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A b s t r a c t .  A general class of minimum distance estimators for continuous 
models called minimum disparity estimators are introduced. The conventional 
technique is to minimize a distance between a kernel density estimator and the 
model density. A new approach is introduced here in which the model and 
the data are smoothed with the same kernel. This makes the methods consis- 
tent and asymptotically normal independently of the value of the smoothing 
parameter; convergence properties of the kernel density estimate are no longer 
necessary. All the minimum distance estimators considered are shown to be 
first order efficient provided the kernel is chosen appropriately. Different mini- 
mum disparity estimators are compared based on their characterizing residual 
adjustment function (RAF); this function shows that the robustness features 
of the estimators can be explained by the shrinkage of certain residuals towards 
zero. The value of the second derivative of the RAF at zero, A2, provides the 
trade-off between efficiency and robustness. The above properties are demon- 
strated both by theorems and by simulations. 

Key words and phrases: Disparity, Hellinger distance, Pearson residuals, 
MLE*, robustness, efficiency, transparent kernels. 

I. Introduction and overview 

A pioneering work by Beran (1977) showed tha t  by using minimum Hellinger 
distance est imators  one could obtain robustness propert ies  together  with first order  
efficiency. Fur ther  investigation of this idea came from Tamura  and Boos (1986) 
and Simpson (1987, 1989). The  present paper  continues this line of work, in the 
process extending the general min imum dispari ty approach of Lindsay (1994), who 
extended the range of choice beyond the Hellinger distance. The  la t ter  work deals 
only with mult inomial  models; here we widen the technique to include continuous 
models, with emphasis on the mult ivariate  normal  where we show how to jo int ly  
est imate # and E robust ly  wi thout  loss in first order efficiency. We will refer to 
our est imators  as the minimum dispari ty est imators  (MDEs). 
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The methods described herein differ from previous work in this area in two 
key ways: 

• Unlike previous Hellinger distance approaches, our procedures are con- 
structed in such a way that  we do not require consistency or rate of convergence 
results for the nonparametric density estimators. However we can still obtain first 
order efficiency with robustness. 

• Additionally our construction of minimum distance procedures allows sim- 
ple parametric adjustment of possible tradeoffs between efficiency and robustness 
features, just as one can do with tuning constants in M-estimation. However, 
unlike M-estimation, the minimum distance methods are first order efficient and 
applicable to a wide range of models, not just to location scale models. 

In addition, we believe our method offers some new insights into the mecha- 
nism that  enable the minimum Hellinger distance estimator to be simultaneously 
efficient and robust. One of the most appealing features of M-estimation in the lo- 
cation model is that one can see directly how the method limits the impact of large 
observations. That is, given residuals ei = Yi - #, one solves for # in the equation 

~(ei) = 0 for some function ~. Since ~(c) = e gives the sample mean (nor- 
mal theory maximum likelihood estimator) as a solution, other ~-functions with 

<< for large e, will limit the effect of large e "outliers" on the estimator, 
relative to maximum likelihood. Our minimum distance estimators have a very 
similar form, but with a modified definition of residual 5. All our estimators solve 
an estimating equation depending entirely on a user-selected function A(5), such 
that  A(5) = 5 gives a solution to the likelihood equations and A(5) << ~ for large 5 
implies that  large 5 outliers have small influence on the parameter estimates. This 
analysis is distinctly different from the usual influence function approach, as all 
our estimators have the same influence function. However, it will be shown that  
the choice of function A(.) still has a dramatic effect on robustness. For each MDE 
there is a corresponding parameter A2, called the curvature parameter, that  is a 
measure of its robustness in a contaminated model and a measure of its second 
order efficiency at the model. Negative values of A2 imply robustness, with larger 
absolute values implying greater contamination robustness. 

In Section 2 we will define the general disparity measure and introduce the 
MDEs for continuous models. A natural analogue of the ordinary maximum like- 
lihood estimator (MLE) which emerges in this context is called the MLE*. In 
Section 3 we investigate the efficiency of the MLE* and the other MDEs. Sec- 
tion 4 investigates the robustness properties of the MDEs. Section 5 presents their 
influence curve analysis which indicates the asymptotic equivalence of the MDEs 
to the MLE*. Section 6 provides the asymptotic results. For the sake of keeping 
a clear focus here, we have emphasized the theoretical and simulation results that  
verify our claims about efficiency and robustness. In the last section, Section 7, we 
address in brief a number of other important statistical considerations, including 
equivariance, standard error calculations and numerical considerations. 

2. General disparity measures 

It has been conventional to extend density-based minimum distance methods 
to the continuous case by forming a nonparametric density estimator from the 
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data, say f* (x) and then constructing a distance between f* (x) and the model 
density mz (x) (indexed by an unknown parameter vector/3), such as the squared 
Hellinger distance 

See the formulation of Beran (1977) and Tamura and Boos (1986). 
The key idea that we introduce here to simplify the statistical analysis is as 

follows: first, construct f* using kernel density estimation, say 

if(x) 

where/~ is the empirical distribution function obtained from the data and k is a 
smooth family of kernel functions such as the normal densities with mean t and 
standard deviation h. The parameter h controls the smoothness of the resulting 
density, with increasing h corresponding to greater smoothness (e.g., Silverman 
(1986)). Next apply the same smoothing to the model to get 

(2.1) m}(x)=ffk(x;t,h)dMz(t), 

where MZ is the model cdf. Now construct a density based "distance" between 
f* (x) and m}(x), such as the squared Hellinger distance 

A natural central figure in this new setting is the analogue of the maximum likeli- 
hood estimator; we will let MLE* be the value of/3 that minimizes the likelihood 
disparity 

(2.3) LD(f*,m*~) := / f*(x)ln[f*(x)/m*~(x)]dx; 

this is a form of the Kullback-Leibler divergence. In a discrete model with no 
kernel smoothing, minimizing the LD yields the maximum likelihood estimator 
(MLE) of/3. Thus a central question involves the effect of kernel smoothing on 
the MLE*. This is addressed in Subsection 3.1. 

To provide further intuition, consider a variant of the idea for data on the real 
line. Instead of a fixed h kernel estimate suppose that we use a histogram with 
fixed bin width, say h. The strategy is to compute the empirical probabilities for 
the bins, and to minimize their distance from the corresponding model based bin 
probabilities. This variant of smooth-the-model strategy reduces to the countable 
support minimum distance estimation problem considered by Simpson (1987) and 
Lindsay (1994). Usually, though, a discretization of this type will entail a loss 
of information. In this paper we will show that the type of model smoothing 
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considered by us in equation (2.1) leads in some cases to no loss of information 
and is thus an improvement over the histogram approach. 

In general we will be concerned with estimators based on minimizing a dis- 
parity measure 

(2.4) pc(f*,m*fl) : / G(6*(x))m*fl(x)dx 

where 6* (x) = (f* (x)-  m*fl (x))/m*fl (x) will be called the Pearson residual at x and 
G is a strictly convex function. Similarly defined disparities in the discrete model 
were considered by Lindsay (1994), where it is shown that the MDEs obtained by 
minimizing disparity measures of this type generated first order efficient estimators 
and they are robust for certain functions G. Both (2.2) and (2.3) can be put in 
the form of (2.4). 

Our numerical studies in this paper focus on a particular class of disparity 
measures called by Lindsay the blended weight Heltinger distances: 

(2.5) f (f*(x) = m*fl(x))___~ 2 2 dx, 

6:l-a, ~ c  [0,1]. 

From robustness considerations we are more interested in the range c~ E [½,1] (see 
Section 4). Note that BWHD,~ = HD at a = 0.5 up to a scalar multiple. We 
have chosen to focus on this class because we can adjust efficiency and robustness 
properties simply and dramatically by changing a. Another important class of such 
measures are the Cressie and Read (1984) family of power divergences (generalized 
to continuous models) defined as 

PD;~(f*,m*~) = f f*(x){[f*(x)/m*~(x)] )' - 1}dx/A(l + 1) 

= f ~5(x){(1 + 6") A + l -  1}dx/,~(,~ q- 1), 

where A = - 2 , - 1 , - 1 / 2 ,  0, and 1 generate the Neyman's chi-square, Kullback- 
Leibler divergence, Hellinger distance, likelihood disparity, and Pearson's chi- 
square respectively. 

Under differentiability of the model, and letting V denote derivatives with 
respect to fl, the minimum disparity estimating equations have the form: 

(2.6) -Vp  =/[G'(6*(x))f*(x)/m*~(x) - G(6*(x))]Vm*fl(x) = 0, 

and can alternatively be written as 

(2.7) - v .  = f A(~*(x))V~(~)dx = o 
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for A(5*) = (1 + 5")G'(5") - G(5*). As G is strictly convex, A(5*) is a strictly 
increasing function of 5*. Also A(5*) can, without loss of generality, be centered 
and rescaled so that A(0) = 0 and A'(0) = 1. (For example, in the BWHD 
family this amounts to dividing the disparity by 2. Such standardizations do not 
change the estimating properties of the disparities.) This centered and rescaled 
function A(.) is called the residual adjustment function (RAF) corresponding to 
the disparity measure p. Most of the theoretical properties of the MDEs are 
derived using the properties of A(.). Unlike the approach of Beran, the MDEs are 
Fisher consistent. 

In (2.6) we use the negative gradient because then the estimating equation of 
the MLE* has a form similar to the likelihood score equations. For the likelihood 
disparity A(5*) = 5*. The curvature parameter A2 of the disparity, which is 
defined to be the second derivative of its residual adjustment function evaluated 
at 5* -- 0, equals zero for the likelihood disparity. In Section 5 we will provide the 
theoretical justification of the robustness of the estimators generated by disparities 
with large negative A2. For the Hellinger distance A2 -- - 1 / 2 .  

3. Efficiency of the MDEs 

3.1 Efficiency of the MLE* under transparent kernels 
In this section we show that the estimating equation of the MLE* has the 

form 
=0, 

so that the mathematical theory of such estimating equations leads directly to the 
consistency and asymptotic normality of the MLE* and its asymptotic efficiency 
can be directly determined. In particular, we will show full efficiency in the normal 
model with the normal kernel. Since we later show that the other MDEs are 
asymptotically equivalent to the MLE* at the model, they too are necessarily 
efficient at the normal model. 

We use the notations ~t(x, ~) = ~7 In m~ (x) and u* (t, Z) = f ~(x, ~)k(x; t, h)dx. 
Under the assumption that f Vm*~ (x)dx -- 0 (i.e. the derivative can be taken inside 
the integral sign), the following result is easily proved. 

LEMMA 3.1. Let f* and m*~ be respectively the kernel density estimator ob- 
tained from the data and the smoothed model density. Let EZ represent the ex- 
pectation with respect to mZ. Then the estimating equation of the MLE* can be 
written as 

1 ~ u * ( X i , ~ )  = 0. (3.1) - V L D ( f * ,  m*~) = n 

Further, Ez[u*(X,/3)] = 0 for all/3. 

We will call u* the MLE* score function. Let u -- u(x,/3) = V l n m z ( x )  be 
the MLE score function. Since the MLE* is an M-estimator (most of the other 
MDEs are not so), its efficiency and robustness are easy to study. 
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How much information is lost by smoothing the original density function with 
the kernel? It seems intuitively clear that this will depend on the relationship of 
the kernel to the model. The following example shows that for some models it 
may be possible to choose kernels which do not lead to any information loss. 

Suppose that X1, X 2 , . . . ,  Xn are independently distributed with common dis- 
tribution MVN(#, E), and that the chosen kernel is MVN(O, h2I). For the MVN 
problem rn} is MVN(#, E + h2I). The score equations for the likelihood disparity 
are, for the parameters in # 

f (r~ + - ~)dF*(x) = h2I)- l(x  0 

and for the parameters in E 

/ { ( x  ~ ) ( x -  (r~+ = #)T h2I)}dF*(x) 0 

where F* is the cdf corresponding to f*. Since the distribution of X under F* is 
the convolution of F and MVN(O, h2I), the solution to these score equations are 
just the usual maximum likelihood estimators: 

Thus, quite remarkably, the answer does not depend on the bandwidth h at all. 
Moreover, there is no information loss in this case, and in this sense the kernel is 
transparent. 

Formally, the kernel k(x; t, h) is defined to be a transparent kernel for m~ if 
the relation 

Cu(X, 9) + D = u* (X, 9) 

holds for all 9 E ft. Here 9 is a p-dimensional parameter, C is a p x p nonsingular 
matrix which may depend on 9 and D is a p-dimensional vector. However, since 
both u and u* have expectation zero, D must be 0 and we may define transparency 
by 

(3.2) cu (x ,  9) = u*(x, 9) 

from which the next result follows. 

LEMMA 3.2. Suppose that k is a transparent kernel for the family of rood- 
els m~. Then the estimating equations for the MLE* of 9 are equivalent to the 
ordinary maximum likelihood score equations for 9. 

For which other models do transparent kernels exist? We do not have a general 
answer to this, but we can offer two more examples. To motivate this result, note 
that, if X ~ N ( # , ~  2) = m~(x), then rn~(x) is the density of Y = X + Z, where 
Z is N(0, h 2) and independent of X, and therefore Y is N(#,  cr 2 + h2). Two 
other prominent exponential families share this closure under convolution--the 
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gamma and the Poisson--and if we use convolution smoothing on them, we obtain 
a t ransparent  ke rne l .  

PROPOSITION 3.1. (i) Irma(x)  is the gamma density, with parameter (/3, I),  
A known, then k(y; x, h) = mh(y -- x) is transparent. 

(ii) I f  mz(x)  is the Poisson density, mean/3, then k(y;x ,h)  = mh(y -- x) is 
transparent. 

Clearly the asymptot ic  efficiency of the MDEs depends on the availability of 
t ransparent  kernels. If they  are not used, a t ta inment  of full asymptot ic  efficiency 
will require tha t  the bandwidth  h ~ 0 as n ~ oc. However, we should note tha t  
even for h held fixed, there can be surprisingly little information lost when using a 
non-transparent  kernel. If we calculate the asymptot ic  variance (see Theorem 6.1 
and Corollary 6.2) for the MLE* est imator of # in the N(# ,  a2) model, at # = 0 
and a 2 = 1, where the density est imator 

1 ~ k  ( X h - X i )  
f*(x) = ~ i=1 

is based on the Epanechnikov kernel k(x) = 0.75(1 - x 2) for Ixl < 1, we find 
tha t  for h = 0.1, 0 . 2 , . . . ,  0.9 the information loss is less than  0.003%. The iden- 
tical calculation for the uniform kernel k(x) = 1/2 for Ixl < 1 gives a maximum 
information loss of 0.04% for values of h = 0.1, 0 .2 , . . .  ,0.9. These information 
calculations were substant ia ted by a simulation tha t  compared the normal kernel 
with the Epanechnikov kernel and found tha t  the estimators gave very similar 
results for both  efficiency at the model and robustness under contamination.  

We can ~ offer a heuristic explanation for this stability of information under 
smoothing. For simplicity, suppose tha t  the kernel smoothing is by convolution, 
so tha t  k(x; t, h) = k((x - t ) /h) /h  and m*~(y) is the density of Y = X + he, where 
e has density k(.). In this case, we can write 

g(y,/3) = E[u(X,/3) I Y = Y] and u*(x,/3) = E[g(Y,/3) t X = x]. 

If we were able only to see da ta  from Y's distribution, then we would experience 
a net loss of information due to the addit ion of the noise eh. Suppose, again for 
simplicity, tha t  the parameter /9  is a scalar, so tha t  the relative information in the 
Y da ta  can be calculated as corr2(u(X,/3), ~t(Y,/3)), which here equals 

E 2[ 2(Y, = E[a (Y, 9)] 
= 1 - E { V a r [ u ( X , / 3 )  I Y ] } / V a r [ u ( X , / 3 ) ] .  

However, the information lost in noise is at least partially recovered in going to 
u*. The calculations now give the relative information in u* as being: 

E[~2(Y,/3)] E[~2(Y,/9)] 
E[u2(X,/3)] E[u*2(X,/9)]" 
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Table 1. The means and the standard deviation of the MHDEs of #. 

Data without Data with 

contamination contamination 

standard standard 
mean deviation mean deviation 

0.1 0 . 0 0 9 8  0.1483 0.1139 0.1697 
0.2 0 .0086  0.1473 0.1523 0.1697 
0.3 0.0067 0.1466 0.1766 0.1661 
0.4 0 .0051  0 . 1 4 6 3  0.1967 0.1628 
0.5 0 .0039  0.1456 0.2142 0.1594 
0.6 0.0030 0.1454 0 . 2 2 9 3  0.1559 
0.7 0 .0023  0.1452 0.2423 0.1523 
0.8 0.0018 0.1450 0.2533 0.1493 
0.9 0.0014 0.1449 0.2624 0.1463 

MLE* 0.0001 0.1442 0.3060 0.1315 

The  first rat io is the information lost due to  noise, and is less than  one. We 
can think of it also as the relative loss in variance due to going from u(X, ~) in 
the denominator  to  its conditional expecta t ion  E[u(X, t3) ] Y] in the numerator .  
The  second ratio, however, is greater  t han  one, and is the relative increase in 
variance in going from E[~t(Y, ~) ] X] to  ~(Y, ~). In the normal model,  with 
normal kernel, these factors balance each other  perfectly, and so no informat ion 
loss results. However, under  no circumstances can we do any worse than  the first 
ratio, the loss in information due to making the da ta  more noisy by convolution. 

3.2 Efficiency of the MDE 
Later  in this paper  we establish tha t  the minimum dispari ty es t imators  are 

asymptot ical ly  equivalent to  the MLE* when the model  assumptions are correct.  
In part icular,  Lemma 5.1 establishes tha t  they  have the same influence funct ion 
and Corollary 6.2 establishes tha t  under  sufficient regulari ty conditions the es- 
t imators  have the same limiting distributions.  Combining this with the results 
of Subsection 3.1 we have tha t  the MDE's are fully efficient when a t ransparent  
kernel is used. In this subsection we verify these theoret ical  results by simulation. 

We generated 50 pseudo random samples, each of size 50, from the N(0,  1) 
distr ibution using the IMSL subrout ine  in F O R T R A N  for the generat ion of stan- 
dard  normal  r andom variables. The  kernel function k(x; t, h) was the normal  pdf  
with mean  t and s tandard  deviation h, which is t ransparent  at the normal  model. 
We calculated the mean of each sample, which is the MLE* of # (as well as the 
MLE of #) for that particular sample, and then calculated the mean and standard 
deviation of the MLE* of # over the samples. For uncontaminated data the bias 
will just be sampling error, but the standard deviation will be an important de- 
scriptor of the efficiency of the method at the model. The mean and the standard 
deviation of the MLE* of # are 0.0001 and 0.1442 respectively. Table 1 (the no 



Table 2. 

MINIMUM DISPARITY ESTIMATION 

The means and the s tandard  deviation of the Huber est imates of #. 

Data without Data with 
contamination contamination 

standard standard 
mean deviation mean deviation 

0.6 -0 .0190 0.1717 0.1349 0.1755 

0.7 -0.0161 0.1682 0.1398 0.1706 

0.8 -0 .0143 0.1649 0.1460 0.1661 

0.9 -0 .0127 0.1615 0.1526 0.1628 

1.0 -0 .0118 0.1584 0.1595 0.1597 

1.1 -0 .0108 0.1559 0.1663 0.1575 

1.2 -0 .0094 0.1533 0.1728 0.1562 

1.3 -0.0081 0.1513 0.1789 0.1549 
1.4 -0.0070 0.1497 0.1850 0.1536 
1.5 -0.0064 0.1479 0.1924 0.1526 

MLE* 0.0001 0.1442 0.3060 0.1315 
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contamination part) gives the mean and the standard deviation of the correspond- 
ing minimum Hellinger distance estimators (MHDEs) of # (for different values of 
h) assuming that a2 is known to be i. The Newton-Raphson algorithm was used 
to solve all the optimization problems in this paper. Simpson's i/3rd rule was 

used to evaluate the integrals numerically. The MHDE is clearly highly efficient 
at all levels of h. 

For the purpose of comparison, we can also determine the robust estimates of 
# using Huber's ~ function. Since ~2 = i, to get the robust estimates we have to 
solve 

- -  = 0 

i=1 

where the function Cb(x) = min{b, max[x,-b]} .  We choose 10 different values 
0.5, 0.6,..., 1.5 of b. Table 2 (the no contamination part) gives the corresponding 
values of the means of the Huber estimates of # and their standard deviations. A 
comparison of the MHDEs and the Huber estimates shows that among estimators 
that have the same level of bias under contamination (Section 4), the standard 
deviation of the MHDE is consistently smaller than the Huber estimates at the 
model. 

4. Robustness of the minimum disparity estimators: adjustments in trade-of[ with 
efficiency 

The robustness of the MDE can be understood in a large part through an 
investigation of the form of A(5*). Consider the BWHD family introduced in 
Section 2. In Fig. 1 we have plotted the residual adjustment functions for the set 
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Fig. 1. The residual adjustment  functions of the members of the blended weight 
Hellinger distance family. 

of these modified Hellinger distance functions. The residual adjustment functions 
have the form 

(4.1) A~(5*) = 5*(av~ ~ +  1 + 6 ) - 2  + 2 5 . 2 ( a V ~  + 1 + &)-a. 

The plot of the residual adjustment functions and equation (4. i) carry the following 
important information (for more details see Lindsay (1994)): 

I. The curvature at 0, A2 = XI(0) is a measure of the second order efficiency 
of the method (Lindsay (1994)), with A2 = 0 giving full second order efficiency in 
the sense of Rao (1961). (For ~ = I/3 in BW~D~, we also have A'(0) = 0, a 

form of third order eificiency.) 
2. The Pearson residuals are bounded below by -i, and -i occurs only when 

f*(x) = O. The value of A(-I) then reflects the impact (relative to maximum 
likelihood) of having holes in the data--sparse data where one would expect more 
observations. 

3. The Pearson residuals can be made arbitrarily large for a fixed value of 
f*(x) making m*Z(x ) very small. If we interpret f* (x) as being large in the neigh- 
borhood of an observation, then we might say an observation is surprising if f* (x) 
is large and m*~(x)is small. A residual adjustment function such as that  for the 
Hellinger distance thus downweights surprising observations relative to maximum 
likelihood. The residual adjustment functions of the members of the B WHD fam- 
ily in the range a E [0, 1/3) curve in the opposite direction (at 5 = 0) as the 
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members of the BWHD family with a E [1/3, 1], and thus end up giving higher 
weight to surprising observations compared to maximum likelihood. 

4. For the BWHD~ family it can be seen that  A2 = A~(0) = 1 - 3 a  is 
also a measure of robustness, with larger negative values of A2 implying greater 
robustness against surprising observations. In Section 5 we provide a calculation 
that  demonstrates the general role of the curvature parameter A2 in asymptotic 
robustness properties. 

5. Suppose that the model has finite Fisher information. For residual adjust- 
meat functions of the BWHD~ class, for which A(5")/51/2 = O(1) as 5 --~ oc, 
there is a type of bounded effective influence in the following sense: If the data 
are contaminated at a fixed positive level c at point y, then the estimator stays 
bounded as y --~ oc, in fact converging to the estimator one would obtain ignoring 
the point y. 

These heuristic remarks concerning robustness will be substantiated first 
through simulation; the theory will be postponed until Section 5. Consider the 
50 samples investigated in Section 3. We assume cr 2 = 1 and use the N(t, h 2) 
kernel. Each sample was contaminated by the replacement of 10% of the obser- 
vations (5 observations in this case) by y = 3. We considered the target value of 
the parameter to be the mean of the normal component (# = 0), and considered 
any systematic deviation from zero by our estimators to be their bias. Robust 
estimators should have low bias. Our theoretical analysis of Section 5 leads us 
to the following predictions. From Corollary 5.1, as the curvature parameter A2 
approaches zero from below, the estimator should simultaneously increase in effi- 
ciency at the model and increase in bias under contamination. Secondly, according 
to Corollary 5.1 and the calculations in Table 3, increasing h will make the MDE 
more like the MLE and hence will increase the bias under contamination. The 
simulation results verified these predictions. The mean and the standard deviation 
of the MLE of # for the 50 contaminated samples were 0.3060 and 0.1315 respec- 
tively. For the blended Hellinger distance A2 is negative for a > 1/3 and increases 
in absolute magnitude as ct increases. Figure 2 is a visual description of the bias 
of the minimum blended weight Hellinger distance estimator (MBWHDE) of # for 
three different values of a (1/3, 0.5 and 0.7) and for values of h from 0.1 to 0.9. 
The effect of a and h on bias is evident in Fig. 2. 

In Fig. 3 we graphically represent the effect of a on the mean and the standard 
deviation of the MBWHDE of #. We fixed the value of h at 0.5. The graph 
clearly shows that  an increase in a reduces the bias while increasing the standard 
deviation. It also shows that  the effect of a on the bias is much greater than on 
the standard deviation--the price for robustness is small in terms of mean squared 
e r r o r .  

The next investigation regards a further theoretical prediction (Section 5) that  
a large outlier y should have very little impact on the robust MDE. We now show 
that  in case of the MHDE, in fact, an outlying value fails to affect the estimation 
at all when it is totally inconsistent with the model. As the contaminating value y 
grows larger, its effect on the MHDE quickly dissipates. Interestingly, this happens 
even though the MHDE does not have a bounded influence {Yunction. In Fig. 4 we 
present the mean MHDEs of # corresponding to different contaminating values of 
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y, ranging from 3 to 12. For comparison, we present the mean MLEs also. The 
horizontal dashed line represents the mean MHDE in the original sample with no 
contamination. Figure 4 clearly shows that by the time the contaminant is as large 
as 7, the mean MHDE is practically equivalent to that for the uncontaminated 
case, showing the limitation of the influence function approach. A similar example 
can be found in Simpson (1987) for the Poisson model. Some theoretical results 
for this type of behavior of the MHDE are provided in Beran (197Z) and Lindsay 
(1994). 

We can obtain similar tradeoffs between bias and variance by using the Huber's 
estimator for the contaminated data (see Table 2). In these limited simulations 

the Huber estimators were slightly more efficient than the MHDE for the same level 
of bias. However, there are several points in favor of the methods of this paper. 
First, there is superior efficiency at the normal model. Secondly, our methods 
allow for simultaneous efficient estimation of the scale parameter. Finally our 
approach clearly allows the extension of robust methods to models that do not 
have location-scale parameters. 

Finally we investigate the effect of not knowing cr2 on the estimation of #. 
In Fig. 5 we have presented the values of the mean and the standard deviation 
of the MHDEs of # over the 50 samples, 10% contaminated by the value 3. We 
have presented the unknown variance and the known variance cases in the same 
graph for comparison, using the values 0.2, 0 .3 , . . . ,  0.9 for h. In general the bias 
of the MHDE is higher and the standard deviation is lower than the case when 
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the variance is known. It appears that by choosing a considerably more robust 
estimator one can attain the same level of bias reduction for a2 unknown as for 
cr 2 known, with low cost in variance. 

5. Inf luence curve analysis 

In this section we will show that al l  the MDEs under consideration (including 
the MLE*) have the same influence function at the model. In addition to sug- 
gesting their asymptotic equivalence it demonstrates that the influence function 
can have severe shortcomings as a measure of the effect of contaminations. We 
also show that a second order prediction of bias exhibits the important role of 
the estimation curvature parameter A2 in determining the robustness of the esti- 
mator. Our analysis will also clarify the effect of h on robustness. Let T denote 
the minimum disparity functional. By Fisher consistency, T(Mz) =/3.  Suppose 
that the true cdf is S(x), with density s(x) not necessarily in the model, and let 
T(S) = ~8. We define the influence function of the functional T at a cdf S by first 
defining S~(x) = (1 - e ) S ( x ) +  eI[x > y] and then letting the influence function be 
T'(y) = T'(S, y) = °T(Se)I~=o. I represents the indicator function. 

Let Vj and Vjk represent the partial derivatives with respect to ¢?y and fly, 
~k and write ~tj(x,/3) = Vj lnrn}(x) and ~tjk(X,/3) = Vjk lnm}(x).  Also let 

f J * u; (t, 13) = k(x; t, h)~tj (x,/3)dx = Vj in m~(x)k(x, t, h)dx, 
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Uyk(t,/3 ) = k(x;t,h)~jk(x,/3)dx = Vjk lnmZ(x)k(x,t ,h)dx.  

J*(/3) is the p x p matrix whose jk-th element is given by Ez[-u~k(X,/~)]; it is 
nonnegative definite as it is the information matrix corresponding to a random 
variable with pdf m*Z(x ). Let s*(x) = f k(x;t, h)s(t)dt be the kernel smoothed 
version of s(x). Let 5*(x) = s*(x)/m*~(x) - 1. We will define J*~(/3 s) to be the 
p x p matrix whose jk-th element is given by 

/A'(5*)~tj(x,/~s)~tk(x,/3S)s*(x)dx-/A(5*)Vjkm*~s(x)dx 

and let v*(t,/3 ~) be the p-dimensional vector whose j - th  component is 

/ 9Ok(x; ,h)dx- f 90s*(x)dx 

Under the above definitions, a straightforward calculation gives the following re- 
sult. 

LEMMA 5.1. Let S(x) be the true distribution not necessarily in the model. 
For the minimum disparity functional T, let T(S) =/~s. Then the influence func- 
tion o fT  has the form T'(y) = [J*S(~s)]-lv*(y, ~ ) .  If S = M~o for some/3o, then 
the above reduces to T'(y) = [J*(/3o)]-lu*(y,/3o). If in addition k is a transparent 
kernel for the family MZ then we get T'(y) = [I(flo)]-lu(y, flo), where I(fl) is the 
Fisher information about fl in mz.  

If T is the minimum disparity functional and Mz,~(x) = ( 1 -  c)Mz(x)+ eI[x > 
y], then the bias in estimation is AT = T(Mz,~) - T(Mz) = T(MZ,~) - /3.  For 
the estimator to be robust it is necessary that  AT be small. Expanding the bias 
in a Taylor series we get that  the first order approximation to the bias as AT = 
T(Mz,~ ) - /3  ~ eT'(y). For the mean parameter in the one parameter exponential 
family, in the transparent kernel case, the influence function of all MDEs at the 
model is T'(y) = ( y -  #); thus predicted bias is unbounded. Yet simulation results 
show that  for some disparities like the Hellinger distance the actual bias is much 
lower than the predicted bias. For the MLE* the predicted bias is exact, indicating 
that  the actual biases for some disparities are lower than the bias of the MLE*. 
A second order expansion of the bias function can help explain this behavior if 
the second order term in the expansion is large in magnitude and opposite in 
sign to the first order term, thus balancing its effect. Consider the estimating 
equation f d(6;(x))Vm*~(x) = 0 where fl~ = T(S~) and 5*(x) = (s*/m*z~) - 1. 
For simplicity, we now let S be in the model and look at the case where fl is a 
scalar. Evaluating the second derivative of the above estimating equation at e = 0 
we get the following theorem. 

THEOREM 5.1. Let T"(y) = ~-~2T(Mz,e)I~= o. Then for an estimating func- 
tion of the type f d(5*)Vm*~(x)dx, we have [/ ]1 

T"(y) = T'(y) (t2(x,/3)m*~(x) {fl(Y) + A2f2(y)}, 
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Table 3. Values of f2 (y) for the normal example. 

Y 

h 2.0 2.5 3.0 3.5 4.0 4.5 

0.10 43.997 146.572 606.299 3119.198 20274.770 168193.646 
0.20 17.889 64.779 277.450 1424.326 9065.688 73008.995 
0.30 9.419 37.173 163.052 823.770 5052.851 38780.168 
0.40 5.458 23.463 104.229 512.146 2987.208 21510.281 
0.50 3 . 3 2 5  15.507 69.046 326.917 1794.768 11978.329 
0.60 2 . 0 9 5  10.521 46.536 210.925 1082.376 6638.372 
0.70 1 . 3 5 6  7 . 2 6 1  31.682 136.914 654.207 3668.817 
0.80 0 . 8 9 9  5 . 0 7 5  21 .734  89.400. 397.326 2033.806 
0.90 0.609 3 . 5 8 5  15 .019  5 8 . 8 1 3  243 .401  1138.232 

where 

fl(Y) = 2Vu* (y, ~) - 2Ez[Vu*(X, ¢~)] + T'(y)Ez[V2u*(X,/3)], 

and 

f2(Y)=[u*(y, j3)] -~ [/~2(x,/3)m*~(x)dx] [f 1 
- 2 f + f 

COROLLARY 5.1. Suppose that all the conditions of Theorem 5.1 hold. As- 
sume that the model is a one parameter exponential family, the kernel k is trans- 
parent, and/~ is the mean value parameter. Then fl(Y) is zero and T"(y) = 
A2T'(y)f2(y). 

PROOF. In the one parameter exponential family the transparent kernel gives 

fl(Y) = C { 2 W ( y ,  ~) - 2 E [ W ( X ,  ~)] + T ' ( y ) E [ V ~ ( X ,  ~)]} = Cg(y ,  ~). 

The  quan t i ty  g(y, fl) has been shown to  be  zero in Lindsay ((1994), Corol lary 4). [] 

In the one p a r a m e t e r  exponent ia l  family, if f2 (Y) is posi t ive and A2 is negative,  
the  second derivat ive in the  Taylor  series approx ima t ion  of the  bias will have 
sign opposi te  to the first. For values of e where the  first and  the  second order 
approx imat ions  differ substantial ly,  the  second order approx ima t ion  can predict  a 
much smaller bias t h a n  the  first. 

I t  is not  obvious t ha t  f2(Y) is necessarily posit ive for all y under  any  model.  
In Table 3 we present  some numerical  calculat ions for the  N ( # ,  1) model  wi th  the  
t r anspa ren t  kernel we have used in Sections 3 and  4. We have de te rmined  the  
values of f2(Y) for several choices of h and y, using the  t rue  value 0 of #. The  
following points  deserve mention.  First ,  the  entries in Table 3 are all positive. 
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Secondly, the value of f2(Y) increases in magnitude as the absolute value of y 
grows large (making it a more surprising value). So for such values of y, the 
balancing effect of the second order term will be stronger. Finally, the value of 
f2 (Y) decreases with h, indicating stronger robustness for a small value of h. Thus 
for finite samples, more smoothing will mean higher efficiency and higher bias. 

6. Asymptotic properties 

In this section we will establish important asymptotic results involving the 
minimum disparity estimators, namely consistency and asymptotic normality. 
Subscripts j ,  k and l will represent the partial derivatives with respect to flj, 
~k and/~l. Also let 5*(x) = (s*(x) - rn*~(x))/m*~(x) be the Pearson residual cor- 
responding to s*(x) and ,3 s be the unique value of/~ which solves the minimum 
disparity estimating equation. Let J*(~) and J*S(/~*) be as in Section 5. Many 
of the proofs in this section closely follow the methods of Simpson (1987) and 
Lindsay (1994) and will only be briefly outlined. 

LEMMA 6.1. Provided it exists, Var(f*(x)) = ~A(x), where A(x) is given by 

A(x) = f k2(x; t, h)s(t)dt - [s* (x)] 2. 

1 n PROOF. Note that A(x) = Var(k(x, Xi ,h)) .  As f*(x)  = n ~ = l k ( x ' X i ,  h) 
has the form of a sample mean, the result follows. [] 

Assume that the kernel function k is bounded. That  is, assume k(x; t, h) < 
N(h),  with N(h) < ~ ,  where N(h) may depends on h, but not on x or t. From 
Lemma 6.1 it follows that A(x) < N(h)s*(x). 

LEMMA 6.2. nl/4(f*U2(x) - 8 " 1 / 2 ( x ) )  ---+ 0 with probability 1 if A(x) < oo. 

PROOF. Using the central limit theorem we get n l / 4 ( f * ( x )  --  8 * ( X ) )  --+ O. 
The result then follows by looking at a Taylor series expansion of the above. [] 

DEFINITION. The residual adjustment function A(5*) will be called regular, 
if it is twice differentiable and A'(5*) and A"(5*)(1 + 5") are bounded on [-1, c~). 

In the following proofs it will be easier to use the Hellinger residuals rather 
than the Pearson residuals. We define the Hellinger residual A* as 

A* f.1/2 
- -  1 .  

m'l~ 2 

The Hellinger residual A~ is obtained by replacing f* by s* in A*. Let Yn(x) = 
hi/2 (Z~* (x) - As* (x)) 2. 

LEMMA 6.3. For any k E [0, 2] 
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(i) E[Y~] < E[15* - 5*l]kn k/2 << (A1/2(x)/m*~(x))k, 
(ii) El15* -~s*l] < (/~l/2(Z)/772}(Z))" 

PROOF. The first part of the (i) follows by using the result that for a, b > 0, 
(v ~ - v~) 2 < (a - b{. The second part follows by an application Liapounov's 
inequality. For part (ii), note that 

The result then follows from Liapounov's inequality and Lemma 6.1. [] 

LEMMA 6.4. l i m ~  ElY  p] = 0 for p E [0, 2). 

PROOF. From Lemma 6.2, Yn -~ 0 in probability. Using Lemma 6.3(i), 
sup~ E[Yg] is bounded for p E [0, 2). The result then follows by Chung ((1974), 
Theorem 4.5.2). [] 

Let a~(x) = A(~*(x)) - A(~*(x)) and b~(x) = (~*(x) - (~:(x))A'(52(x)). Also 
let % = f nl/2(a~(x) - b~(x))Vrn*z(x)dz. At this stage we will need to assume 
that 

f 9)Ida: < (6.1) c o .  

We then have the following result. 

LEMMA 6.5. I f  A is a regular RAF  and (6.1) is satisfied, E[%[ -~ 0 as 
f t--+ O0. 

PROOF. Let 7~(x) = nl/2la~(x ) -b~(x)l .  From Lemma 23 (Lindsay (1994)), 
E(-z~(x)) < BEIY~(x)J for B > 0. By Lemma 6.4, E(T~(x)) --+ O. Now 

<_ f 
By assumption (6.1), the integrand in the above equation can be bounded by an 
integrable function. Thus by dominated convergence theorem the result holds. [] 

It follows from the last lemma and a simple application of Markov's inequal- 
ity that 7n -+ 0 in probability. Next we will use the limiting distribution of 
hi~ 2 f b~(x)VmS(x)dx in place of that of n 1/2 f an(x)Vm*z(x)dx. This is justified 
by the above result. 

COROLLARY 6.1. Suppose that V = Var(f  k(x ,X ,  h)d'(5*(x))~t(x,/3)dz) is 
finite and (6.1) is satisfied. Then for a regular R A F  

/[A(5*) - A(52)]Vm*~(x)dx --* N(O, h i~  2 V). 
J 
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PROOF. The result follows by using Lemma 6.5 and a simple application of 
the central limit theorem. [] 

Next we present some regularity conditions. We do this in terms of rn}, which 
makes the conditions much simpler than trying to relate them to the original 
density m~ directly. Technically however, we should remember that there is a 
kernel involved and the choice of the kernel should be made in such a way that 
the following conditions hold. 

DEFINITION. We will say that the kernel integrated family of distributions 
is smooth if the conditions of Lehmann ((1983), p. 409, p. 429) are satisfied with 
m*~(x) in place of f (x) .  Also suppose that the conditions 

hold for all j ,  k and I in a neighborhood a; of/3~ and Mjkl (x), Mjk,l (x) and Mj,kj (x) 
have finite expectations with respect to m}(x) for all/3 in w. The true density 
s(x) will be called compatible with m~(x) if s(x) > 0 on the common support of 
m~(x) and the functions M y ,  Mjk,i, Mj,k,l have finite expectation with respect 
to s*(x); in addition (6.1) holds and the integrals f s*l/2(x)l 5(x)ll k(x)ldx and 
f s*l/2(x)l~tjk(x)ldx are finite for all j and k. 

THEOREM 6.1. Assume that the residual adjustment function A(5*) corre- 
sponding to a particular disparity measure p is regular, m~ is smooth, s(x) is 
compatible with rn~ and the matrix J*~(/3*), as defined in Lemma 5.1 is positive 
definite. Then there exists a consistent sequence of roots/3~ to the minimum dis- 
parity estimating equations. The asymptotic distribution of nl/2(/3~-/3~) is M V N  
with mean 0 and variance [J*S(/38)]-lV~[J*S(/3s)]-i where V8 is the quantity V in 
Corollary 6.1 evaluated at/3 =/3~. 

PROOF. The proof is similar to the proof of Theorem 31 in Lindsay ( 1 9 9 4 ) -  
which utilizes the techniques of Simpson (1987)--if we replace sums by integrals. [] 

COROLLARY 6.2. Assume the conditions of Theorem 6.1. In addition sup- 
pose that the true distribution S = M~ for some/3 E ~ and k is a transparent 
kernel for the model family. Then for the MDE /3,~, nU2(/3n - /3)  has an asymp- 
totic normal distribution with mean 0 and variance [i(/3)]-1, where I(/3) is the 
Fisher information about/3 in m~. 

PROOF. When S = M~ and k is a transparent kernel for the model family, 
we get Vs = Varz(u*(X, fl)) = CI(f l)C T and j .s(fls) = j . ( f l )  = CI(fl). The 
result then follows by substituting these expressions. [] 
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7. Some further issues 

7.1 Invariance of the minimum disparity estimators 
Although one of our themes is that when the kernel is appropriately chosen 

the selection of the smoothing parameter h plays a minor role in the asymptotic 
properties of the procedure, it has been seen to be a more important factor in the 
robustness properties. As such, although we no longer need to force h to go to zero, 
we will want to choose it in such a way that meets important statistical criteria. In 
particular, in the normal model we will want the estimators of p and ~r 2 to have the 
correct equivariance properties under location and scale transformations. In this 
section we show that if we let h be chosen, call it h, as a fixed multiple of a scale 
invariant/location invariant estimator ~ of scale, then the resulting estimators have 
the right transformation properties. The asymptotic properties proved in Section 6 
will still hold provided h --* h0 > 0 almost surely as n -~ ee. If we choose ~ to be 
robust, we then expect to preserve the overall lack of sensitivity of the procedure 
to outlying observations. 

As we will be using different values of h, different parameters, and different 
variables, we first define some notation. Let X 1 , . . . ,  Xn be the original variables 
from a location scale model with mean p, and scale a. Let W1, . . . ,  W~ be the 
transformed variables, where W = aX + b. If we use a fixed multiple of a robust 
scale estimator for h, then the bandwidth h~ obtained from the W observations 
equals ah~, a scale change of the bandwidth for the X observations. Let the kernel 
density estimator be expressed as: 

f*(x l X, h~) = 1 K x 
X =I 

The parameters in the definition of f* indicate which set of variables and what 
smoothing parameter has been used. Similarly we can define f*(x  I W, hw). Let 

(~11~ ( : 2 )  (/~21"~ (a~Ar-b~ 

Let m* (x ] hx,/~1) be the smoothed model when the smoothing parameter hx is 
used and the parameter is/31. Similarly we can find rn*(x I ~,,/32). Also 

6*(x]X, hx,/31)= f*(x ] X,]zx) _1. 
I  x,31) 

Similarly 5*(x I W, hw,/32) can be defined. 

PROPOSITION 7.1. Under the above definitions, 

f ] ]  tx,/ l)dx 

=/G(6*(x I I 
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PROOF. L e t w = a x + b .  Then 

(7.1) ( f . ( w  l W , ~ )  = 1 E  I__K w 

= - 1 E ~ K ( a x + b - a X ~ - b )  
n ah~ ahx [1 ( ?)] 1 E l K  x 

_- l [ f * ( x  I X, iz~)]. 
a 

Using the X observations, the smoothed model m* is nothing but the density 
of the convolution X + hxZ where hx is the bandwidth and Z is a standard 
normal random variable, independent of X. Similarly, using the W observations, 
the smoothed model is the density of aX + b+ h~Z = a(X + h x Z ) +  b, a location- 
scale change of the former. Let w = ax+b. As the density of a location scale model 
with location parameter 0 and scale parameter r is of the form r - l f ( r - l ( x -  0)), 
an investigation of this form shows that 

(7.2) ,~*(w I k~,92) = 1 . ( ,  I h,,91). 
a 

Combining (7.1) and (7.2) gives 

~*(X f X,~tx,~l) = (~*(~/)[ W~hw,/~2) 

which upon substitution yields 

f c(~*(~ I w, hw,9~))-~*(~ I £~,9~)d~ 

= / I I  x,91)d(ax +b) 

[] 

Our desired result is now the following simple corollary. 

COROLLARY 7.1. If t31 is the parameter value where the minimum is achieved 
when the X observations and ]z~ is used, then ~2 must be the value where the 
distance will achieve its minimum when W and hw is used. Thus the estimators 
will be equivariant. 

7.2 Estimation of standard error 
A practical implementation of the methods described herein requires a useful 

method for constructing standard errors and hypothesis tests. In this regard we 
note that Basu (1993) has turned the disparity measures into test statistics analo- 
gous to the likelihood ratio statistics, and developed the corresponding asymptotic 
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distribution theory. Simpson (1989) and Lindsay (1994) have also discussed tests 
of hypothesis based on disparity measures. As to standard errors, we have from 
Theorem 6.1 an explicit formula for the asymptotic variance of the parameter 
estimates as a function of the true distribution s(x). These can be consistently 
estimated by using the empirical distribution F(x)  in place of S(x), effectively 
replacing s* (x) by f* (x) wherever it appears. 

Let/3 be the minimum disparity estimator of/3 and 5*(x) = f*(x)/m~(x)- 1. 
Also let J represent the p x p matrix whose jk- th  element is given by 

f A' (6" (x))gj (x, fl)ftk (x, ~)f* (x)dx - f A(5* (x))Vjkm~ (x)dx. 

In addition, let 1) be the p x p matrix 

n 

1 x--, ^.^.T 
n 1 2--'vivi 

i=1 

where ~ is the p-dimensional vector whose j - th  element is given by 

Then the standard error of the parameter estimates can be estimated by J - l l ) j - 1 .  

7.3 Numerical considerations 
The minimum disparity estimating equations (2.7) will usually be nonlinear 

and numerical techniques will be required to solve them. As such, the simplicity 
and the rate of convergence of the iterative algorithm is of prime importance. Since 
it involves a large number of numerical integrations and the calculation and inver- 
sion of a p-dimensional Hessian matrix, the numerical difficulty associated with 
the Newton-Raphson algorithm quickly increases as p, the number of parameters, 
increase. Here we briefly explain an iterative reweighting technique which vastly 
simplifies the computation of the MDEs without sacrificing the speed of conver- 
gence. See Basu and Lindsay (1993) for a detailed description of this algorithm 
and several examples of its application. 

Since f Vm*Z(x)dx = 0, the estimating equation (2.7) can be rewritten as 

- f + 1)V. }(x)dx = 0 

for any constant )L or 

r , 
(7.3) /w(x )  m~x) f (x)dx=O 

where w(x) -- [A(~*(x)) - A]/(5*(x) + 1) represents the weights. Note that (7.3) 
is a weighted version of the estimating equation of the MLE*. If m} is in the 
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exponential family, a relation like Vm*fl(x)/m*fl(x) = K(fl)[S(x, fl) - f l]  is often 
holds, so that we can compute fl by iteratively solving the fixed point equation 
fl = T(fl), where 

~_(~) = f w(x)S(=, ~)f*(x)dx 
f w(x)f* (x)dx 

In general this algorithm converges slower than the Newton Raphson algorithm, 
but if we choose )~ = - 1  (Basu and Lindsay (1993)) the rate of convergence of this 
method is comparable to the Newton-Raphson method. 

Acknowledgements 

Professor Lindsay's research was partially supported by the National Science 
foundation under grant DMS 9106895 and by a Humboldt Senior Scientist Re- 
search Award. 

REFERENCES 

Basu, A. (1993). Minimum disparity estimation: applications to robust tests of hypotheses, 
Technical Report, Center for Statistical Sciences, University of Texas at Austin. 

Basu, A. and Lindsay, B. G. (1993). The iteratively reweighted estimating equation in minimum 
distance problems, Technical Report, Center for Statistical Sciences, University of Texas at 
Austin. 

Beran, R. J. (1977). Minimum Hellinger distance estimates for parametric models, Ann. Statist., 
5, 445 463. 

Chung, K. L. (1974). A Course in Probability Theory, Academic Press, New York. 
Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. 

Ser. B, 46, 440-464. 
Lehmann, E. L. (1983). Theory of Point Estimation, Wiley, New York. 
Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance 

and related methods, Ann. Statist. (to appear). 
Rao, C. R. (1961). Asymptotic efficiency and limiting information, Proc. Fourth Berkeley Symp. 

on Math. Statist. Prob., 1, 531-546. 
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and 

Hall, New York. 
Simpson, D. G. (1987). Minimum Hellinger distance estimation for the analysis of count data, 

J. Amer. Statist. Assoc., 82, 802-807. 
Simpson, D. C. (1989). Hellinger deviance test: efficiency, breakdown points, and examples, J. 

Amer. Statist. Assoc., 84, 107-113. 
Tamura, R. N. and Boos, D. D. (1986). Minimum Hellinger distance estimation for multivariate 

location and covariance, J. Amer. Statist. Assoc., 81,223-229. 


