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A b s t r a c t .  Stochastic expansions of likelihood quantities are a basic tool for 
asymptotic inference. The traditional derivation is through ordinary Taylor ex- 
pansions, rearranging terms according to their asymptotic order. The resulting 
expansions are called here ezpected/observed, being expressed in terms of the 
score vector, the expected information matrix, log likelihood derivatives and 
their joint moments. Though very convenient for many statistical purposes, ex- 
pected/observed expansions are not usually written in tensorial form. Recently, 
within a differential geometric approach to asymptotic statistical calculations, 
invariant Taylor expansions based on likelihood yokes have been introduced. 
The resulting formulae are invariant, but the quantities involved are in some 
respects less convenient for statistical purposes. The aim of this paper is to 
show that, through an invariant Taylor expansion of the coordinates related to 
the expected likelihood yoke, expected/observed expansions up to the fourth 
asymptotic order may be re-obtained from invariant Taylor expansions. This 
derivation produces invariant ezpected/observed expansions. 

Key words and phrases: Asymptotic expansions, index notation, invariant 
Taylor series expansions, likelihood, tensors, yokes. 

1. Introduction 

Let jc  = {p~ : co E f t  c_ ~a}  be a pa rame t r i c  family of probabi l i ty  dis t r ibut ions  
defined on a sample  space/12 and domina ted  by a a-f ini te measure  #. The  pa r am-  
eter  space ~t is assumed to be  an open n o n - e m p t y  subset  of ~a.  Let  us denote  by 
p(x; co), x ~ 2(, the  densi ty of P~ with  respect  to # and by l(a:) = logp(x;  co) the  
log likelihood funct ion based on the sample  da t a  x. We assume tha t  the log likeli- 
hood funct ion is a smoo th  function of the p a r a m e t e r  and t ha t  the  usual addi t ional  
regular i ty  conditions hold ensuring, in par t icular ,  t ha t  the  m a x i m u m  likelihood 
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estimator (MLE) & exists and that it is uniquely defined as the solution of the 
likelihood equation Vl(c0) = 0. 

Let the statistic f(&) be a parametrization invariant function (a scalar function 
in the language of differential geometry) defined on a copy of ft that represents 
the range space of the MLE. The maximized log likelihood is the most notable 
instance. Stochastic expansions for f(&) are basic for higher-order asymptotic 
inference. However, the ordinary Taylor formula for f(&) is not parametrization 
invariant, depending on the coordinate system adopted for the statistical manifold 
jc. Let us assume that f(&) is of order Op(n ~) under repeated sampling of size n. 
An important aim of a 'geometric' stochastic calculus is to obtain an asymptotic 
expansion for f(c?) typically of the form 

(1.1) f(&) = f(w) + bl + b2 + b3 + b4 + Op(n~-5/2), 

where each term b,~ is a scalar function of order Op(n~-'~/2), rn = 1, 2, 3, 4; if f(&) 
is a more general geometric object, for instance a tensor, it is desirable that each 
term bm should follow the same transformation law as f(&). A first possibility for 
obtaining the geometric expansion (1.1) is through the ordinary Taylor formula 
and a posteriori elicitation of geometric ingredients; a second possibility is to 
use an invariant Taylor series expansion (Barndorff-Nielsen (1987, 1989), see also 
Blmsild (1990)), namely a Taylor expansion defined on the manifold 5 (Murray 
(1988), Murray and Rice ((1993), Chapter 9)). 

Invariant Taylor series expansions are intrinsically geometric and rely upon 
the definition of an appropriate yoke (Barndorff-Nielsen (1987)). Two instances of 
a yoke are relevant for asymptotic statistical calculations: the observed likelihood 
yoke and the ezpected likelihood yoke, which are both defined in terms of the log 
likelihood function. The former yoke gives rise to observed likelihood expansions, 
where the coefficients depend on mixed derivatives of the log likelihood function 
and the coordinates are products of elements of the score vector. The latter yoke 
gives rise to ezpected likelihood expansions. Their coefficients consist of moments 
of log likelihood derivatives together with derivatives of f(w); the coordinates are 
products of expected values of elements of the score vector, where the expectation 
is taken under c~. Examples of expansions of both kinds are given in Barndorff- 
Nielsen et al. (1991a). A possible difficulty connected with observed expansions is 
that  the calculation of their coefficients requires the specification of an auxiliary 
statistic. On the other hand, in expected expansions, coordinates are defined 
through an integration and the resulting expressions are not easy to handle nor to 
interprete; moreover, the summands in each invariant term brn are not in general 
of the same asymptotic order in n. 

For statistical applications, the most useful structure of a stochastic expansion 
would have coefficients analogous to those of the expected expansions and coor- 
dinates like those of the observed expansions. These requirements are met by the 
expansions considered in Lawley (1956), McCullagh and Cox (1986), McCullagh 
((1987), Chapter 7), Barndorff-Nielsen et al. ((1991a), Section 8). Following the 
last reference, here this kind of expansions is referred to as ezpected/observed like- 
lihood expansions. In this case, the built-in invariance of geometrically obtained 
expansions is lost and further manipulation is required for a geometric structure 
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to become visible. In McCullagh and Cox (1986) a technique is suggested for re- 
covering invariant terms in the expansion of log likelihood ratio statistics. Their 
contribution inspired much of subsequent work on invariant Taylor series in statis- 
tics. 

The purpose of this paper is to produce a geometric formulation for the ex- 
pected/observed expansions, relating them to the expected likelihood expansions. 
In particular, it is shown that they may be alternatively derived as expected like- 
lihood expansions with coordinates substituted by a suitable geometric expansion. 
Our derivation is bound to the first four asymptotic orders (which is, however, all 
that one is likely to need in practice). 

Section 2 contains some notation and background material. In Section 3 ex- 
pected/observed likelihood expansions are briefly reviewed following Barndorff- 
Nielsen et al. (1991a), while Section 4 deals with expected likelihood expansions. 
Section 5 introduces the expansion for the coordinates of the expected likelihood 
expansions that permits us to obtain the required geometric formulation of the 
expected/observed expansions. 

2. Basic notation and preliminaries 

Throughout the paper we use index notation and the Einstein summation 
convention (whenever an index appears twice or more in a product of symbols 
summation over that index is understood). Let us denote by co~,w~,... (r ,s  = 
1 , . . . ,  d) generic components of co. For a smooth real function f ( w ) ,  defined on f 
and expressed in coordinate form, we write 

0 
f ~ = f ~ ( w )  =~-~wrf(w), 

oq 2 

f ~  = f ~ ( w )  - Ow~Ow~ f ( w ) ,  

and so on. More generally, denoting by R,~ the set of indices rl " -  r,~ we write 

cQm 
= f R =  = . . .  

With reference to the log likelihood function l (w), l~ is a component of the score 
vector and i t s  = t ~  ( - - I rs )  indicates an element of the expected information matrix 
[i~]. We denote by i ~ an element of the matrix inverse of [i~] and define l ~ = i~Sl~, 
I r~ = l~l ~, I TM = lrlSl  t and so on. For moments of log likelihood derivatives we 
use the symbols p~ = E ~ ( l ~ ) , , ~  = E~( l~s ) , . . . , pR~ = E~(IR,~) and p~,~ = 
E~(l~ls) ,p~,~t  = E ~ ( l ~ l ~ t ) , . . . , p R , ~ , s  ...... uq = E~(IR,~lsn . . . l v q ) .  Observe that 
#rs = - - i t s .  Differentiating the identity #r = 0 one obtains a sequence of balance 
relations, known as the Bartlett  relations, the first instances of which are #~s + 
#r,s  = 0, #rs t  d -#r ,  st[3] d-#r , s , t  = 0. T h e  s y m b o l  [k] i n d i c a t e s  a s u m  over  k s i m i l a r  
terms obtained by suitable permutation of indices. 

Let ¢ be an alternative parametrization of ~c namely a one-to-one smooth 
function of cz with smooth inverse. We will denote the generic components of 
by ~a, ~ b , . . . ,  in contrast with the use of letters r, s , . . .  to denote components 
of w. Accordingly, a likelihood quantity denoted by indices a, b , . . .  is understood 
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as referred to the ~b parametrization.  A re-parametrization does not alter the 
log likelihood function itself while it affects log likelihood derivatives and their 
moments.  In particular, it is easy to see tha t  

(2.1) 

la ~- lrcora, 

r 8 l~b = 1T~cO~cOb + ITcO~b, 
T s t 7" 8 'V l~b~ = l~co~cobco~ + l~co~bco~ [3] + l~%b ~, 

where coat = OcOr/O¢ a' co~b = 02co~/0¢~0¢ b and so on. Evaluating joint moments 
up to the fourth order t ransformation rules of one of the following forms are 
obtained: 

( 2 . 2 )  

T 8 " T 8 
iab = ~a,b  = #r,Scoacob ~- Zrscoacob, 

T 8 t 
#a,b,c  ~ #r,s,tcoacobcoc, 

and 

(2.3) 

r S t r S 
# a b c =  ~rstcoacobcoc q- ~rscoabcoc [ 3 ] ,  

s t s r 

/ Cdtcou COt ~COrcos #a,b ,cd = [ # r , s , t u  c d -~ #r , s , t  cd) a b, 

and, finally, 

(2.4) r s t u r S t 
#ab,cd : ~rs,tucoacobcoccod ~- ~rs,tcoacobcocd 

T 8 t T 8 
q- [~r,stcoabcoccod -~- #r,scoabcocd" 

Moreover we have 

iab . r s ~ a ~ b  

( 2 . 5 )  (2.5) la r a = 1 % ,  

where ~b~ a = oca/oco T. 
Under re-parametrization, log likelihood derivatives and their moments  trans- 

form according to fairly regular patterns.  The simplest one is tha t  displayed in 
(2.2), (2.5) and tha t  obeyed by IT, where only multilinear combinations of the quan- 

COr t i ty  itself together with the Jacobian matrices [ 0], [¢~] are involved. Quantit ies 
tha t  follow a t ransformation rule of this kind are called tensors. To be specific, a 
collection of smooth real functions T R'~ = T Rr~ s ,  & (co) = T:) . . . :g  (co) is called a (m, n) 
tensor on 9 c if under re-parametrization it obeys the t ransformation rule 

(2.6) T Am r ~ R m q / ~ a l  a m  81 . . . .  c %  . . . co : . 
B n  ~ S n  ~ r l  

According to this definition, Ir is a (0, 1) tensor, 'iT, is a (0, 2) tensor, i T* is a (2, 0) 
r a tensor, U is a (1, 0) tensor. A (0, 0) tensor is a scalar. Since w~¢, = 5~, where 

the symbol 6~ denotes the Kronecker delta (5~ = 1 if r = s, 5~ = 0 if r ~ s), 
it follows immediately from (2.6) tha t  scalars formed by a suitable product  of 
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tensors (contraction) are invariants. For instance, iabl~Ib = C~Irls; in general, if 
T R~ is a (m, 0) tensor and Us,~ is a (0, m) tensor, their contraction T R'~ URm is 
invariant. Tensors are therefore particularly appropriate tools in writing geometric 
expansions: if we are able to write an expansion in terms of tensors, invariance 
may be easily established. 

It is apparent from (2.1), (2.3) and (2.4) that higher-order log likelihood deriva- 
tives and their moments do not usually transform as tensors. Since these quantities 
constitute the basic ingredients of the usual expansions considered in statistics, 
the study of their geometric structure represents a core problem for obtaining 
invariant Taylor series. Two main approaches have been followed. The first is 
coordinate-bound and relies upon the theory of strings developed in Barndorff- 
Nielsen (1986) and Barndorff-Nielsen and Blaesild (1987); tensors are recovered 
from strings, namely from quantities obeying transformation laws like (2.1), (2.3) 
and (2.4), by a process referred to as intertwining, which generalizes ideas in 
McCullagh and Cox (1986). The second approach, stemming also from McCullagh 
and Cox (1986), is pursued in Murray (1988), where a coordinate-free theory of 
geometric Taylor series is presented; the basic concept is that of coordinate strings, 
namely of local coordinate systems such that coefficients in Taylor series for scalar 
quantities transform as tensors. The close relation between this approach and the 
theory of intertwining is elucidated in the same paper. In this work we follow the 
former approach, which is of algorithmic nature and closer to the usual view in 
doing likelihood calculations. 

Sequences of likelihood quantities such as {/R.~} = {/Rm(w), m = 1, 2 , . . .} ,  
{pR.~} = {#R,~(co),m = 1,2, . . .} ,  {#r,S,,} = {pr,S,~(a~),m = 1 ,2 , . . .}  and 
{#r,~,T~ } = {#~,~,T.. (a J), m = 1, 2 , . . .}  which follow transformation rules that gen- 
eralize (2.1), (2.3) and (2.4) are all instances of co-strings, a co-string of eovari- 
ant degree k is a (possibly finite) collection of smooth real functions {CRkSr~ } = 
{C~l...~k~l...s,~ (w), m = 1, 2, . . .} ,  symmetric in the indices S l , . . . ,  Sm and obeying, 
under re-parametrization, the transformation rule 

(2.7) CAkB,~:{~h=I B.~/hE CRksl'"ShO')SBlml'''O')SBhmh}O')~all"''O3rakk" 
The symbol Bm/h  indicates summation over all ordered partitions of B,~ into h 
non-empty subsequences Bmx, . . . ,  B,~ h, such that the order of indices in each of 
these subsequences is the same as their order in B ~  and, for j = 1 , . . . ,  h - 1, 
the first index in Bmj comes before the first index in B~j_}_I as compared with 
the ordering within Bin; the sum is defined as equal to zero when h > m. The 
sequences {1R.~ }, {#R.~ } as well as {HRm = lRm -- PR.. } are co-strings of covariant 
degree zero, while the sequences {#~,s~} and {#~,~,T~} constitute co-strings of 
covariant degree one and two, respectively. Notice that the first element CRk~ of 
a co-string of covariant degree k is a (0, k + 1) tensor. 

The transformation rule of P~ , t ,  given by (2.4) is not of the form (2.7). 
Since PR~,s~ = E~(lR.~Is,), its transformation rule is obtained from the prod- 
uct of the transformation rules for IR,~ and ls.. The sequence {PRm,s~} = 
{pR.~,s~(aJ),m,n = 1, 2 , . . .}  is an instance of a double co-string (of covariant 
degree zero) whose general definition may be found in Barndorff-Nielsen (1986). 
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The process of intertwining operates on co-strings and double co-strings (and, 
more generally, on strings) to generate tensors. For instance, starting from a 
co-string {CR~ } of covariant degree zero a sequence of (0, m) tensors {tRy, m = 
1, 2 , . . .}  may be obtained from the recursive relations 

(2.8) 

C~ : t r ,  

C~s = t~s +/~'st~, 

c~s~ = t ~  + 9Lt~[3]  + ;~:s~t~, 

and so on. The sequence {tR.~} obeys the transformation law for tensors, (2.6), 
provided that the sequence of coefficients {~:~, Z~st,/~st~,...}, symmetric in the 
lower indices, transforms as a connection string, namely according to the relations 

(2.9) 
= ( Z ~ b ~  + ~b~)¢~, 

/~bcda = (/~stuWbWcWdr s t u + / 3 s t W b c W d [ 3 ] r  s t + Wbcd)¢r,r a 

~bcdea = (/~stuvWbWcWdO2er s t u v Jr ~stuO2bWcCOde[a]r s t u 

S ~ ~ r  s t ~ a + Zs~b~cd~ [4] + "s~c~d~[3] + ~ c ~ ) ¢ ~ ,  

and so on. It is convenient to put/~v = 5v, where 5 v is the Kronecker delta. 
An instance of a connection string is {/~,~} = {i~p~,i%}; it is used in 

McCullagh and Cox (1986) (see also McCullagh (1987), Section 7.2.3) to define 
a local parametrization such that log likelihood derivatives transform as tensors 
(McCullagh and Cox refer to log likelihood derivatives in such a parametrization 
as MSbius derivatives). 

For co-strings of positive covariant degree and for double co-strings inter- 
twining operates essentially in analogy with (2.8). Examples of tensors based on 
likelihood quantities obtained via intertwining are collected in Tables 1-3; their 
detailed description is deferred to Section 5. 

Table 1. Tensors ob ta ined  by in ter twining the  co-str ing { H R . ~  } wi th  respect  to the  1 connect ion 
1 

s t r ing  {G~.~} = { i r s p ~ , T ~ } .  

T r  = H~ = lr  

T r s  = H r s  - t t t , r s l  ~ 

T r s t  = H r s t  - i r i s #  . . . .  Hwt[3] - (# . . . .  t - i vw  # . . . .  #u , t t s[3]) l  u 

+ i v w i x Y ( t t  . . . .  # x , t u H w y [ 3 ]  + I~ . . . .  ~ x , t w H u y [ 1 2 ] )  

+ i ~ { ~  . . . .  ~ z , ~ [ 6 ] + p  . . . .  t~ . . . .  [ 4 ] - ~  . . . .  t 

- i ~ ( ~  .... ~ x , t ~ , ~ [ 3 ] + ~  ....  ~x,~,~[12])}z ~ 

--1 
i t s  N o t e .  The tensors  T / ~  wi th  respect  to the  - 1  connect ion s t r ing  { 6 Tm } = { t t s ;T~  } 

are obta ined  from the  tensors  T _ ~  replacing t tu,T.~ with  tt~;T . 
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Table 2. Tensors obtained by intertwining the co-string {,aT~ } with respect to the -1  connec- 
- - 1  

r i t s  tion string { G T,~ } = { ~;T~ }. 

Trs ---- - - % r s  

~-rstu = #rst~ + ttr;stu[4] + iv~v#v;~s#~;tu[3] - ivw~-rsv#w;tu[6] 

Table 3. Tensors obtained by intertwining the double co-string {#R,~;s~} with respect to the 
- - 1  

--1 connection string { G r } = {irSl~s;T~}. r m  

~-t.u ---- i tu 

TT2;u ---- ItT2;u -- t~u;T2 

TT3;u : #T3;u  -- # u ; T  3 -- iVW # v ; t l  t2 ( # w t 3 ; u  -- ~tu;wt3)[3] 

T T 2 ; U 2  : ~ T 2 ; U  2 - -  ivw~tv;U2~tT2;w 

TT3;U2 = P T 3 ; U 2  - -  i v w ( ~ T 3 ; v # w ; U 2  + # v ; t l t 2 # t 3 w ; U 2  [ 3 ] )  

+ ivwixv#v;tlt2ttx;U2ttt3w;y[3] 

7Te;U3 = #T2;U3 -- ivW(#T2;v#w;U3 + #V;UlU2#T2;u3w[3]) 

+ ivwixv#v;ulu2#T2;x#y;u3w[3] 

3. Expected/observed likelihood expansions 

Let f denote  a real-valued function defined in a ne ighbourhood around ~. 
Star t ing from Lawley (1956), the t radi t ional  way to find expansions of f (&)  around 

is to consider first the ordinary Taylor  expansion 

1 w ) r S  1 w ) r s  t 
(3.1) f ( & )  = f ( w )  + f , ( &  - w ) "  + - ~ f , , ( &  - + ~ f ~ , t ( &  - 

+ - + . . . ,  

where (& - ~)R,~ = (& _ w),l  . . .  (& _ w) ,~ .  An expansion for (~ - ~) r  is then  
obta ined by inversion of the Taylor  expansion around w of the left-hand side of 
the likelihood equat ion l~(&) = 0, namely of 

o o  

(3.2) + Z = o. 
k=l 

Let  us consider the quantit ies 

(3.3) 

(3.4) 

(3.5) g ~ .r8 
Sk : ~ g s s k "  
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Under repeated sampling, its and #Rm (rn > 2) are of order O(n) ,  lr and HR.~ 
are of order O p ( n  1/2) and by inversion of (3.2) we obtain 

(3.6) (& - w) ~ = A[  + A~ + A~3 + A~ + OR(n-5~2) ,  

where the term A~ is of order O p ( n - m / 2 ) ,  m = 1, 2, 3, 4. These terms are given 
by 

A~ = 1 ~, 

1 ~ l~ t A ;  = H2l  ~ + -~#~t , 

: + s ' -  + + , t # t v l - l s  t + #~stH~l~ t 1 ~ lSt~ 1 ~ ~ lSt~ 

r ~ ~ ~ s u r  uvTs  t 1_ + P v s ~ ; ~ i  t + ~ # , t H v  H ; l  A a =  H~H.~Hs  l + . ~ s ~ t  ° + H~vH~tl~t ~ ~ v ~ , ~ t  1 , ~ ~ st 
2 

1 r v w s t u  

1 r istuu ' 1 r v ,stuu' 1 r v lstuu' 
+ ~ t s t u u '  + -6~tsv~ttuu't + ~PstvPuu' 

1 , 1 , r V W 7S~UU r v w 1 8 ~  
+ ~ # . ~ # ~ t # ~  '~ + ~ # ~ # ~ t # ~ '  • 

Let f(w) be such that higher-order derivatives with respect to w may be de- 
composed as 

(3.7) f R ~ ( ~ )  = CR~ + FR~ m = 1 , 2 , . . . ,  

where ¢R,~ = E~( fR .~ (w) )  is of order O ( n  ~) and the deviation FR~ = fRm(w) -- 
CR.~ is of order O p ( n  ~-1/2)  or zero. The general form of the expected/observed 
likelihood expansion is obtained by substituting (3.6) into the Taylor expansion 
(3.1) of f(&) taking into account the decomposition (3.7). The resulting formula 
is 

(3.8) f(c2) = f(w) + B1 + B2 + B3 + B4 + Op(n3-5/2), 

where the terms B~ are of order O p ( r ~ - m / 2 ) ,  m : 1, 2, 3, 4 and are given by 

B~ = ¢~A[,  

A~ 1 A B2 = F~A~I+¢~ 2 +  ¢~,A~ ~, 

Ba F~A; + F~A[A~ + ¢~ 3 + ¢~sA[A~ + ¢~,A[A~A~ 

1 r s t r 1 r s 
B4 = F~A~ + F ~ A [ A ~  + ~Frs tAIAIA 1 + erA 4 + ~¢r~A~A~ + ¢ ~ A I A  3 
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Note that the pattern displayed by the quantities B,~ is simple and easy to ex- 
trapolate to higher-order terms. 

Example~ Expansion of the log likelihood ratio. If f(c?) = l(c?), the term /~1 
in expansion (3.8) is zero and we obtain 

(3.9) 

with 

1 
• 17"8 B2 = 7%~ "2 

- = B2 + B3 + B4 + 

1 .  rst 
B3 = + 

,. . ,.rstu 1 H.  rSt ~ H.~H,I  rs ~ I-~rst lrst . B4 = ~ (Prs tu  + O#rsv#tu) t + ~#rsv t I + + 

It is not difficult to check that B2, B3 and B4 are scalar functions. 

In general, if the function f is parametrization invariant it is desirable that 
each term B,~ in (3.8), m = 1, 2, 3, 4, turns out to be invariant. This fact is not 
guaranteed by the derivation of (3.8) outlined above, so that the transformation 
law of each term B,~ has to be investigated. Invariance of B1 and B2 in (3.8) may 
be established after some algebra. After extremely longwinded calculations the 
same result is seen to hold for Ba (Blmsild, personal communication). A direct 
check of invariance of B4 seems to be out of reach by hand calculations or by 
to date available computer algebra packages such as that described in Kendall 
(1992). Moreover, by this route invariance of terms in (3.8) appears to be a 
somehow fortuitous fact. In the following sections the elicitation of the geometric 
structure of the expected/observed expansion will be carried out by an indirect 
route, namely by comparison with the invariant Taylor expansion based on the 
expected likelihood yoke. 

4. Invariant Taylor series expansions; the expected likelihood expansions 

In Section 2 we recalled how the log likelihood function induces in a natural 
way a series of geometric objects defined on 5 c. The identity #~ = 0 together with 
the Bartlett relations, the metric tensor i~  and the connection string {i~#s,n.~ } 
are the most notable instances. Assuming a more abstract point of view, analogous 
geometrical structures on 5 c may be induced by the general class of scalar functions 
termed yokes (Barndorff-Nielsen (1987), Bleesild (1991)). 

Let ~ be a copy of f~ (typically f~ represents the range space of the MLE). 
Consider a smooth scalar function g(w, (z) defined on f t x  f~ and let us write 

where 0~ = O/OJ,  O~ = 0 /0~  ~, and in addition let us define 



658 LUIGI PACE AND ALESSANDRA SALVAN 

The function g is said to be a yoke if for every w 
( i )  = o ,  

(ii) [6~;~] is non-singular. 
For a recent review of differential geometries derived from yokes see Section 3 

of Barndorff-Nielsen et al. (1991b). In particular, a yoke gives rise to a family of 
strings and connection strings; consequently it induces a family of tensors (Bbesild 
(1991)). If g is a yoke, g; = {gR~;s, : m, n = 1, 2, . . .}  is a double co-string and a 
family of tensors based on g can be obtained via intertwining. We indicate with 

1 - 1  
{g~,,} and { g ~,,} the 1 and - 1  connection strings associated with the yoke g; 
they have, respectively, generic element 

1 
(4.1) m = 1,2 , . . .  

and 

6? .  ~8 
T ~ : 6  6T~;s 

--1 

T m =  6 6 s ; T m  

where 
--1 --1 --1 --1 --1 --1 --1 

=E E (4.4) g rs  6 r 6 s = 6 T ~  3 , 
rm Tm 1 Tm 2 ' rm Tm 1 rm2  

Tin~2 Tm / 3 

- 1  
and so on. If f is a scalar function, f Tm is a (0,  m) tensor. The invariant Taylor 
series expansion of f(c?) has thus the form 

(4.5) f(&) = f(w) + E 1 -} -R.~ J • 
m = l  

--1 
Prom (4.3), the first four instances of f Rm are 

--1 
f ~ = L ,  

- 1  - 1  

f ~  = f ~ - f ~ g  ~ 
--1 --1 --1 --1 

--1 --1 --1 --1 
f rs tu= frstu--  f v 6  v rv v 4 

--i --1 --1 --1 --i 
w v 

- f . ~ g  ~ gt~[3]-  f gt.[6] 7"8 TSV " 

(4.6) 

(4.2} m = 1,2, . . .  

where [g ~s] = [g~;s] -1. 
The quantity ~ = 6~gs;(W,~) is a (1, 0) tensor; products of like quantities, 

~R.~ = ~rl . . .  ~ . ~  play the role of 'tensorial coordinates' in invariant Taylor series 
expansions. The coefficients fR.~ appearing in ordinary Taylor expansions are 

--1 
replaced in invariant Taylor series expansions by 'tensorial coefficients' f u~. They 

- 1  
are the tensorial components of f with respect to the - 1  connection string { g ~m } 
and are defined recursively by the equations 

~ - - 1  --1 
(4.3) fT~ = f Rh g R~, 

h = l  
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Expansion (4.5) does not depend on the choice of the parametrization of ~-; 
of course it depends on the choice of the yoke. For statistical applications, two 
main instances of a yoke have been introduced: the expected likelihood yoke and 
the observed likelihood yoke. Expansions based on the former yoke turn out to be 
the most convenient starting point for the study of the geometric features of the 
traditional expected/observed expansions. 

The expected likelihood yoke is defined, in coordinate form, as 

(4.7) 

This yoke gives rise to the double co-string #; -- {#R,~;s~, m, n = 1, 2, . . .} ,  where 
#R~;s~ = GR~;S~. The quantities #R~;& are related to the joint moments 
#R~,s ...... u~ via the relations 

n 

(4.8) .Rm,s  = Z X ]  .R ,so  ..... 
h----1S~/h 

1 --1 
The 1 and - 1  connection strings {O~c~} and { ~ ~r.~} based on the expected 

yoke have, respectively, generic element 

1 

(4.9) G ~ '~ Tm ~- Z [.ts,Tm 

and 
--1 

(4.10) 0 Tm ---- ~ ~s;Tm 

m = 1, 2 , . . .  

m = 1 ,2 , . . . .  

The extended normal coordinates are products of the quantities ~r =/2r,  where 

(4.11) 

When & = & we write/2 ~ -- i~#s = irSEc~(ls(w)) and the invariant Taylor series 
expansion of f(&) based on the expected yoke may be expressed as 

(4.12) f(&) = f(w) + E -~. f R,~# , 

m=l 

--1 

where/2 R'~ = ] ~  r l  . .  • f~frn and the quantities f R~ denote the tensorial components 
of f with respect to the - 1  connection string {irs#,;T.~}. The first four instances 

--1 

of f Rm are obtained from (4.6) using (4.10). 
Two comments are useful in order to get a deeper insight into the impact in 

statistical applications of the expansion (4.12). 
First, the coordinates/2 r are rather unnatural from a statistical point of view: 

they are simply 1 r in natural exponential families but otherwise they are not sus- 
ceptible to a clear-cut interpretation and to closed form expression. 
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The second point is that (4.12) does not guarantee that the summands in 
--1 

each invariant term f R.~# R~ are exactly of the same asymptotic order in n. In 
view of (4.6), and more generally of (4.3), a derivative fR.~ with zero expectation 
causes to the corresponding summand a collapse of the order in n, from Op(n ~) 
to Op(n~-l/2). Consider for instance the expansion of the log likelihood ratio 
l(&) - / (ca) ;  fr  = l~ is of order OR(nil2), while f ~  = l~  is of order Op(n), so 

- 1  

that f ~/2 ~ is the sum of a quantity of order Op(1) and of a quantity of order 
Op(n-1/2). The implication of this second remark is that if, for some k > 1, 
contributions of order op(n z-k~2) are neglected, the term of order Op(n z-k~2) 
may lose invariance. 

The latter point raised above is simpler to treat and will be addressed first; 
a rearrangement which preserves invariance may be obtained in analogy to the 
reasoning leading to (3.8). The answer to the former point is less straightforward 
and is deferred to Section 5. Let us assume, in addition to (3.7), that the function 
f(cz) itself satisfies the decomposition 

f(w) = ¢(w) + F(w), 

where 
¢(w) = E~,(f(w)), 

with ¢(co) of order O(n ~) and F(w) of order Op(n ~-1/2) or zero. Under re- 
parametrization, the transformation laws for f ,  ¢ and F are the same. In partic- 
ular, if f is a scalar function, ¢ and F are scalar functions as well. It follows that 
the expected likelihood expansion for f(&) may be decomposed as the sum of the 
expected likelihood expansions of ¢(&) and of F(&). From (4.12) we have 

o(3 

(4.13)  = + 1 -1  

m = l  

(4.14) F(&) = F(co) + ~ 1 ~ ^R,, 
r n = l  

--L - 1  

where ¢ R.~ is a sum of quantities of order O (n z), while F n~ is a sum of quantities 

of order Op(n ~-1/2) or zero. 
Adding (4.13) and (4.t4) and collecting terms of like order, we have 

(4.15) 
oo 1 - 1  - 1  

f(©) = / (co)  + ¢ ~ y  + E ~.(mFR,~_I + ¢ R,J2r~)~ R'~-I, 
m = 2  

--1 - 1  

where mFR. ._ I  + ¢ R../2 ~r~ is of order Op(n ~-1/2) and is itself a (0, m -  1) tensor. 

Example (continued). Expansion of the log likelihood ratio. Let f(©) = l(©). 
Under repeated sampling/3 = 1 and the basic quantities needed to compute (4.15) 
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with error of order O p ( n  -3 /2)  are Cr = 0, Crs = -irs, CR.~ 
F~, = H~, ,  FR.~ = HRm, m _> 3. Expansion (4.15) gives 

(4.16) l(&) - l(co) = b2 + b3 + 54 q- Op(n-3/2), 

= #R~; F~ = l~, 

where 

1 
b2 = ~{2l,. - i~/28}/U, 

b3 = ~{3(H~8 - + + , 

i ~  ~3 ~ i~o 

ivw pr;sv#w;tu[12] .vw ^u ^rst 

The terms in expansion (4.16) may be wri t ten in a compact ,  explicitly tensorial 
form as 

1 

1 T ^ t ,  ^rs b 3 = ~ ( 3 T ~ +  ~st# )#  , 

- -  ^ 'U , " ,  ^ r s t  b4 = ( 4 T ~ t  + T~st~# )It , 

where T~.~ and ~-R~ are (0, rn) tensors obtained by intertwining the co-strings 
{ H R ~ }  and {#R,,} with respect to the - 1  connection string {i~sps;T.~}. The 
expressions of these tensors are collected in Tables 1 and 2. 

5. Expected/observed likelihood expansions as expected likelihood expansions with 
expanded coordinates 

Expansion (4.15) is still unsuitable for statist ical  applications, due to the pres- 
ence of the coordinates y .  The first object ive of this section is to show tha t /2  ~ 
can be given an expansion of the form 

(5.1) / • 7 "  ^ r  ^ r  ^ 1 "  = Pl ~- P; -~ P3 -t- #4 + OP(n-5/2), 

where each t e r m / 2 ~  (rn = 1, 2, 3, 4): 
(i) is of order O p ( n - ' ~ / 2 ) ;  

(ii) is such that  ^r ^a r ^ #,~ = #,~COa, i.e., like #r,  it behaves as a (1, 0) tensor under 
re-parametrization; 

(iii) depends on moments  of log likelihood derivatives, with expectat ion taken 
under co, and on the quantit ies HRk ,  k < m ,  defined by (3.3). 

Consider the expected likelihood expansion around co, given by (4.15), of the 
left-hand side of the likelihood equat ion f(&) = Iz(&) = 0 (z  = 1 , . . . ,  d). We have 
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¢~ = - i ~ ,  ¢ ~  = # ~ ,  ¢~,t  = #z~,t; Fr = Hz~, F ~  = H z ~ ,  F ~ t  = Hz~, t  and we 
obtain 

(5.2) 0 = Iz q- lbz q- 2bz + 3bz q- 4bz 4- O p ( n - 3 / 2 ) ,  

where 

lbz = - [Zz ,  

2b~ = Tr.~ft ~ + v~.zfZ ~ ,  

3bz = Trs.zf t  rs q- Trst.zft TM, 
= T ^ rstu 4bz Trst.z[t TM A- rs tu.z# , 

with 

TT'Z ~-- HZT, 
1 

T ~ . z  ~ ( g z ~  H i ~ " = -- zv Pw;rs), 

1 i v "  3 

1 g i w (H~r ,  gzx iXYpy;~) i "~#w;~t[3] )  T~,t.z = ~ ( g ~ s t  - ~ #~;r,e - - 

1 ,i~ ~ = + - + 

- i ~ 6 

"vw ixY + (#~vx + #z;,x)z #y;rs#~;t~[6]}. 

Expansion (5.2) relates components l~ of the score vector to the coordinates fi~. 
Apart from the coefficients 1//2, 1 /6 , . . . ,  the quantities TR.~.~ and ~-n.~.~ may be 
obtained by treating formally the sequences {H~n,~,  m = 1, 2 , . . .}  and {#~n,~, m = 
1, 2 , . . .}  as co-strings of covariant degree zero and intertwining them with respect 
to the - 1  connection string (4.10). However, TR~. z  and TR,~.~ do not behave as 
tensors. 

We may express/t~ as a function of l~ in the form 

(5.3) ft~ = lz + 2b~ + 3bz q- 4bz 'F O p ( n - 3 / 2 ) ,  

and inverting the above asymptotic expansion we obtain 

2bz = 21b~ -4- 22bz ~- 23bz + O p ( n - 3 / 2 ) ,  

3bz : 31bz -f- 32bz -4- O p ( n - 3 / 2 ) ,  

4bz ---- 41bz + O p ( n - 3 / 2 ) ,  
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where 

mbz = T ~ . J  + 7~s.zl ~ ,  

22bz = iVW{Tv.zTr.wl r + Tv.~Tr~.~I ~ + 2T~.v%w.zl Ts 

+ 2~-~.z%t.~l~t} ,  

23bz = i ~  {T~.~T~.~l  ~ + T~.~T~v~l T M  

+ 2Trs.vTt~.zl TM + 2Tr~.z%t~.wl ~stu} 

+ i '~iXy{T~.zTx.~T~.yl  ~ + T~.zT~.~-~.yl  ~ 

+ T~.~Ts.xTwy.zl rs + 2Tv.zTr.z%y.wl ~ 

+ 2T~.~T~.y%~.zl ~ + 2T~ . j~ .~T~ t . y l  T M  

+ 2T~.~T~,x.zTst.yl T M  + 2Tx.~Tr~.zTst.yl T M  

~- 4Tr.vTsx.zTtw.yl  T M  + Tvx.zTrs.wTtu.yl rstu 

+ 4 7 ~ . J ~ . ~ T t ~ . y l ~ t ~ } ,  

31bz = T ~ . J  ~ + T~t.~l TM, 

32bz = 2i'WTr,.~T~.~l ~ + 2ivWT~v.z%t.wI ~st 

+ 3 i m ' T ~ . z T t . w l  T M  + 3i 'WTr~.zTt~.~l  ~stu, 

41bz =- Trst .z l  T M  "~- Trstu.z lrstu. 

Rearranging the above expansions of the summands  in (5.3) according to their 
order in n and recalling that  /2 ~ = i~/2z, we obtain an expansion for /2 ~ of the 
desired form (5.1), with 

~ [ = l  r, ~ = <  b ~t2 21 s, 

[£3̂ r = irslk31Usl. -4- 22bs), #4̂ ~ = irs(41bs + 32bs A- 23bs). 

1 It is not difficult to see that  21bs = Hstl  t + ~(#~t~ + #~;t~)l TM behaves as a (0, 1) 
tensor under re-parametrizations.  This is not the case for 31bs or  22bs individually, 
while their sum is again a (0, 1) tensor. Indeed, after some algebra,/2~, ~ and/2~ 
may be wri t ten in the following tensorial form which demonstra tes  tha t  each of 
them is a (1, 0) tensor: 

(5.4) ~ = T~l ~ 8  , 

1 ,Tr  .vw ~r~ ,s t  1 rv stu (5.5)  p~ = T : Z : l  ~ + ~( ~ - ~ ~ , ~ , ~  j ,  - ~ i  ~ ; ~ l  , 

#4 = TvT~vTs l 

• xy r r v T V~llSt + { 2 r : ( r ( ~ - ~  p t , ~ , ~ T ~ ) + T ; ( T ; t  - i ~''.s,~,~ y j~  

1 .T~ . ~  ~ .~  + ~{  stu - ~  #s,t,~,~T~ - 3~ (#~,t,~oT~. 

+ ( ~ ; ~  + ~ ; ~ ) T :  + ( ~ ; ~  + ~,~,~)Tv~)}l ~ 

1 
- -~ i~(4%~; tuu  , + 6%tv;uu, 

- 12iXY%v;zTty;uu, + ps,t,u,u,,v)l stuu', 
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where T~k = i r S T s R k  and the symbols TR.~ denote (0, m) tensors obtained by in- 
tertwining the co-string {HR,~ } with respect to the 1 connection string {irs#s,~r.~ }. 
In addition, the symbols ~-T.~;U~ denote the (0, m + n) tensors obtained by inter- 
twining the double co-string {#T~;U~} with respect to the - 1  connection string 
{irs#s;T.~}. The relevant instances of the tensors T ~  and ~Tm;V ~ are given in 
Tables 1 and 3, respectively. The additional quantity appearing in ~ ,  namely 
r~,~,t~, is defined as 

~s,w,tu = ~s,w,~u -- ixY ~ y ; t u ~ s , w , x  

and it is ~ (0, 4) tensor obtained by intertwining the co-string {p~,~,~ } with respect 
to the - 1  connection string {i~p~;T~}. 

Substituting the expansion of the form (5.1) obtained ~bove ~nto the first four 
terms of (4.15) and rearranging according to the order in n, we may write 

(5.7) f(&) = f (w)  + bl + b2 + b3 + b4 + 0p(~-5/2), 

where bm is Of o r d e r  Op(nZ-m/2) ,  m = 1, 2, 3, 4; in particular: 

b~ = ¢~I ~, 

b~ = FJ~ + ~ g ;  + ~ ,  

1 - 1  -1  ! 2 1  l T M  
E ~ - F  l ~ ~ ~ b3= ~ P 2 + 2  ~ + ¢ ~ 3 +  ¢ ~ I  ~ 2 + 6  ~ t  , 

-~ 1 -~ ~ ~r F l r . s  ~ ~rs~ 
b4 : r ~ 3  + rs ~2  + ~ ~' rst~ + ¢ r ~  

1-1 -1 1-)  l ~  t ~ 1  ~ t~  
+ ~ ¢ ~ + ¢ ~ + ~ ~ ~ ~ + ~a ~ ~ "  ' 

with ~ ,  ~ ,  ~ given by (5.4), (5.5), (5.6). 
If f is a scalar function e~ch b~ is a sum of scalar contributions of the same 

order in n. There is a strict analogy between expansion (5.7) and expansion (3.8). 
Our objective now is to Show that they actually coincide. This fact seems to be 
quite natural since the same b~sic ingredients (namely l ~, PR~, HR~) are present 
in both expansions. 

Example (continued). Expansion for the log likelihood ratio. After ~ little 
algebra, expansion (5.7) for the log likelihood ratio statistic is seen to be 

(5.s) ~(~) - ~(~) = b~ + b~ + b~ + O ~ ( ~ - ~ / : ) ,  

w h e r e  b2 = 1: ~rs 1 T - i t s  1~  ~rst 1 T  T v l r s  1 T -  ]rst 5.t~** , b~ = ~ _ ~  + ~rst~ , and b4 = ~ r w s ~  + [~rst" + 
1 ~ l r s tu  ~ ~stu . It is very easy to check that  b2, b~ and b4 coincide respectively with 

B2, B3 and B4 of formula (3.9), so that expansion (5.8) simply rewrites in tensor 
form the expected/observed expansion (3.9). 

As a first step for establishing the desired coincidence, consider the expansion 
of f(&) = &r according to (5.7). Note that fs = 5~ and that, consequently, ¢~ = f~ 
and F~ = 0. It follows that, for n > 1, fs~ = ¢s~ = Fs~ = 0. We obtain 

(5.9) (& - ~)~ = A[ + A~ + A~ + A~ + Op(n-5/2) ,  
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where 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

A[ = K, 

r ^ r  ! - - ( - ~ l r l s t  
A2 = # 2 -  2 ~ st , 

--1 1 ( ~ ]  r --1 - - l v w  "~,s tu  

= # 3 -  g o 

1 --1 --1 
r ~ r ^ 8  ^t ~ r iS  ^t 

A4 = [ tr4-  ~ s t # 2 # 2 -  Y st t #3 

1 - 1  - 1  - 1  

-- ~' vw  9 s tu )  # 2  

~_ 771 - 1  - 1  { r , 
24 ~ t ~  - G ~  ~ ,  

--1 - - i  - - i  - - i  --1 
r x v w z  ~ l s t u u  ' 

V I Z  s t~ tu  I VWZ S t ~ U  / ] ~ ' 

- -1 --1 - -1  
r rs G~st  given by (4.4). with GT~ given by (4.10) and GTm, %~ 

After some algebra, it is seen that  each term in expansion (5.9) coincides with 
the corresponding term appearing in (3.6). For instance, (5.11) may be written as 

^~ 1 . ~  ~t T [ l  ~ 1 . ~  ~t 

1 rv" , ~lst = i rvfH~ vs - # t , s v l t ) l  * - ~ i  (#v,s t  + t*v,s,u 

1 rv - , lSt = H ; 1  ~ - ~ i  ( , t , ~  [2j + ~ , ~  + ,~,~,~) 

1 .rv st 
= H ~ l  ~ + ~ #vstl 

: H ~ l  s + 2#rst Ist, 

which coincides with the term A~ in (3.6). In the above calculations, the balance 
relation #~st + #r,st[3] + #r,s, t  = 0 is used. 

The final step consists in rewriting (3.8) according to the expressions (5.10) 
(5.13) of A[, A~, A~, A~ and in comparing the expressions of B1, B2, B3, B4 thus 
obtained with the corresponding terms bl, b2, ha, 54 in (5.7). Again, calculations 
that  are lengthy only for/34 give the desired identities B1 = bl, B2 = b2, Bs = ha, 
B4 = b4. The first identity is trivial; we limit ourselves to giving the detailed 
calculations leading to the second one. Taking into account (5.10) and (5.11) we 
have 

1 1 ~ 
~2=F~I~+¢~ f 4 - ~ Y  ~ +~¢~A 

= F #  ~ + ¢ ~ ;  + ¢~ ,  - ¢~ ~ ~s)l ~s 

= F r  l r  q - ~ g r ~ +  l ~ l r s l r S  = b 2  . 
7. 
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T h e  fu r the r  identi t ies  B 3 = b3 and  B4 = b4 are es tabl i shed following essent ial ly  
the  same  pa t t e rn .  W h e n  w r i t t en  accord ing  to  (5 .10)-(5 .13) ,  A~, A~ and  A~ are 

-1  
seen to  con ta in  the  combina t i ons  of  e lements  of  the  - 1  connec t ion  s t r ing  { G ~ }  

-1  -1  
needed  to  r econs t ruc t  the  tensor ia l  der ivat ives  F R,~, ¢ R~ a p p e a r i n g  in b3 and  

b4. 
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