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Abstract .  We study the positive dependence of pairs of stochastic processes 
and examine its relation with the properties of certain stopping times. Some 
special cases, such as dependent random walks, Gaussian processes and ex- 
changeable sequences of elliptically contoured random variables, are taken into 
account. 
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1. Introduction 

The concept of positive dependence has been widely studied in the litera- 
ture. The reader is referred to Lehmann (1966) for the original contribution, to 
Kimeldorf and Sampson (1987, 1989) for comprehensive surveys, and to Block et 

al. (1990) for a collection of recent contributions on the subject. 
In particular, an ordering of positive dependence for pairs of random variables 

has been defined and characterized in different ways. In this paper we provide a 
characterization of the positive dependence ordering in terms of stopping times of 
stochastic processes composed of independent copies of the original pairs of random 
variables. In this vein, we try to shed some light on the idea of positive dependence 
of bivariate stochastic processes by relating it to the behavior of suitably chosen 
stopping times. 

To the best of our knowledge, this idea has not been developed in the literature. 
It should be pointed out, though, that  the link between correlation and hitting 
times is at the core of Slepian's inequality (see, e.g., Adler (1990)). In a different 
direction, a dynamic approach to association has been proposed by Arjas and 
Norros (1984). 

In Section 2 a characterization of the positive dependence ordering in terms 
of stopping times is presented. In Section 3 the issue of dependence of bivariate 
processes is dealt with. First, the case of random walks is analyzed; a family 
of stopping times is suggested, and it is shown that  their Laplace ordering is 
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equivalent to a condition on the bivariate random walks which can be seen as a 
natural dependence comparison. Then, Gaussian processes are studied. Under a 
weak dependence condition, an inequality among expected values of suprema of 
difference processes is obtained. A stronger dependence condition yields stochastic 
order of certain hitting times. For a family of Brownian motions, it is shown that 
the stochastic ordering of these hitting times is equivalent to a natural dependence 
index. 

The latter is indeed one of the few cases in which we were able to establish 
necessary and sufficient conditions for the ordering of stopping times which are 
meaningful in terms of dependence. Another such case is almost trivial: convex 
combinations of processes. There are two main sources of difficulties in establishing 
such results in general frameworks: one is that they become rapidly very hard to 
prove, from a technical point of view, as soon as the context becomes less than 
very well-known; a second source is that  there is no guarantee that  the same type 
of ordering among stopping times and the same dependence conditions are to be 
taken into account in different situations. 

Thus, the fact that we deal, throughout the paper, with a collection of special 
cases is certainly due to our lack of capability to prove more general results, but  
it is presumably due also to the fact that  very general results which apply in all 
setups need not exist. 

Section 4 is devoted to comparing two infinite exchangeable elliptically con- 
toured sequences. Suitable stopping times are defined, the stochastic ordering 
of which is shown to be equivalent to the ordering of the correlation coefficients 
among the variables within each sequence. 

2. Positive dependence ordering 

The positive dependence ordering _<PO for pairs of random variables can 
be characterized in different ways. We say that  the pair (X1,X2) is less posi- 
tively dependent than (Y1, Y2), and write (X1, X2)<__pD(Y1, ]72), if EC(X1, Z2) _< 
Er Y2) for every 2-monotone function r (recall that r : ~2 ~ ~ is 2-monotone 
if r  x2) + r Y2) _> r  Y2) + r x2), Vxl ~ Yt, x2 ~ Y2). 

An equivalent characterization in terms of distribution functions is: (X1, X2) 
_<pD(Y1, Y2) if Fx1 = FyI, Fx2 -- Fy2 and Fx~,x2(s,t) <_ Fy~,y2(8, t ) Vs,t C ~2. 

We shall give a different characterization in terms of stopping times. For this 
purpose we need a preliminary result relating set orderings and stopping times. 

Let X and Y be two random variables with values in a Polish space E with 
laws P and Q respectively. Let .~ = {)~(n) I n E ~} and ]( = {]~(n) I n E ~1} 
be two sequences of independent copies of X and Y. For a Borel set H define 
TH x = inf{n �9 ~l IX(n)  �9 H}. 

LEMMA 2.1. P(H) <_ Q(H) if and only i f T  X >--st TY, where >_st is the usual 
stochastic ordering. 

PROOF. From the independence assumption it follows easily that Prob(TH x > 
k) -- [1 - P(H)]  k > [1 - Q(H)] k = Prob(T Y > k). [] 
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The ordering of positive dependence can now be characterized resorting to the 
above setup. 

PROPOSITION 2.1. Let Fx1 = Fy~ and Fx2 = Fy~. Then (X1,X2)~PD 
:r ~(X1,X2) T(HY1 ,]I2) for every set H of the form ( - c e ,  x l )  • (Y1, Y2) if  and only "q I H ~st 

PROOF. Let P be the law of (X1, X2) and let Q be the law of (Y1, Y2). Let 
also .4 = {(-oO, Xl) x ( -oo ,  x2) l Xa,X2 E ~}. By definition, (XI,X2)<PD(Y1,Y2) 
if and only if P ( H )  <_ Q ( H ) V H  E A,  and the lemma above ensures tha t  this is in 

'T(XI'X2) ~st q-(Y1,Y2) turn  equivalent to */4 *H , VH E ,4. [] 

3. Dependence of bivariate processes 

In this section we s tudy the positive dependence of pairs of special types of 
stochastic processes. 

The setup is as follows: we take four real valued stochastic processes, A 1, A 2, 
B 1 and B 2, each with the same law, and consider the two pairs A = (A 1, A 2) and 
B = (B1,B2) ,  which may display a different dependence structure.  We let the 
four processes start  at zero, and consider the random variables 

(3.1) Te A = inf{t _> 0 I IDA[ _> 6} g > 0, 

where D A = A 1 - A 2. When there is no ambiguity, we shall write T A instead of 
T A. D B and T B are defined similarly. We shall refer to T A and T B as hitting 
times. 

Intuitively, in case of perfect positive dependence the difference process D A is 
constant  at zero, and T A = ~Vg > 0. Thus, it seems reasonable to t ry  and quan- 
t ify the assertion: stochastically greater hitting times correspond to more positive 
dependent pairs of processes. 

Unfortunately,  we are able to provide necessary and sufficient conditions for 
the relation T A _>st T~  only in the trivial case of convex combinations of processes. 
For a pair X = (X t, X 2) of stochastic processes, we denote with U x the covariance 
of the increments, namely 

uX(s,t) Coy(X: = - X s , X  t t E R+. 

Let A (~ A (1) and A (2) be independent,  real valued, zero mean stochastic 
processes on ~+ with continuous paths, and let AJ = k A A  (~ -t- (1 - kA)A  (j) 
0 < k A < 1; j = 1, 2. Let B (~ B (j) and B y be defined similarly. Suppose tha t  
A (~ and B (~ have the same probability law and tha t  A 0), A (2), B (1) and B (2) 
have the same probability law. Then ]gA ~ kB r T A < s t T  B for every g > 0. In 
fact 

( ) ( Prob(T  A < t ) = P r o b  sup]DAI > g  = P r o b  sup[A (*)-A~2) I > _--kA 
- \ s < t  - \ s<_t  - 1 
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so tha t  P r o b ( T  A _< t) is decreasing in k A. 

It is a simple mat te r  to check tha t  UA(s, t) = (kA) 2 Var(A~ ~ - A(~ Hence 
U A < U B w k A < k B, and this shows tha t  the index U agrees well with k, which 
is the natura l  positive dependence index in this case. The  funct ion U will prove 
to  be a suitable measure of dependence also in the sequel. 

The  next  two results will show, for two par t icular  classes of processes, tha t  if 
the pair A is less positively dependent  t han  B ,  then  some sort  of comparison can 
be established for the hit t ing times. 

3.1 Dependent random walks 
The  processes under  consideration here are pairs of dependent  r andom walks 

having the same marginal distributions but  different dependence s t ructure .  
In this case the appropriate  positive dependence index is the  covariance of the 

increments,  or, equivalently, the probabil i ty of simultaneous forward jumps. The  
result we are able to prove is in terms of the Laplace t ransform order <L. Recall 
that ,  given two positive random variables X and Y, we write X~_LY when 

Ee - ~ x  > Ee  - ~ Y  Va > O. 

For j = 1, 2, let A j be a random walk s tar t ing at 0, let A A  j be its one-step 
increment,  namely 

= An+ 1 

and let the joint  distr ibution of AA 1 and AA 2 be de termined by the following 
relations: 

P rob(AA~ = 1) = 1 - P rob(AA~ = - 1 )  = p 

P rob(AA~ = AA~ = 1) = pA n E N, 

n E N ,  

where (2p - 1) + < pA ~_ p. Let B 1, B 2 etc. be defined similarly. 

PROPOSITION 3.1. The following are equivalent: 
( i )  U a < U B, 

(ii) pA ~ pB, 

(iii) TA<_LT~ for every positive even integer 6. 

PROOF. For notat ional  simplicity, we omit  the  subscript  n where appropri-  
ate. Obviously, 

(3.2) 
P r o b ( A D  A = 2) = P r o b ( A A  1 = 1, AA 2 = - 1 )  = p - pA, 

P r o b ( A D  A = - 2 )  = P r o b ( A A  1 = - 1 ,  A A  2 = 1) = p - pA, 

P r o b ( A D  A = 0) 

= P r o b ( A A  1 = - 1 ,  AA 2 = - 1 )  + P r o b ( A A  ~ = 1, A A  2 = 1) 

= 1 - 2 ( p  - p A ) .  
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Thus Cov(AA 1, AA 2) = 4(p A -p2 ) .  Now, since the increments are indepen- 

dent, we have 

V A ( n , n + k )  Cov(A~+ k 1 1 1 2 . . . .  A~) = - An+k_ ~ + A~+k_~ . . . . .  An, A~+k - 

= k Cov(AA 1, AA 2) = 4k(p A - p2) 

so tha t  (i)r 
Let us prove now (ii)r For a random variable Y, and real a ,  write 

Cy(a )  = E(exp{-c~Y}),  provided tha t  the integrals involved exist. Then,  from 
(3 .2) ,  

CADA(a) = (p-- pA)(e--2~ + e 2~) + 1 + 2(p A -- p) 

= 2 ( ; -  p A ) [ c o s h ( 2 o O  - 1] + 1 

and 
= 

Incidentally, notice tha t  1 < CAD A 

for D A, r for CADa and T for T A. 

Mn 

is a martingale for each a,  and the 

< co. For notat ional  simplicity, let us write D 
It is clear tha t  

e x p { - a D n }  

optional stopping theorem applies. Thus 

W e x p { - a D T  } 1 (3.3) I = E M T = E [  ~ j 

= E [ e x p { - a n T  - T log r 

Now, since the Laplace order involves only positive values of a ,  we may con- 
sider the restrictions of cosh and r to R+, so tha t  the inverses are well defined: 

1 ( t-I  ) 
r 1 7 6  2(p pA) +1  t >  1. 

The independence of T and DT allows us to rephrase the equality (3.3) as 

E [ e x p { - T l o g r  = (E[exp{-aDT}])  -1 c~ > O. 

Observing tha t  log or : •+ --~ R+ is a bijection, and le t t ing/3 = log r  we 
get 

CT(f~) = E[exp(- /3T}]  = (E[exp{-r  -1 ~ > O. 

Now, since the law of DT is symmetric  and since, by (3.1), DT assumes values +g 
and - g  (where g is a positive even integer), we obtain 

E[exp{-r = exp{-/~r + exp{gr 
2 

= cosh(gr -1 (eZ)) 

-- cosh cosh-  1 \ 2 (p - pA) § 1 
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and this increases with pA, for each fl > 0, so that CT(fl) decreases with pA. Thus 

pA < pB Ca CTA(fl) > CTB(fl)Vfl > 0 4=~ TA<L TB. [] 

3.2 Gaussian processes 
Here, we assume that the processes A 1, A 2, B 1 and B 2 are bounded, centered, 

real valued Gaussian processes with continuous paths. A relation among expected 
values of suprema of difference processes emerges, and is put in correspondence 
with hitting times by 

(3.4) ~supDs A > e} = {S A _< t} 
k s<t 

where 
S A = inf{t > 0 1 D  A > e}. 

We consider hitting times of the process D A, instead of IDAI, in order to be 
able to draw from the existing literature about suprema distributions for Gaussian 
processes. Notice, though, that  the fact that D A is centered implies 

Prob(S A <_t):Prob(supDAs > ~ ) : P r o b ( i n f D  A < _ - [ ) : P r o b ( S  A < t )  
\s<t \s<t 

where 
~A = inf{s > 0 t D  2 _< -g}.  

Analogously to what was said after the definition of T r  in case of perfect 
positive dependence D A -_- 0, so that S A and ~A are a.s. infinite, for all f > 0. 
Thus, we may conjecture that  stochastically greater stopping times S r correspond 
to more positive dependent pairs of processes. 

Define C A by 
cA(s , t )  1 2 = Coy(As, A t) s, t E ~+ 

and define C B analogously. 

PROPOSITION 3.2. Let A ~ and B ~ (i = 1,2) be a.s. bounded, centered, real 
valued Gaussian processes with continuous paths, each with covariance function 
R. 

(a) If 

(3.5) uA(s,t)_< uB(s,t)  Vs, t ~ ~,+ 

then 

\ s~_t \ s~t  / 
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(b) ff 

(3.7) c A ( t , t )  = c B ( t , t )  and C A ( s , t )  > C B ( s , t )  

then 

(3.s) s~_<sts,' ,  ve > 0. 

Vs, t E [{+ 

PROOF. (a) The Sudakov-Fernique inequality (see, e.g., Adler (1990)), in our 
case, reads as follows: (3.6) is implied by 

(3.9) E ( D  A - DA) 2 _> E ( D t  B - D ~ )  2 Vs, t E [r 

But 

E ( D  A - DA) 2 = E(Al t  - A2t - A i + A~) 2 

= E(Alt  - Als) 2 + E ( A  2 - A~) 2 - 2 u A ( t , s )  

= 2[R(t, t ) +  R ( s ,  s) - 2R( t ,  s) - u d ( t ,  s)], 

so that v A ( t ,  s) ~ E ( D  A - D A )  2 is a decreasing function. Hence (3.5) implies 
(3.9) and (3.6). 

(b) If (3.7) holds, then 

Cov(DA,D A) = E ( ( A ]  2 1 
- d t ) ( A  s - d~) )  

= 2R(t, s) - [cA( t ,  s) + CA(s ,  t)] < Cov(D B, DB). 

Furthermore 
Var(D A) = 2[R(t, t) - c A ( t ,  t)] = Var(UB). 

Thus, Slepian's Lemma applies and one gets 

Prob ( s u p D 2  > g)_> Prob (supDsS >_ g) Vt, g E ~I+ 
\ s<_t \ s<t 

i.e. 
Prob(S A _< t) > Prob(S~ _< t) 

and hence (3.8) follows. [] 

R e m a r k  1. Notice that, in view of (3.4), (3.6) is equivalent to 

/o /o Prob(S A < t)ae >_ Prob(S B _< t)ae, 

which is a necessary condition for (3.8). 
Furthermore, (3.7) implies (3.5). In fact 

u~(~ ,  t) = c A ( t ,  t) - c '~( t ,  ~) - c ~ ( ~ ,  t) + c ~ ( ~ ,  ~) 

< c B(t ,  t) - c ' ( t ,  ~) - c B (s, t) + c ' ( ~ ,  s) = u ' ( s ,  t). 
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Remark  2. The following example shows tha t  it is indeed positive dependence 
we should deal with, and not dependence tout court. Let A 1, A 2, B ] and B 2 be 
s tandard  Brownian motions such tha t  A 1 = - A  p while B 1 and B ~ are independent.  
Then D A 2At 1 and Dt B are centered normal random variables with variance 4t 
and 2t respectively, and 

Prob(S { _< t) = 2 Prob(D A > g) > 2 Prob(Dt  B > g) = Prob(S~ _< t) 

so tha t  S~<_stS~. 
Thus, the independent  pair "meets later" t han  the (negatively dependent) 

mirror-image pair. This is consistent with the idea underlying this note, and 
indeed one has U A ~ U B also in this case. 

Remark 3. The example in Remark 2 can be generalized. Let W1 and W2 
be two independent s tandard  Brownian motions, and let, for 0 < c~ < 1, 

1 A 1 - 
X/2( 1 + (~2) 

1 A 2 - 
u § a2) 

[(1 + c~)W1 + (1 - ct)W2], 

[(1 - c~)W1 + (1 + a)W2]. 

Let B1, B2 be defined similarly, wi th /3  replacing a .  Then A 1 and A 2 are again 
s tandard  Brownian motions, wi th  

Coy(At 1 At 2) = 1 - a 2  
' 1 + a -~t' 

so tha t  the correlation between the two processes decreases with c~. The difference 
process D A is also a Brownian motion, with Var(D A) = (4c~2/1 + c~2)t. Thus 

where q~ denotes the cumulative distr ibution function of a s tandard normal random 
variable. It is now easy to see t ha t  Prob(S A <_ t) increases with c~, for each t > 0 
and g > 0, so tha t  

c~ > /3  e=> Coy(At*, At 2) < Coy(B1, B 2) r U A < U B cee sA<_stS B.  

4. Exchangeable elliptically contoured sequences 

Stopping times can be related also to the correlation of an infinite exchange- 
able sequence. We recall first tha t  the law of a random vector W is elliptically 
contoured if for some vector m and some non-negative definite matr ix  E,  the 
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characteristic function of W - m depends on its argument  t only through the 
quadratic form t~Et, namely 

(4.1) E(exp{i t '  W})  = e x p { i t ' m } r  

for some function r 
It is well known tha t  if W admits  moments  of the first two orders, then  its 

mean vector is m and its covariance matr ix  is proportional to E.  See, for example, 
Cambanis et al. (1981). 

Now, let W = {W~ ] n E N} be a sequence of random variables wi th  elliptically 
contoured finite dimensional laws as in (4.1), such that ,  for every n, rn E N, EW~ = 
#, Var(Wn) = cr 2 and Coy(Win W,~) = pa 2. Indicate this by W ~ EC(#,  a2, p, r  
This clearly implies tha t  the sequence is exchangeable. 

We define a stopping t ime in terms of the first pair (W2n-1, W2~) of random 
variables sufficiently close to each other, namely 

T W = inf{n C N ]lW2n - W2n-1] < ~} ~ > O. 

The next proposition will show that T W is stochastically decreasing with respect 
to p. 

PROPOSITION 4.1. Let X ~ EC(#x,cr2, p x , r  and Y ~ EC(Ity,~r2,py,r 
Then T~ x <_stT~ if and only if Px > PY. 

PROOF. Let Z x = { Z  x I n E  N} be given by Z ~  = X 2 ~ - X 2 n _ l ,  a n d l e t  
Z Y be defined similarly. S tandard  results about  elliptically contoured distributions 
imply tha t  Z x ~ EC(0, 2o2(1 - Px), O, r  Let Z* ~ EC(0, 1, 0, r  Then 

Prob(T x > k) = Prob (3<, ) 1>4 

= Prob 

< Prob 

c }) 
av /2(  1 - Px) 

(7V/2(1 - p y )  

= Prob(T Y > k). [] 

Remark 4. Notice that the above proof shows also that T W is stochastically 
increasing in ~. 
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5. Discussion and conclusions 

We have tried to establish a connection between the concept of positive de- 
pendence ordering and the behavior of some suitable stopping times. Given two 
bivariate processes such that all the marginal processes have the same law, we 
consider, for each process, the difference between the two components. Heuristi- 
cally, if the components of one process are more positively dependent, then the 
difference process will tend to be smaller, and therefore the first time its absolute 
value crosses some threshold will tend to be larger. 

It is hard to translate this heuristics into general results. In fact, depending on 
the nature of the processes, different types of orderings can be established among 
the threshold crossing times. Furthermore, in some cases we were able to find 
necessary and sufficient conditions for these orderings, while in some other cases 
we found only sufficient conditions. 

Even when we obtained necessary and sufficient conditions, the results are not 
completely satisfactory. In fact, for the case of random walks we obtained only 
Laplace ordering for the stopping times T A and T B, whereas stochastic ordering 
was obtained only for the trivial case of convex combinations of processes. The 
other results concern the unilateral stopping times S A and S B. The problem 
of extending these results to the bilateral stopping times is by no means trivial: 
to realize that, consider that the existing literature on distribution for suprema 
of Gaussian processes deals mainly with the unilateral case (Sudakov-Fernique 
inequality, Slepian's inequality, etc.). 
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