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A b s t r a c t .  We here consider testing the hypothesis of homogeneity against 
the alternative of a two-component mixture of densities. The paper focuses 
on the asymptotic null distribution of 2 log An, where An is the likelihood ratio 
statistic. The main result, obtained by simulation, is that its limiting distri- 
bution appears pivotal (in the sense of constant percentiles over the unknown 
parameter), but model specific (differs if the model is changed from Poisson 
to normal, say), and is not at all well approximated by the conventional X~2)- 
distribution obtained by counting parameters. In Section 3, the binomial with 
sample size parameter 2 is considered. Via a simple geometric characteriza- 
tion the case for which the likelihood ratio is 1 can easily be identified and 
the corresponding probability is found. Closed form expressions for the likeli- 
hood ratio An are possible and the asymptotic distribution of 2 log A,~ is shown 
to be the mixture giving equal weights to the one point distribution with all 
its mass equal to zero and the x2-distribution with 1 degree of freedom. A 
similar result is reached in Section 4 for the Poisson with a small parameter 
value (0 < 0.1), although the geometric characterization is different. In Sec- 
tion 5 we consider the Poisson case in full generality. There is still a positive 
asymptotic probability that the likelihood ratio is 1. The upper precentiles of 
the null distribution of 2 log An are found by simulation for various populations 
and shown to be nearly independent of the population parameter, and approx- 
imately equal to the (1 - 2c~)100 percentiles of X~I). In Sections 6 and 7, we 
close with a study of two continuous densities, the exponential and the normal 
with known variance. In these models the asymptotic distribution of 2 log An 
is pivotal. Selected (1 - c~)100 percentiles are presented and shown to differ 
between the two models. 

Key words and phrases: Aitken acceleration, boundary problem, mixtures, 
asymptotic distribution of likelihood ratio. 
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1. Introduction 

Mixture models arise as a simple and natural way to model population het- 
erogeneity. Suppose that the population consists of k homogeneous subgroups or 
component populations (which we will simply call components). A simple para- 
metric model, such as the Poisson or Binomial, is then assumed to hold in each 
component. For a general introduction into mixture models see Titterington et 
al. (1985) or McLachlan and Basford (1988). Mixture models can be viewed as 
the semiparametric compromise between a fully parametric model such as the ho- 
mogeneous Poisson, which often forces too much structure to the data leading 
to problems such as overdispersion, and a nonparametric model, which--though 
avoiding strong structural assumptions--experience other disadvantages including 
high data dependency of model estimates. 

Formally, let f(x, Oj) be the probability density function for observation X, 
when sampled from the j-th component. Suppose further that the j-th component 
is a fraction pj of the total population, with Pl § "" + Pk = I. Assuming that one 
samples from the entire population, without knowledge of component membership, 
then the observation X has the mixture density 

k 

f(x, P) = ~ f(x, Oj)pj 
j = l  

where the unknown parameter vector P consists of k component parameters 0 1 ,  �9 �9 � 9  

Ok and k component proportions p l , . . . , p k  which is written as: 

,~ 
LPl, .,Pk 

Typically, P is estimated by the method of maximum likelihood. A maximum 
likelihood estimator /5 of P is defined as the probability measure /5 (assigning 
mass pj to support point Oj) which maximizes the log-likelihood function 

n 

l(P) -= E log f(X~, P). 
i : l  

This paper focuses on the asymptotic distribution of the likelihood-ratio statistic 

2 l o g  = 2 [ t ( / 5 )  - 

where 0 is the maximum likelihood estimator under the null hypothesis of homo- 
geneity H0 : k = 1 whereas /5 is the maximum likelihood estimator under the 
alternative of a two-component model: H1 : k = 2. 
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2. Some fallacies 

The log-likelihood ratio test statistic 2 log An generally has an asymptotic X~a)- 
distribution, where the degrees of freedom, d, equal the difference between the 
number of parameters under the alternative and null hypothesis (Cox and Hinkley 
(1974), p. 323). In the case of univariate 0, this would imply a X~2)-distribution 
for the test of H0 and H1 above. However, this theory is known to fail for the 
mixture problem (Titterington et al. (1985), p. 154). The explanation is that 
the null hypothesis does not lie in the interior of the parameter space. In fact, 
our simulation results will show that the large sample distribution in a number 
of models appears more like a mixture of X~2(), X21)( and X~0) (degenerate at 0) 
distributions, where the proportions depend on the model under consideration. 

Recently, Gofflnet et al. (1992) found the exact limiting distribution in several 
problems involving the normal distribution, but under the assumption that Pl and 
p2 are known under the alternative hypothesis. In general, however, there is little 
known other than that the standard theory does not apply. 

In statistical applications of mixture models the problem is still often ignored. 
An example is given by Gibbons et al. (1990) who use a mixture of Poissons in 
modelling suicide surveillance. They argue that a X 2 distribution with 1 df for 
2 log An can be used for testing a one component against a two component model 
if n is beyond 20 or 30, although they point out in the same paper that  the 
boundary condition is violated. 

A systematic investigation by simulation of the distribution of 2 log An for 
various densities has not been done until very recently. Thode et al. (1988) study 
the case of a normal with an additional free and common variance parameter. They 
conclude that the distribution of the likelihood ratio statistic is asymptotically 
~(2 with 2 df, although convergence is rather slow. In Mendell et al. (1991) the 
asymptotic distribution of 2 log An is studied under the alternative hypothesis. It 
is conjectured that the asymptotic distribution could be noncentral X 2, possibly 
with 2 df. 

In this paper we will concentrate on examples from the one parameter expo- 
nential family. 

3. The binomial B i (m,e )  for m = 2 

Suppose that X I , . . . ,  Xn are a random sample in which each Xi is binomial 
Bi(2, 0). We consider this simple example since by a geometric analysis we are 
able to characterize exactly the structure of the likelihood ratio test. If we record 
]I0 = # zeros, Y1 = # ones, and Y2 = # twos, then (Y0, Y1, ]72) T has a multinomial 
distribution with probabilities (s0, a l ,  a2) T = (02, 20(1-0) ,  (1-0)2)  T. This vector 
is in the probability simplex {(c~0, am, a2) T I c~i > 0, a0 + a l  + a2 = 1}. We can 
graphically reproduce this simplex in two dimensions by omitting the inessential 
last coordinate, giving us E2 = {(a0, am) T ] s0 _> 0, a l  _> 0, s0 + a l  _< 1}. See 
Fig. 1. The set of binomial probabilities F -- {(02, 20(1 - 0)) 7 ] 0 E (0, 1)} form 
a curve which connects the vertices (0, 0) T and (1, 0) T. This curve represents the 
mult inomial  probabilities allowable under the null hypothesis of k = 1. We can 
identify each value of 0 with a point on this curve. 
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Fig. 1. 
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E2 

a0 

Null-hypothesis and alternative in the ease of the binomial (0, 2). 

The alternative hypothesis consists of densities having the form plf(x ,  01) + 
p2f(x, 02), with Pl + P: = 1. In our plot (Fig. 1), such a density corresponds to 
a convex combination of the two points on F corresponding to 01 and 02, with 
weights Pl and P2. Thus, it is clear that in this case, the alternative hypothesis 
yields as multinomiM probabilities the entire convex hull of F, the shaded portion 
of Fig. 1. As Fig. 1 nicely shows, the null hypothesis is part of the boundary of the 
alternative. In this problem, we can analytically describe 2 log As as follows. If 
we place no restrictions on (a0, a l ,  a2) T, then the maximum likelihood estimator 
is (do, dl, d2) T = (]To, }f-1, Y2)r/n, and so corresponds to a point (d0, all) T in E2. 
The maximum likelihood estimator under H1 : k = 2 must correspond to a point 
in the convex hull conv(r) of r.  First, if (d0, tit) T is in cony(r), then this point 
must also be the maximum likelihood point under / / t .  On the other hand, if 
(d0, all) T ~ cony(F), then it can be shown that the maximum likelihood estimator 
under H1 is on the boundary of cony(F), hence in F, and so corresponds also to the 
maximum likelihood estimator under H0, 0 = (Y1 + 2Y2)/n. In this case, 2 log An 
is zero. 

What  still remains to be answered is the question: what is the probability 
that  A~ = 1? According to the above remarks this is equivalent to d lying above F 
or, dl  2 2V~0(1 - x/~0) or, Yl >__ 2 v ~ ( V ~ -  x/~)" Since nd  has the multinomial 
density 

(nyoyly2) 02~~ 

this probability can be computed as 

( 3 . 1 )  [n(O) := Pr(An = 1) 

= E 02 o(20(1 - (1  - 
YoYl Y2/ 

1 Because of the asymptotic normality of d we expect ~ ( 0 )  to converge to 7" 
But we can even say more about our expectations: because of the convex curvature 
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of F we might expect that convergence is from above. In principle, the distribution 
of 2 log An conditional that A~ ~ 1 can be found in a similar way via the multi- 
nomial distribution. However, since for large n the multinomial coefficients are 
expensive to compute we have simulated the conditional distribution of 2 log Aw. 
In Fig. 2, an estimate of ~ ( 0 )  is shown for n = 1000, and a nonparametric estimate 
with 95%-confidence interval of ~-1(.95) and ~5-1(.99) is presented, asx~ is the 
conditional distribution function of 2 log A~ :~x~ (x) = Pr{21og An _< x lAn > 1}. 
The confidence intervals were constructed in the usual manner using the normal 
approximation to the binomial. The estimate is based on a replication size of 
10000. The solid lines in Fig. 2 correspond to the 95th and 99th percentile of 
the x2-distribution with 1 dr. For 0-values larger than 0.05, the x2-approximation 
appears to be rather satisfactory. Therefore, our analysis suggests that in this case 
the (unconditional) asymptotic distribution of 2 log An is: 

0.5X~0) + 0.5X~1), 

where X~0) is the distribution with all its mass at zero. If we use the above 

geometric description and apply the asymptotic theory of Self and Liang (1987), 
then this example fits exactly in their "Case 5". 

4. The Poisson Po(0) for small 0 

Here we consider f(x,O) = exp(-O)OX/x!, the Poisson distribution. How- 
ever, we restrict 0 to small values, in the interval [0, 0.1], say. Motivation for 
this assumption lies in the fact that  then Pr (X > 2) ~ 0. Therefore, we can 
undertake an analysis similar to Section 3, since the nonzero Poisson probabil- 
ities If(0,0), f (1 ,0) ,  f(2,0)] T define a curve F in the two-dimensional simplex 
{a I c~i _> 0, fo r i  = 0,1,2, a n d a 0 + a ~  + a 2  = 1}. Again, we consider only 
the first two coordinates: F = {(f(0,0) ,  f (1 ,0))  T I 0 E [0,0.1]} c E2. Figure 3 
demonstrates the geometry of the situation�9 Again, the null hypothesis is part 
of the boundary of the alternative. The complication is very similiax to Section 
3. What  is different here is the way the event "& is above F" is determined. We 
can write F = {exp(-0)(1,0)  T I 0 E [0,0.1]}. Thus the event "& is above P" is 
equivalent to &l > &0[-log &0] or, YI/Yo >_ - log(yo/n)  and can be computed via 

(4.1) In(O) := Pr(An = 1) 

= E 
y l / y o ~ _  - l o g ( y o / n )  

n "~f(O,O)yof(1, O)Wf(2,0)w, 
Yo Yl Y2 / 

the multinomial distribution. However, since the multinomial coefficients become 
expensive to compute for large n, we use simulation to find ~n(0) and (I)~ (x) for 
0 = 0.01, 0.02, . . . ,0 .10.  The replication size is again 10000. Estimates of ~ ( 0 )  
and ~ ( . 9 5 ) ,  ~ ( . 9 9 )  axe shown in Figs. 4 and 5 for n = 1000 and n = 10000. 
The asymptotic distribution of 2 log An appears to be the mixture 0 5X~0) + 0 5X21 

�9 . ( )  
again, although convergence is slow for small 0-values. Just as in the previous 
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Fig. 3. 

a 0 

Null-hypothesis and alternative in the case of the Poisson with small 0. 
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Legend 
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�9 n = 10000 

Fig. 4. (n: Proportion of A,~ = 1 for n = 1000 and 10000. 

example,  this is the correct  asymptot ic  result  if the  probabi l i ty  of get t ing 3 or 
greater  is small enough to be negligible. 

5. The Poisson, general case 

We now consider f (x ,~)  = exp(-0)tgX/x!,  0 > 0, x = 0, 1 , 2 , . . . .  Unfor tu-  
nately, the result of Section 4 does not generalize. A simple geometric charac- 
terization of the max imum likelihood es t imator  is no longer possible. However, 
with the  tool of the general mixture maximum likelihood theorem (B6hning (1982, 
1989), B6hning and Hoffmann (1982), Lindsay (1983)) it is possible to  identify 
the cases for which An = 1 ra ther  easily. Recall tha t  An = 1 is equivalent to 
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Fig. 5. Po isson  wi th  small  8: Percent i les  of 2 log )~,~ given t h a t  )~,~ > 1 for n -- 1000 
and  10000. 

l(/3) = sup, ,  l(P) = supe l(0) = l(O). Here, P and 0 are the maximum likeli- 
hood est imators  under the al ternative and null hypothesis,  respectively. Define 
D(P, 0) = lime_.0 + [1((1 - fl)P + flQo) - l(P)]/3 as the directional derivative at P 
in the direction of the one point measure Qe. Then the general mixture maximum 
likelihood theorem states tha t  P* is the unrestr icted nonparametr ic  maximum 
likelihood est imator  if and only if supe D(P* ,  0) = 0, which can easily be deduced 
from the following inequality chain: 

s u p D ( P ,  0) > l(P*) - l(P) >__ O. 
0 

Now, in part icular this inequality chain implies (with the convention D(p, O) = 
D ( Q , ,  0)) tha t  

supP( , 0) > l(P*) - l ( 0 )  > 0. 

From here we have: 

(5.1) sup D({}, O) = 0 ~> l(P*) - l (O)  = O. 

Noting tha t  l(P*) > l(P) >_ l(0), it is clear tha t  supe D(~}, 0) = 0 implies l (P)  = 
l(0), and so An = 1. On the other  hand, it can be  shown that  if l(/3) > l(t}), 
then sup e D(~}, O) > 0. Thus  our first step in the calculation of An is to check if 
supo D(0, O) <_ 0. For the maximizat ion of D(0,  0) we use a global maximizat ion 
algorithm on the interval (xo)  , x(n)), in the  sense that  D(O, O) is computed  on a 
grid of 101 equally spaced points from x(1) to x(n), and the maximum was taken 

as the initial value for a Newton-Raphson  iteration. Note  that  D(t~, 0) is simply 
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Fig. 6. Poisson: Selected percenti les of uncondi t iona l  d i s t r ibu t ion  of 2 log An for n = 10000. 

~ i  { ~/(x~'~ - 1  }. If the inequality holds, we set An = 1  (in the computer program 

suP0 D(O,O) <_ 0 was implemented as sup0 D(0, 0) < 10-4). This procedure can 
be carried out quickly at low computational expense. 

For suP0 D(t~, 0) > 0 the computation of 2 log An is more difficult, and the use 
of algorithmic methodology cannot be avoided. Note that  (5.1) holds indepen- 
dently of the form of the density f ( x ,  0). 

Although many algorithms have been developed for computing the nonpara- 
metric maximum likelihood estimate of the mixing distribution (see B6hning et 
al. (1992), Lesperance and Kalbfleisch (1992)), the EM algorithm (Dempster et 
al. (1977)) is still the simplest technique to compute the maximum likelihood es- 
timate when the support size is fixed (as it is here with k = 2). We here used 
the EM algorithm together with a stable acceleration device that  can save about 
60-90% of the number of iterations without  increasing the numerical complexity. 
This device is discussed in the appendix. Moreover, a key difficulty in mixture 
computations with fixed support size is the possible existence of multiple modes. 
In our simulations, we used as starting values under the alternative Pl = P2 and 
01 = x(1) + 1/2, 02 = x(~) - 1/2, since well separated values have often turned 
out to be a good strategy for avoiding local maxima which are not global ones--at  
least in univariate problems (BShning et al. (1992)). We note that  computational 
error in the sense of not finding the global maximum would have the effect of 
biasing our percentiles downward, but we believe the effect to be negligible. 

The (unconditional) distribution of 2 log An is found by simulation. The repli- 
cation size was set to 10000. The parameters were chosen from the grid 1, 2, . . . ,  10. 
Figure 6 shows estimates of the 90th, 95th, 97.5th, and 99th percentile of the dis- 
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Table I. 
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Selected percentiles of 2 log kn for Poisson d i s t r ibu t ion  (averaged over pa ramete r ) .  

1 - - a  n =  100 n =  1000 n =  10000 P-va lue  for X~i)_ 
m 

90th  2.65 2.22 1.58 0.209 

95th 4.01 3.86 2.62 0.105 

97.5th 5.30 5,30 3.75 0.053 

99th 7.15 7,15 5.44 0.020 

9 

Meon Valu~ s 

3 

2 
0 

~ } } t Percentiles 
�9 9 9 t h  

I z "~ [1" ~ o 9 7 . 5 , h  

" 9 5 t h  

�9 9 0 t h  

I I i I I i 

0 

Fig. 7. Poisson: Selected percenti les  of condit ional  d i s t r ibu t ion  of 2 log An, condi t ional  
t h a t  An > 1 for n -- 10000. 

tribution of 2log An, n = 10000 with 95% confidence intervals. Plots for n = 100 
and n = 1000 have similiar stability across 0. It appears that  the upper percentiles 
become independent of 0, as is desired for testing. Table 1 presents the four per- 
centiles averaged over the 10 parameters under consideration (0 = 1, 2 , . . . ,  10). 
Column 4 gives the p-value for the value of 2 log An in column 3 under  the X 2 with 

1 dr. It can be seen that  the (1 - a)100 percentile of 2 log An corresponds to the 
(1 - 2a)100 percentile of the X 2 with 1 dr. 

Figure 7 shows estimates of the 90th, 95th, 97.5th, and 99th percentile of 
the conditional distribution of 2 log An, conditional that  A~ > 1, as well as the 
estimated proportion ~ = ~ (0 )  of )~n : i. It appears as well that  the percentiles 
and ~n become independent of 0. 
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Fig. 8. 
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Table 2. Selected percentiles of 2 log An for exponential distribution (averaged over parameter) .  

1 - a  n = 1 0 0  n=1000  n=10000 P-value forx~]) 

90th 1.69 1.49 0.50 0.479 
95th 3.26 2.59 1.86 0.172 
97.5th 4.67 3.76 3.19 0.074 
99th 6.33 5.48 4.94 0.026 

6. The exponential 

Next,  we s t u d y - - a s  a first example  with a continuous sample  s p a c e - - t h e  ex- 
ponential density f ( x ,  8) -- ~ exp { - 9 } "  Figure 8 shows four selected percent i les  
of the dis t r ibut ion of 2 log An for n -- 1000. In  this case, the  homogene i ty  of the  
d is t r ibut ion over 8 is not  surprising, a s  A n is invariant  under  scale t r ans fo rma t ions  
of the da ta ,  and so under  the null hypothesis  has a d is t r ibut ion  not depending  
on 8. I f  we average over  the  10 pa rame te r s  under  considerat ion (8 -- 1, 2 , . . . ,  10), 
we ob ta in  the  values of  Table 2. Here, the a sympto t i c  d is t r ibut ion  of 2 log An is 
shifted even more to the  left. I ts  (1 - a)100-percent i le  corresponds  more  to the  
( 1  - 3a)100-percent i le  of a X 2 with 1 df than  to  its (1 - 2a)100-percent i le .  

7. The normal with known variance 

We consider the normal density with known variance. By a location invariance 
argument the distribution of An does not depend on parameter 8 under/I0. This 
time, to find the percentiles of the limiting distribution, we use a technique sug- 
gested in Thode et al. (1988). The selected percentiles are computed by simulation 
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Table 3. 

D A N K M A R  BOHNING ET AL. 

Selected percenti les of 2 log A~ for normal  d is t r ibut ion  wi th  known variance. 

n 90th  95th  97.5th 99 th  

100 2.13 3.50 5.14 6.63 

200 1.87 3.35 4.67 6.23 

300 1.56 2.95 4.59 6.79 

400 1.52 2.92 4.66 6.51 

500 1.49 2.65 4.29 6.52 

600 1.43 2.47 3.65 5.67 

700 1.52 2.49 3.77 5.59 

800 1.55 2.46 3.56 5.22 

900 1.57 2.57 3.90 5.32 

1000 1.38 2.37 3.58 5.14 

c~(10000)$ 1.10 (0.968) 1.89 (2.23) 3.02 (3.44) 4.90 (5.06) 

P-va lue  for X~I) 0.29 (0.32) 0.16 (0.14) 0.08 (0.06) 0.03 (0.03) 

:~The n u m b e r  in brackets  refer to the  sample  size n = 10000, 
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Fig. 9. S imula ted  d is t r ibut ion  funct ion of 2 log An, s imulated d i s t r ibu t ion  funct ion of 
2log An condi t ional  t ha t  )~n > 1, and d is t r ibu t ion  funct ion of X 2 wi th  1 and  2 df for 
sample size n = 10000. 

(replication size 5000) for small n, from 100 to 1000. A limiting 95th percentile 
~ = 1.89 can be obtained by extrapolation along a simple regression line. The 
regression model used is percentile (2 log An) -~ / ~  + ~/V ~- The line fits the 
percentiles well, and agrees with the percentile for n = 10000, which was not used 
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in fitting the line. See Table 3. 
We close with a comparison of the simulated distribution function of 2 log As 

for n = 10000 with the x2-distribution function of 1 degree of freedom and 2 
degrees of freedom, the latter being suggested by conventional analysis. The dif- 
ference from the x2-distribution with 1 degree of freedom is evident from Fig. 9. 
In addition, if we look at the simulated distribution function of 2 log AN condi- 
tional on AN > 1, we observe that it lies between the x2-distributions (with 1 df 
and 2 dr). From the latter result it is reasonable to model the limiting condi- 
tional distribution O ~  of the log-likelihood ratio statistic conditional on As > 1 
as ( 1 -  a)~x~l)+ a ~ ) .  In our case we find & = 0.56 (by regressing ~ n  - 4 ~ t  ) on 

~x~) - ~x~l)) and the corresponding mixture of x2-distribution functions is found 

under "predicted" in Fig. 9. This illustrates the non-standard asymptotic result. 

8. Concluding remarks 

A major achievement of this work can be seen in the finding that the upper 
percentiles (which are of interest of testing) appear to become independent of 0, 
although they vary from model to model under consideration. 

It might be of interest to see whether the asymptotic result for testing/I0 : 
k = 1 against HI : k = 2 generalizes to the nested hypothesis case H0 : k = k* 
against //1 : k = k* + 1 for k* = 1,2,3,.... The potential value of such an 
investigation lies in it's application in identifying the number of components by 
a selection procedure such as the backward elimination with the natural starting 
value taken as the nonparametric maximum likelihood estimator (BShning (1982), 
Lindsay (1983)). However, such an investigation will require extensive simulation 
studies. 
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Appendix 

Aitken acceleration for computing the likelihood-ratio statistic 
The EM algorithm (Dempster et al. (1977), Wu (1983)) is a well-known algo- 

rithmic concept for finding the maximum likelihood estimate in incomplete data 
problems, which is attractive because it often leads to simple iteration formulas 
with guaranteed stepwise increase of the likelihood function. Unfortunately, the 
EM algorithm converges only linearly, and in practice the rate is often very slow. 
This implies that many iterations will be necessary to achieve parameter estimates 
of reasonable accuracy. In a simulation study, where the algorithm has to be used 
many thousand of times, a speeding device can be very useful. 

In addition, there is another severe problem: It is often not easy to say when 
reasonable accuracy is satisfied. Let (li) be the sequence of log-likelihoods created 
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by the EM algorithm. Often it is suggested to stop the i teration when Ili+l - l i [  <_ 
tol is met, with tol small. See for example Agha and Ibrahim (1984). However, 
this serves more as a lack of  progress criterion than  a useful stopping criterion. 

We will discuss the possibilities of using Aitken acceleration to develop a useful  
stopping rule and then  explore further the possibilities of using Aitken acceleration 
on the log-likelihood estimates. Aitken acceleration on the parameter  estimates 
itself has been suggested by various authors (Louis (1982), Laird et al. (1985), 
Gediga and Holling (1988) and more recently by Meilijson (1989)). According to 
Section 1 the mixture  likelihood becomes 

[I L f(x , oj)p 5, 
i=1 j = l  

and the sequence (lu) is defined by lu = l~ E~=I  f ( x i ,  TMvj )t)) j where 0(") 

and/5(") are the iterates at the u-th step of the EM algorithm. 
Suppose we have an arbi t rary sequence (li) converging linearly to [, t ha t  is 

(A.1) li+l - [ TM c(li - D for all i 's and some c, 0 < c < 1. 

Here "=~" means tha t  the equality in (A.1) is valid in the sense l i m ~  (h+i-~) _ (z~-0 
Equation (A.1) can be rearranged algebraically to give the equation 

C. 

li+l - li TM (1 - c ) ( [ -  li). 

From this it is clear tha t  if c is very close to 1, then a small increment in the 
log-likelihood, 1~+1 - l~, need not mean tha t  li is close to the maximum, [. 

Aitken acceleration is a device to exploit the regularity of the convergence 
process. Because of (A.1) we find tha t  

Ii+1 - l~ ~ c(l~ - / i - l )  for all i 

implying tha t  
li+l - li ~- c~(ll - 10), 

and we get the geometr ic  series 

(A.2) = i-~lim li TM 10 + c i (11 - 10) = 10 + ~-Z-~_ c(ll  - 10). 
\ i = O  / 

Since c is u n k n o w n  we have to est imate it; this can be done with two consec- 
utive errors el = (12 - ll) and e0 = (11 - 10) as 

(12 - 11) (li+l - li) 
cl : (ll - 10) or its general form c~ = (li - 1~_1) 
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leading to the Aitken accelerated estimate of [ 

1 
(A.3) l~  = li-1 + -;---~_ (li -1~-1). 

i--c~ 

For ci in (0, 1) we notice the nice monotonicity property l~  >_ li. In fact, in 
many cases l~  is much bigger than l~, as ci is nearly one, corresponding to a slow 
linear rate of convergence. 

The principle idea in applying (A.3) is to leave the sequence of parameter 
EM estimates unchanged (since they are not of primary interest) but instead of 
considering (li), we use (l~). We stop the EM algorithm if II~ - l~_ll < tol and 

use l~  as a prediction of l(/~). Note that this acceleration device can be used for 
any log-likelihood-sequence that is linearly convergent. 
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