(n-2) ,  

1 ( t  - -  1)2h(t)dt  = o(n-2) ,  
8 n - - 1  

f 1 1 p~ 
8 k + l  ( t  - -  tk+l)2h( t )dt  - 12 h(tk+l)  (Sk+l - sk) (n ----1) 2 

J 8  k 

_ _  + o ( n - 2 ) .  

PROOF OF (1.9) AND (1.24) .  Let  g = C f / h .  B y  Taylor  expansion,  we have 

1 /l 
g(t) = g( tk+l )  + g' ( tk+l) ( t  -- tk+l)  + -~g (xk)( t  -- tk+l)  2, 
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where xk is between tk+l and t and depends continuously on t. Thus, using 

s 2 = f~ gh, we can write 

/7-i= 2 Bias[/7~ (ram, h)] 

n--1 p s k + i  n--1  p 8  k-~-i 

: E g ( t k - - 1 ) /  h-82  ~- k~=OJS [g(tk-i-1)-g(t)Ih(t)dt 
k=O v sk k 

{n-~ g'(tk+l) f"+'(t 'k+l)h(t)dt 
- -  r i s k  

+ i k=O~=k g"(xk)(t -- tk+l)2h(t)dt 

A_ - { A n  + Bn}. 

By (2.1) and (2.6), we obtain  

A7~ - -  
i 

2 4 ( ~ -  i)~ (0) 
i A 

24 (n - 1) 2 

24(n- -  1) 2 (1) + o(n-2). 

k'h"  
- -  = t , ~ - )  ( tk+l ) (=k+l  - =k) 

I !  For Bn we apply the mean value theorem to pull out  g (Yk), Yk E (sk, Sk+t), and 
then use (2.7), to obtain 

n--2  1 
Bn -- 21 ( n : ~ l )  2 p 2 n  E g H ( Y k ) ~ ( 8 k + l  -- 8k)"~O(n--2)" 

k = l  

It follows from Riemann integrability and Pn ~ 1 that  as n ~ oc, 

n2/7-1s 2 Bias[/7n (ram, h0)] 

= 0 .  

This proves (1.9). Then (1.24) follows from (1.9) and (1.21). 

PROOF OF (1.10) AND (1.25).  Suppose we can show that  for i , j  = 1 , . . .  ,q, 
a s  rt  ----+ c~ ,  

- -  i ( t )¢ j  (t)dt. 
12 
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Fig.  4. 

l = s  n,n 

Sn,n-1 

Sn,n-2 

Sn,2 

Sn, 1 

0 = Sn, 0 

D 3 

-D['--Do-- 

Sn, 1 

D 2 
I 

ID 
i O 

i I 

, D 1 , i 
a 

I I 

Sn, 2 . . .  Sn,n_ 2 Sn,n_ 1 Sn,n = 1 

T h e  off-diagonal  rec tangles  Do, Dt, D2, D3, D4 of  t h e  un i t  square .  

Then, put t ing S -2 = (Pij)qxq, the left hand side of (1.25) equals 

l i r n  n2 t race(D~ RT~ DT,~ - S)S -2 
q q 

= E E l i ra  n2Eij(n).j, 
i=1 j = l  

= I2 ¢i(t)¢j  (t)dt,j~ 
i=1 j = l  0 

_ 1  1 

and (1.25) follows. Note that  (1.10) follows by letting i = j in (2.8). Therefore, 
it remains to show (2.8) and it suffices to show it for i = 1 and j = 2. Put t ing  
K(s, t) = (¢l/h)(s)R(s, t)(¢2/h)(t), the left hand side of (2.8) becomes 

n--1 n--i 

k = O  £ = 0  " sk ,,' s~ k = O  ~ = 0  

Now split the integral over the unit square into the integrals over the diagonal 
squares and the off-diagonal rectangles in the regions Dr, r = 0, 1, 2, 3, 4 as shown 
in Fig. 4. Repeating the steps in BC ((1988), p. 123), i.e., splitting each diagonal 
square into the six regions shown in Fig. 5 of that  paper and then using Taylor 
expansions and (2.1)-(2.4), we obtain 

n--1 1 L 1 
(2.9) n2 E In;k,k ---+ ~ IN 0'1 (t, t - )  -- K° ' l ( t ,  t+)  

k=0 

+ Kl ' ° ( t  - ,  t) - Kl ' ° ( t+ ,  t)]dt. 

Repeating the procedures on p. 123 of BC (1988) and using (2.5)-(2.7) we obtain 

'{/o (2.10) n2 E I ~ ; k ' e  --~ 24 [K°'l(t ' t-)  - K°'l(t't+)]dt 
Do 
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1 [K°,l(t, 0) K°,l(t, 0) 
+fo L h(1) h(O) ]h(t)dt 
+ [Kl'°(t - ,  t) - Kl ' ° ( t+ ,  t)]dt 

By Taylor expansion, we have 

[ 1 [-~0'1(~0) 
+ 

Jo L h(1) 
K°'l(t'h(O) ]0) h(t)dt}. 

721 

K(s ,  t) = K(tk+t ,  0) + Kl'°(tk,  0)(8 - tk+t) 4- K°'l(tk,  0)t 
1 ,~o,2, + Kl'l(ak,bo)(S - tk+l)t + ~lxl "~2'°'l, ak, 50)(8 - tk)2 + ~lx [ak,bo)t 2, 

where (ak, bo) is on the line joining (tk, 0) to (s, t). Thus, 

~f.qSk+lf081 E I~;k,e = [K(tk+l,0)- K(s,t)]h(s)h(t)dsdt 
D1 k=l sk 

n--2 rSk+l [K1, 0 
-- -- -- ~ Jsk fO sl ~ (~k+l'O)(8--Jek--1) 

+ K°A (tk+l, 0)t + Kl ' l (ak,  bo)(8 - tk+l)t 

+ ~K2'°(ak, bo)(s - tk+l) 2 

+ ~K°'2(ak, bo)t2]h(s)h(t)dsdt. 

By (2.6), the first term of the right hand side equals 

n-2 
: _ _ E / ~ l , 0 ( t k , 0 )  ( 1 ) h ' ( f C k + l ) ( s k + l _ _ S k )  f12 1 

k=l h2(tk+l) ( n -  1) 2 2x / 3 (n -  1) 
= -2)  

and the second term equals 

~ - 2  1 1 
: -- E I~O'l(tk+l'O)h(wk)(Sk+l -- 8k) h(O) 24(n -  1) 2 

k : l  

+ 

Similarly, by using (2.1) and (2.2), one can verify that the third, fourth and fifth 
terms are all of the order o(n-2). Therefore, 

E In;k,g -- 
D1 

n--2 1 _1 
24 (n 1)2 k=l 
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which yields 

(2.11) n2 E In;k,~ --~ -- - -  
D1 

1 1 ~ d t .  24 ~0 K°'l(t'O) 

In a similar way, we obtain 

(2.12) n 2 E  
D2 

(2.13) n 2 E  
D3 

(2.14) 
D4 

2-41 ~ 1  ~, h(~) _7~ In;k,t --* -u K I ' ° ( I ' r ) ~ ( 1 )  ar' 

lfo  I~;k,e ~ ~ K°'l(t, 1 ) ~ d t ,  
h(lj 

- ±  fo 1 I~;k,e ---~ 24 Kl'°(O't) h!t)dt 
h ( o )  " 

Adding (2.9) (2.14) up, we o b t a i n  (2.8): 

1 fol{Ko,l(t,t _) _ KO,l(t,t+) + Kl,O(t_,t) _ Kl,O(t+,t)}d t 
k,l 

1 fo 1 - 12 h~-~ ¢l(t)¢2(t)dt" 
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