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A b s t r a c t .  A Bayesian shrinkage estimate for the mean in the generalized 
linear empirical Bayes model is proposed. The posterior mean under the em- 
pirical Bayes model has a shrinkage pattern. The shrinkage factor is estimated 
by using a Bayesian method with the regression coefficients to be fixed at 
the maximum extended quasi-likelihood estimates. This approach develops a 
Bayesian shrinkage estimate of the mean which is numerically quite tractable. 
The method is illustrated with a data set, and the estimate is compared with 
an earlier one based on an empirical Bayes method. In a special case of the 
homogeneous model with exchangeable priors, the performance of the Bayesian 
estimate is illustrated by computer simulations. The simulation result shows 
as improvement of the Bayesian estimate over the empirical Bayes estimate in 
some situations. 

Key words and phrases: Bayes estimate, empirical Bayes, extended quasi- 
likelihood, generalized linear model, relative saving loss, shrinkage estimate. 

1. Introduction 

A hierarchical  model ing s t ruc ture  in an empir ical  Bayes (EB) version of the  
generalized linear model  of McCul lagh and  Nelder (1989) is referred to as the  
generalized linear EB model  by  Lu and Morris  (1994). This  model ,  along with  
its descript ive and inferential  perspect ives,  using the  mean-var iance  s t ruc ture  in 
d is t r ibut ional  expression is described as follows. 

Assume the  d a t a  Yt, • . . ,  Yk are observed f rom the na tu ra l  exponent ia l  family  
(NEF)  wi th  a quadra t ic  variance function (Morris (1982)). The  mean-var iance  
s t ruc ture  (two entries in the  square brackets)  is given by 

(1.1) YilLt i indePNEF[lz i 'V(#i)  l n i  ' i = 1 ,  . •. ,k  

where V(t) = v2t2+ vl t  + vo with v2, vl ,  Vo known is a quadra t ic  var iance funct ion 
of the  mean  which character izes  the NEF,  and ni > - v 2  is a known convolut ion 
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parameter  which need not be an integer. In a one-way layout model, Yi can s tand 
for the sample mean with the sample size ni in the i-th group. When all ni - n, the 
model is said to be homogeneous. This NEF with the quadrat ic  variance function 
includes most common distributions such as normal, Poisson, gamma, binomial 
etc. 

Under the NEF in (1.1), the conjugate prior of #i is assumed to have a gener- 
alized linear regression form with the mean-variance structure: 

(1.2) 
indep 

#i l c~,/3 ~ Conj[poi, aV(>oi)], i =  1 , . . . , k  

where ct = 1 / (m  - v2) with m > v2, not necessarily an integer, being the convolu- 
tion parameter  for the conjugate distribution, and/3 is a p x 1 vector of regression 
coefficients (p < k) which is related to the prior mean #0i through g(#oi) =xi/3.T 
The function g(.) is a known one-one link function and xi is a p x 1 vector of 
regressors. For notat ional  convenience, I still write #oi as the prior mean with 

--1 T understanding tha t  #0i = g (x i/3) is a function of ¢~. When  p = 1 with all xi -= 1 
(no regressor), equation (1.2) is called the exchangeable priors. 

Our objective is to est imate the mean #i by means of Bayesian EB analysis. 
Under the model of (1.1) and (1.2), the posterior distr ibution of #~, given the 

hyperparameters  (a,/3), can be shown to be 

indep .[  . V(#~) ] i=1. k 
(1.3) Pi I Yi, oz,/3 e.~ C o n j  /~ti, •i ~- o~-1 ' ~ ' ' "  

where #~ = E(#i  I Yi, c~,/3) = (1 - bi)yi + bi#oi is the posterior mean which shrinks 
Yi towards #0i with the shrinkage factor bi = m / ( m + n i )  = (l+v2c~)/[l+(ni+v2)a], 
a function of a only. 

When (c~,/3) are known, the Bayesian est imate of #i with respect to the squared 
error loss is #~, and the EB risk is E(#* -#~)2,  where the expectat ion is evaluated 
in terms of the joint distribution of (Yi, #i) with the mean-covariance structure: 

(1.4) 
indepr/ 

(Yi,#i) I c~,/3 ~ [[#oi,#oi),aV(Poi)Ei], i = 1 , . . . , k  

with Ei = ( 1 / ( l ?  bi) 11)" it  is easy to  showtha t  E(#~ _ #i)2 =abiV(Poi ) .  

When (c~,/3) are unknown, an a t t empt  to obtain an est imate for #i using 
EB and hierarchical Bayes methods is appropriate. Morris (1988) addresses the 
problem of evaluating the posterior mean of Pi and determining its accuracy in a 
homogeneous modeling sett ing with the exchangeable priors. Albert (1988) con- 
tr ibutes computat ional  methods using a hierarchical Bayesian analysis to est imate 
Pi and discusses the assessment of the goodness-of-fit of the generalized linear EB 
model. Lu and Morris (1994) propose an EB est imate of p~ using the extended 
quasi-likelihood of Nelder and Pregibon (1987) to est imate the hyperparameters  
(c~,/3), which can be readily implemented via the GLIM software. 

Among various methods of est imating (c~,/3), it has been noted tha t  est imating 
/3 is more accurate than  est imating c~ in most situations. In particular, when the 
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true value of c~ is close to zero, the maximum likelihood estimate (MLE) of c~ could 
erroneously lead to a negative value if k is small, although one can usually force 
the estimate of c~ to be zero in this case. Thus a primary error in finally estimating 
#i through #7 would be caused by misestimating c~ (hence the shrinkage factor bi) 
rather than /3 (hence the P0i). For this reason, it would be possible to provide 
an improvement over the EB estimate by treating a as a random variable and 
estimating the shrinkage factor bi by a Bayesian approach. 

In order to concentrate on a only, the values of/3 are assumed to be known 
and are fixed at the maximum extended quasi-likelihood estimates (Lu and Morris 
(1994)). Since only c~ is unknown, the full posterior mean and posterior variance of 
#i are numerically quite tractable by means of only one-dimensional integrations. 
This method provides an approximate Bayesian estimate of Pi, and its formulation 
is derived in Section 2. In Section 3, the method, along with comparing with 
the EB method, is illustrated for a traffic accident data example. For this data 
set, the present Bayesian estimate for the shrinkage factor corrects bias and is 
almost perfectly linearly related to that  by Lu and Morris (1994). A special case 
of the homogeneous model with exchangeable priors is considered in Section 4. 
For the Poisson, the gamma, and the binomial of non-normal NEF distributions 
using certain parameter values, the present Bayesian estimate is compared with 
the Morris' (1988) EB estimate via computer simulation to evaluate their relative 
saving losses. The simulation result shows that  the performance of the Bayesian 
estimate appears better, especially for small value of k, than the EB estimate for 
most cases, with an exception of the binomial model for large values of k. 

2. Bayesian estimation 

From equation (1.4), the marginal distribution of Yi is given by 

(2.1) indepr 
I ~ i = 1 , . . . , k  

with 0i = a / (1  - bi) = 1 /n i  + (1 + v 2 / n i ) a .  The formulation of the likelihood 
for (c~,fl) based on the distribution (2.1) is generally quite complex and can be 
approximated by the extended quasi-likelihood of Nelder and Pregibon (1987). 
With the variance function V(.) and the dispersion parameter 0i in the mean- 
variance structure (2.1), the extended quasi-likelihood for (c~, fl) is given by 

(2 .2 )  Q ( a , / 3 )  = H ¢ i - U 2 e x p  - -  ' 

i = l  

where di - di(/3) = - 2  fuo~ y i - t  3 ,  Jy~ v(t) ~ is the deviance function of the NEF in the i-th 
component. 

A noninformative uniform prior distribution on a at the third stage of the EB 
model is assumed: a ~ Uniform(0, u) with u -- 1 /max(0 , -v2) .  Here the value 
of u is chosen to ensure that no negative shrinkage amount bi would occur when 
v2 <0 .  
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Based on equation (2.2), the posterior density of a,  given/3, is 

(2.3) p(a y) O(Q(oz,/3) = H ¢ ;  1/2exp -- 
j=l  

j=l  

k ( J V2 ~1/2 
H < a < u, 

b nj + v2 / for 0 D 

j=l 

where y = (Yl,. .  , Yk) and by is the shrinkage factor defined in (1.3). 
In terms of the density (2.3), the expectat ion of any function of a can be easily 

evaluated numerically since only one-dimensional integrations are involved. 
As a result, the posterior mean of bi is given by 

(2.4) bi - -  E ( b i  I Y) - -  v ~  + wi 
n i  -F v2 

with 

1 k k b fo e x p { -  ~ [(bj ~2 E j = l  - ) ( n j  + v 2 ) d j ] }  I I y = l (  J - - -  nj  ~- v2 
Wi = 

v~ ) 1/2+6~j d a 
nj+v2  

f0 e x p { -  ½ k b v2 k b J Ej=I[( J ny~2)(ny +v2)djl} IIj=l( j ~ 2 ) 1 / 2 d a  

where 5ij = 1 or 0 as i = j or i 7 ~ j .  
Note that  the value of t)i is always between v2/(ni + v2) and 1 if v2 > 0, and 

between 0 and 1 if v2 < 0. 
Since #* is a linear function of bi, the posterior mean of #i (given/3) then is 

(2 .5)  /2i = (1 - bi)Yi + Di#oi. 

Moreover, the posterior variance of Pi can be formulated from equat ion (1.3) by in- 
tegrating some functions of c~ based on the density (2.3), but  I will omit performing 
this here. 

In practice, the values of/3 must be pre-est imated in order to have the final 
formulation of the est imation in (2.5). Lu and Morris (1994) propose a feasible 
way to find est imates of/3. Noting that  the quasi-likelihood (2.2) follows a double 
exponential  family (Efron (1986)) for the marginal distr ibution of yi's, we can find 
the values of (a,/3) to maximize Q(a, /3)  in (2.2) via a marco facility of the GLIM 
package in two NEF  distributions. This process consists of the following two steps: 

(a) Given a (so @), make GLIM regression method  applicable for est imating 
/3 with the link g(#0~) ----- xT/3 and the prior weights @'s by treat ing the da ta  y~'s 
as a random sample from the NEF  in (1.1), but  with n~ in (1.1) replaced by 1/@; 

(b) Given/3 (so P0i), make GLIM regression method  applicable for est imating 
a with the identity link @ = 1/ni + (1 +v2/ni)a by treat ing the da ta  d~'s (because 
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#0i fixed) as a random sample from gamma distribution (NEF) with the scale value 
of 2. 
Cycling between holding a fixed in (a) and holding/3 fixed in (b) leads to estimates 
of (c~,/~) which maximize Q(a, fl) in (2.2). In this implementation, the final esti- 
mate of/3 is the MLE in the NEF with the link g(#0~) = x~¢? and the prior weights 
¢i's fixed at an estimated value of c~. For more details about this procedure, see 
Lu and Morris (1994). In all computations regarding a as a random variable here, 
I will treat fl to be fixed at such an estimated value. It is quite reasonable to do 
so, since the MLE of/~ in the NEF is not sensitive over a certain range of values 
of c~. Indeed, estimating ~ is independent of c~ if the model is homogeneous. Thus 
when all ni do not substantially differ from one to another, little would be affected 
by the value of c~ in estimating/~ by the above procedure. 

Using a Bayesian method to estimate the shrinkage factor bi (a function of c~ 
only) in such a way yields an approximate Bayesian estimate for #i. This develops 
a method that  is based on the EB method in Lu and Morris (1994), and has 
actually the Bayesian EB manner, but I will refer to it as Bayesian for simplicity. 

An entire Bayesian method could be further developed if the regression co- 
efficients /3 are treated as random in the modeling setting, but finding the full 
Bayesian estimate of #~ will involve a large number of integrals. In practice, the 
full Bayesian approach under our model has not been widely used due to diffi- 
culties in numerically evaluating substantial multi-integrations. The goal in this 
paper is to provide a methodology that  is a hybrid of the Bayesian and the EB 
methods using the exist GLIM package and readily available software of numerical 
one-dimensional integration, that  leads to an approximation of the full Bayesian 
estimate. Yet the accuracy of such a method or the variance attributed to the 
final estimate cannot be obtained until true values of the coefficients/3 or exactly 
full Bayesian computations are available. On the other hand, by departing from a 
full Bayesian analysis, it should be emphasized that  our modeling setting has the 
EB sense in that the performance of any estimate is judged via the EB risk that  
is evaluated based on the joint distribution of (y~, #~) in (1.4) with the hyperpa- 
rameters (c~,/3) being fixed. Thus numerical comparisons of the present Bayesian 
method with other methods, for example with the EB method in this paper, can 
still be evaluated. 

Davidian and Carroll (1988) point out that the maximum extended quasi- 
likelihood estimate of a is inconsistent in general. Therefore, using such a Bayesian 
method by treating c~ as a random variable in the estimation suggests a motivation 
for improving the EB method. 

Working on the extended quasi-likelihood from (2.1) does not require the as- 
sumption of the conjugate prior distribution on #i. For any prior of #i with 
mean-variance specified in (1.2), the posterior mean #~ in (1.3) is still optimal in 
the linear Bayesian sense that  #* minimizes the squared error loss within the class 
of all linear functions of Yi (Robbins (1983)). 
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Fig. 1. Plots of the Bayesian estimate bi in equation (2.4) and the maximum quasi- 
likelihood estimate/3~ in Lu and Morris (1994) for the shrinkage factor b~ vs. the exposure 
ni for the traffic data example. 

3. A data example 

The Bayesian method will now be illustrated on a traffic accident data set 
previously analyzed by Lu and Morris (1994). The data consist of the observed 
traffic accident rate Yi with the exposure ni for k = 33 signalized intersections 
in Tucson, Arizona for the two years (July 1981-June 1983). The observed rate 
Yi was assumed in terms of a Poisson distribution setting in the NEF of (1.1), 
with the exposure ni as the "sample size". Also, the exchangeable gamma priors 
of (1.2) were assumed. The EB estimate of #i, the true accident rate in the i-th 

intersection, was found as/~i = (1 -/3i)y~ + 0.984/3i, where bi = 1/(1 + 0.0734ni) 
is the est imate for the shrinkage factor and 0.984 is the est imate for the common 
prior mean #0 (see Lu and Morris (1994)). 

The Bayesian est imate bi in terms of equation (2.4) is now computed,  where the 
integrations are evaluated via the subroutine QDAGI in IMSL, and the correspond- 
ing Bayesian estimate/2i in equation (2.5) is then obtained with #0i -- #0 = 0.984. 

Figure 1 gives plots of the shrinkage estimates bi and bi against the exposure 
ni. It is seen tha t  both  shrinkage estimates decrease in the exposure but  bi is 
slightly smaller than  bi. The correlation between t)i and bi is 1.000 which indicates 
an almost perfectly linear relationship between them. The regression line of 1)~ 
on bi with no intercept is found as bi = 0.935bi. Lu and Morris (1994) note the 
bias of the est imate bi and suggest a modification by multiplying bi by a factor 
C = ( k  - 3 ) / k .  For this da ta  set, C = 30/33 ~ 0.909 (comparing with the 
regression slope 0.935). Although the modification corrects for bias somehow, it is 
inappropriate when k is small because the modified shrinkage est imate is bounded 
above by C. Figure 2 gives a scale plot of the present Bayesian estimate/2~ against 
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Fig. 2. Scale plot of t h e  B a y e s i a n  es t imate  ~i in equat ion  (2.5) vs. the  EB es t imate  fti 
in Lu and  Morris (1994) for t h e  traffic da t a  example. 

the EB estimate/2i by Lu and Morris. Since/2i shrinks yi towards #0 more than 
/2i does, the slope of the plotted points tends to be slightly greater than 1. These 
two estimates of #i are almost identical for those intersections in which Yi is close 
to the prior mean P0- Moreover, the average of/5i is almost identical to P0 = 0.984 
that is precisely the average offti (Lu and Morris (1994)), and is close to 9 = 0.981. 

4. Homogeneous model with exchangeable priors 

A special case of the homogeneous model with exchangeable priors in which 
ni =- n and #0i =- #0 for all i is considered in this section. Morris (1988) proposes 
an EB estimate of #i by 

(4.1) = ( 1  - 

where D - n+.2~2 k-lk + ~ min( (k-3)v(~)~s , k-lk-a) with ~ = ~ y i / k  and S = ~ ( Y i -  

~)2, which is a modified version to the method of moments for estimating b. 
The Bayesian estimate for the shrinkage factor b (free of i) by (2.4) becomes 

(4.2) ~ _ v 2  + w, 
n + v 2  

where, upon changing of integral variable by t = b - v 2 / ( n  + v2), 

W = 
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with q = max(0, - v 2 / ( n  + v2)), r = n / i n  + v2), and D = y~ di, the total  deviance 
of the NEF. 

The value of w in (4.2) can be expressed in terms of chi-square distributions 
a s  

where c = max(0, -v2)  and G~ (.) denotes the chi-square distribution function with 
degrees of freedom 7. 

Under the homogeneous model, the value of #0i in (2.5) can be obtained 
independently of a. In particular, when #0i -- #0 (exchangeable priors), the 
maximum quasi-likelihood est imate of #0, based on equation (2.2), is y. Using 
as an est imated value of #0 can follow a Bayesian framework, as noted by Morris 
(1988). In fact, if a noninformative uniform prior on/3  with the entire space as 
its support is assumed, the posterior density of/3 based on equation (2.2) for any 
given value of a is 

for some constant  C. If we furthermore use a canonical link function g(.) of 
the NEF (recall tha t  g(#0) = /3), we have tha t  g'(#0) = V- l (#0)  and hence 

dp(/3 I Y) - k(ld-b)(f]_ po)p(/~ I y)d/3. Therefore, f ( f -  #0)P(/3 I y)d/3 = 0 or 
E(po [ y) = Y. Tha t  is, y is the posterior mean of #o. 

Thus under the homogeneous model with exchangeable priors, the Bayesian 
est imate of #i in (2.5) becomes 

(4.3) /~i = (1 - b)Yi + 1)Y 

with D given by (4.2). 
Lu and Morris (1994) suggest an EB est imate similar to (4.3) with t) being 

• k-3 1). The performance of the Bayesian est imate replaced by m m ( ~ - ~  2 + (n+,2)D' 
(4.3) for the normal model is explored in Lu (1993). 

Here computer  simulations are applied to some non-normal NEF to compare 
the relative saving loss (RSL) for the two estimates (4.1) and (4.3). Analogous 
to tha t  defined by Efron and Morris (1973) in the normal case, the RSL of the 
est imate fii (similar for the estimate/2i)  is defined by 

(EB risk of/2i) - (EB risk of p*) 
(4.4) RSL(/~) = (EB risk of y~) -- (EB risk of #~) '  

where EB risk of/2i is E(/2~ - # i ) 2  EB risk of #* is * 2 , E ( p  i -#~)  = abV(#o)  by (1.4), 
and EB risk of Yi is E ( y i - p ~ )  2 = a b V ( p o ) / ( 1 - b )  by simple calculations. According 
to definition (4.4), RSL(~i) measures the proportion of available improvement 
using/2i over the frequentist est imate Yi. 

The computer  simulations are conducted for the Poisson (V(t)  = t), the 
gamma (V(t)  = t2), and the binomial (V(t)  = t(1 - t)) distributions of the NEF 
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(the corresponding conjugate priors are the gamma, the inverse gamma and the 
beta  distributions, respectively), with fixed values n = 10 and #0 = 0.5. Under 
the exchangeable priors setting, the value #0 is the common prior mean. The cor- 
responding regression coefficient fl (intercept) can be obtained if a link function 
is specified. For example, when the canonical link function of the NEF is chosen, 
we have tha t  for #0 = 0.5, the corresponding value of/3 = ln(#0) = -0 .693 in the 
Poisson case, /3 = -1/#o = - 2  in the gamma case, and /3  = ln[#0/(1 - #0)] = 0 
in the binomial case. The values of c~ are chosen so tha t  the corresponding 
shrinkage factors are from b = 0.05 to b = 0.95 with an increment of 0.05 
(b = 0.05 is excluded in the gamma case because in this case b must be greater 
than  v2/(n + v2) = 1/(10 + 1) = 0.09). For each parameter  sett ing in the three 
models, the computat ion is performed for k = 5, 10, 20, 40 with simulation sizes 
M = 2000, 1000, 500,250, respectively. Such a selection of the simulation sizes 
gives total  k x M = 10,000 samples in computing the RSL for each case because 
equation (4.4) is independent of i = 1 , . . . ,  k in the underlying model. The simu- 
lated results of RSL(/2i) and RSL(/2i) are displayed in Figs. 3(a), (b), and (c). 

From Fig. 3 we can see tha t  both  /~i and /2i improve Yi (except for k = 5 
and small values of b in the binomial model for the EB est imate /2i), and the 
improvement is more significant as k increases. The case where the EB est imate 
/2i provides a poor performance for k = 5 in the binomial model should be noted. 
This can be justified tha t  when v2 = - 1  (binomial NEF) and k is small, the 
shrinkage est imate D in the EB estimate (4.1) tends to be negative if the true value 
of b is small (hence S is typically large). In Fig. 3(c) for the binomial model, the 
simulations yield, for k = 5, RSL(/ti) = 1.87, 1.10,0.91 for b = 0.05,0.10,0.15, 
respectively, which are not plotted there. 

In comparing the two estimates, some facts are observed. For the Poisson 
and the gamma models, the performance of/2i is bet ter  than  tha t  of Pi except for 
extremely small or large value of b. For the binomial model, /2i is bet ter  than/2~ 
only when k _< 10 and b is not large, whereas/2i becomes better  than/~i  when k 
increases. For all three models, the Bayesian est imate/2i  provides a much bet ter  
performance than  the EB est imate /2~ when k is small because /21 is based on 
the method  of moments  for est imating the shrinkage factor b which requires large 
value of k for its efficiency. When k increases, RSL(/2~) and RSL(/2~) both  tend to 
decrease and are close to each other. This is expected since the two est imates/2i  
and/2i  will approach the true Bayesian est imate #~ (RSL(#*) = 0) as k -* oc. 

From the simulation results, we may conclude tha t  the present Bayesian 
method  provides an improvement over the EB method  in est imating #i for some 
models, especially when k is small. The Morris' EB est imate/2i  has a simple for- 
mulat ion and its performance is quite satisfactory when k is large, but  it is only 
applicable to the homogeneous model with exchangeable priors. The Bayesian 
method proposed in this paper is more applicable without  the homogeneous and 
exchangeable restrictions. 
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Fig.  3. S imula t ion  resul ts  of  t he  re la t ive saving loss; p lo ts  of RSL(/5~) for t h e  Bayes ian  
e s t im a t e  (4.3) and  I~SL(~i) for t he  EB e s t i m a t e  (4.1) vs. t he  shr inkage  factor  b w i t h  
n = 10, #0 = 0.5 for k = 5, 10, 20, 40, based  on 10,000 samples  for t h e  h o m o g e n e o u s  
mode l  w i th  exchangeab le  pr iors  of  some n o n - n o r m a l  NEF.  
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(c) Binomial model: V(t) --- t(1 - t) 
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Fig. 3. (continued). 
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