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A b s t r a c t .  This paper contains some alternative methods for estimating the 
parameters in the beta binomial and truncated beta binomial models. These 
methods are compared with maximum likelihood on the basis of Asymptotic 
Relative Efficiency (ARE). For the beta binomial distribution a simple estima- 
tor based on moments or ratios of factorial moments has high ARE for most of 
the parameter space and it is an attractive and viable alternative to comput- 
ing the maximum likelihood estimator. It is also simpler to compute than an 
estimator based on the mean and zeros, proposed by Chatfield and Goodhart  
(1970, Appl. Statist., 19, 240-250), and has much higher ARE for most part  
of the parameter space. For the truncated beta binomial, the simple estima- 
tor based on two moment relations does not behave quite as well as for the 
BB distribution, but a simple estimator based on two linear relations involving 
the first three moments and the frequency of "ones" has extremely high ARE. 
Some examples are provided to illustrate the procedure for the two models. 

Key words and phrases: Maximum likelihood, minimum chi-square, asymp- 
totic relative efficiency, truncated beta binomial. 

i .  Introduction 

In  s tudying the  effect of a chemical  on l abo ra to ry  animals,  Wil l iams (1975) 
examined the da t a  on p regnan t  females where the  responses are recorded on each 
individual fetus in a litter.  In each l i t ter ,  the  number ,  X~ of pups  t h a t  survive the  
lacta t ion per iod were recorded.  Thus  each Xi is a b inomial  r a n d o m  variable wi th  
p a r a m e t e r  p. Recent ly  Skurnick (1990), in p lanning  a tr ial  on inferti l i ty pat ients ,  
considered a popula t ion  of women who were not  ovula t ing regularly. For each 
woman,  the number  of ovu la to ry  cycles, X~, were recorded out  of six consecutive 
cycles, the clinically s t anda rd  dura t ion  of therapy.  So each X~ is a binomial  ran- 
dom variable wi th  p a r a m e t e r  p. In the  case of the  l abo ra to ry  animals,  the survival  
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rate of the pups in a litter varies from litter to litter. Similarly in the infertility 
study the ovulation rates in response to therapy could be expected to vary from 
woman to woman. Thus the distribution of the number of successful cycles within 
treatment group would be overdispersed in comparison with a binomial model, 
where one ovulatory rate per group prevailed. In such cases, beta  binomial distri- 
bution provides a flexible model for between subject variability. In this case we 
assume that the woman's probability of ovulating in a single cycle be distributed 
as the beta  distribution and then her number of successful cycles is binomial con- 
ditional on that. Removing the conditioning gives rise to the beta  binomial (BB) 
distribution. 

In studying the impact of litter effect on dose-response modeling in teratology, 
Kupper et al. (1986) concluded that the failure to take litter effects into account 
can lead to underestimation of variances associated with the parameter estimates, 
so that the use of a binomial likelihood to model teratology data does not seem 
advisable. They advocate the use of BB distribution to introduce the varying de- 
gree of intralitter correlation. Paul (1982), in analyzing the proportions of affected 
fetuses in teratological experiments, observed that the BB model is superior to the 
multiplicative binomial model. Pack has found the BB to be superior to alterna- 
tive models such as the correlated binomial of Kupper and Haseman (1978), see 
Pack (1986). Tarone (1982) observed that for many tumor types, the historical 
control rates are more variable than would be expected if they followed a binomial 
distribution, see also Tarone et al. (1981), and he fitted a BB distribution to the 
historical tumor rates. 

Various techniques for estimating parameters in the BB or TBB (truncated 
beta binomiM) distributions have appeared in the literature. Skellam (1948) used 
maximum likelihood estimates (MLE) obtainable with the aid of tables of the 
digamma function. Grii~ths (1973) developed a method of obtaining MLE's which 
obviates the need of values of the digamma function but  involves an iterative 
process for solving nonlinear equations. Nissen-Meyer (1964) proposed an itera- 
tive graphical procedure for obtaining MLE's. Williams (1982) has described a 
simple method of modifying standard logistic-linear analyses, in particular using 
the GLIM computer program to accommodate extra binomial variation. Williams 
(1988) has also studied the bias related to the MLE's. Brooks (1984) has suggested 
a modification of the GLIM method so as to provide a simple way of obtaining 
approximate likelihood ratio test statistic assuming a BB model. In addition to 
the MLE's, Chatfield and Goodhart  (1970) applied an iterative technique based on 
equating the sample mean and the proportion of zeros to their population court- 
terparts. Shenton (1950) showed that the asymptotic relative efficiency (ARE) of 
the method of moments usually exceeds 70%. 

In the present paper we provide other alternative methods for the estimation 
of parameters in the BB model. A numerical technique, according to which partial 
derivatives with respect to any of the arguments of the hypergeometric function 
can be evaluated with high precision, has been used, see Tripathi (1975). Section 2 
contains the estimation of BB parameters based on (i) mean and zeros (ii) first two 
sample moments (iii) the mean and the ratio of ones to zeros, and the comparison 
of ARE's of these estimators. Similar study is done, in Section 3, for the truncated 
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beta  binomial (TBB) model. It turns out that the estimators based on moments or 
ratios of factorial moments behave surprisingly well. The method of minimum chi- 
squares is briefly described in Section 4 to obtain the estimators for the parameters 
of the BB and TBB models. Tables 1 and 2 are provided to summarize the 
investigation of the ARE's for the two models. Numerical examples are included 
in Section 5 to illustrate the procedure for the BB and TBB models, see also Tables 
3 and 4. 

2. The beta binomial family of distributions 

For a binomial distribution with parameter p, the probability of success, and 
N, the number of independent trials, the probability generating function (p.g.f.) is 
[1 + p ( z -  1)] N. If p is regarded as a beta random variable with probability density 
function (p.d.f.) 

1 ~/).p~_l( 1 _ p)Z-1 (2.1) B(a ,  c~>0,  / 3 > 0 ,  0 < p <  1, 

where B(c~, Z) - r(c~ + Z) '  

the p.g.f. C(z) of the resulting compound distribution, designated here as the BB 
family, becomes 

1 f0 (2.2) C(z) - B(o~,~) {1 + p(z - 1)}Npa-l(1 -p )Z- ldp  

= 2F1 ( - N ,  c~; c~ + ~; 1 - z). 

The hypergeometric function 2F1 has a power series representation given 

2F1( , v; x) = xJ 
5--0 7.' 

where (u)j = u(u + 1)(u + 2) - . .  (u + j -  1), and the series converges for ]x I < 1. 
From the p.g.f. (2.2), or otherwise, it can be seen that Pj, the probability of the 
random variable assuming the value j ,  is 

(2.3) pj = ( ~ )  B(o~+ j , N  + / ~ - j )  
B(c~, Z) , j = 0 , 1 , . . . , N  

and #(j), the j - th  descending factorial moment, is 

(-N)J(C~)J (-1)J, j = 1,2, . . . .  (2.4) and # ( j ) -  ( a + Z ) j  

In particular the mean and variance of the beta  binomial model are, respectively, 
given by nTr and n l r (1 -~r ) (n r162  -1 where 7r = ct(c~+r -1 and r = (a+/3) -1. 
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The binomial model is a special case of the BB model with r = O. Obviously r is 
the over dispersion parameter. It follows that 

(2.5) Pj+____~I = ( N  - j)(c~ + j )  
Pj (j + 1)(N + Z - j - 1)' 

and 

(2.6) /~(j+l) _ ( c ~ + j ) ( N - j )  
#(5) ~ + r + J ' 

j = 0 , 1 , . . . , N -  1 

j = 0, 1, . . . .  

(We adopt the convention here that ~(0) = 1.) For convenience in developing 
estimators of c~ and 13 and hence of 7r and r through the techniques described 
below, we introduce the following notation: 

~j : /A(J§ j = 0, 1, 2, . . .  and 
/~(j) 

P~+I j = 0 , 1 , . . . , N - 1 .  ~?J-~ pj  ' 

The relations (2.5) and (2.6) can now be expressed equivalently in terms of ~j and 
~ as follows: 

(2.7) 

(2.8) 

c~(j - N)  + ~( j  + 1)~j = j ( N  - j )  - (j  + 1)(N - j - 1)fly, 

j = 0 , 1 , . . . , N - I ,  

c~(Sj - N + j ) + ~ S j  = j ( g - j - S j ) ,  j = 0, 1 ,2 , . . . .  

These relations will be used below. 

2.1 Estimation of  the parameters in the B B  distribution 
(1) Estimators based on mean and zero (mean-zeros) 

Since the Negative Binomial (NB) is a limiting case of the BB distribution, and 
as Anscombe (1950) showed that the method of mean and zeros is more efficient 
than the method of moments when fitting the NB to reverse J-shaped distributions, 
Chatfield and Goodhart  (1970) conjectured that the method of mean and zeros 
would have high efficiency when fitting the BB to reverse J-shaped distributions. 
Let/5o denote the sample proportion of observed zeros and/2 the sample mean. 
Then the estimators of c~ and ~ based on /5o and 12 are obtained by solving the 
equations 

(2.9) 

N + 

9) 
N a  

a + ~ '  

- P o ,  

Chatfield and Goodhart (op.cit.) present an iterative solution. 
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(2) Estimators based on first two sample moments  (2-moments)  

Let ~(j) denote the j - th  sample factorial moment and ~j --- ~(j+l• P(J) 
j = 0, 1 in (2.8) and solving the two equations yields the estimators 

Setting 

(2 .10 )  (~ --~ ~ 0 ( N  -- 1 -- ~1) = ( N  - ~ 0 ) ( N  - 1 - ~ 1 )  

~0 -~- N ( ~ I  -- ~0) 

based on the first two sample moments. 
(3) Estimator based on the mean and the ratio of ones to zeros (1 moment-1 

probability) 
Since the estimators in (2.9) involve a nonlinear equation for the zeros, it is 

tempting to replace it by a linear equation involving the ratio of ones to zeros 
obtained from equation (2.7) with j = 0. 

Let ~)0 =/52//50, the ratio of the proportion of observed ones to the proportion 
of observed zeros. Then a simple estimator can be obtained by solving the two 
linear equations 

(2.11) 
(~N -/3~)0 - -  ( N  - 1)7)o, 

a ( N  - ~)  - / 3 D  = 0 

where/2 is the sample mean. This yields the estimators 

= ( N  - 1)Do# 

N D  - ( N  - ~ )~o '  

( N  - 1 ) ( N  - fi)7)0 

Nft - (N -/5)~)o " 

In Subsection 2.2 we shall compare the asymptotic relative efficiencies of the 
estimators of 7r and r by the above three methods. 

2.2 Comparison of asymptotic relative eJficiencies 
The asymptotic relative efficiency is defined by 

(2.12) ARE- II-11 
jvf 

where I = E( ~ lnL)(~r lnL) and V is the asymptotic covariance matrix of the 

estimators of ~r and r Since a = 7r/r and/3 = (1 - 7r)/r V can be written as 
V = J E J  I where J is the jacobian of the transformation and E is the asymptotic 
covariance matrix of the estimators of a and/3. Similarly I -  ~ = J I * - i  j~ where 
I *-1 is the asymptotic covariance matrix of the MLE's of a and /3. Hence the 
ARE of the estimators of ~r and r is the same as the ARE of the corresponding 
estimators of c~ and/3. Thus we shall compute the ARE of the estimators of c~ and 

/3." 
Computation of the asymptotic generalized variance is straightforward, but 

computation of the information determinant IE( ~ in n ) ( ~  ln L)l, where L is the 
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Table l(a).  A R E  of some estimators for 
the parameters in the beta  family. 

N-----5 N - - - 1 0  
r r 

7V 7V 

.1 .3 .5 2.5 5.5 ' .I .3 .5 2.5 5.5 

.I (i) .95 ,95 .93 .84 .82 .I (i) .89 .91 .89 .76 .74 

(ii) .95 .92 .92 .93 .94 (ii) .89 .83 .82 .82 .83 

(iii) .78 .70 .63 .40 .35 (iii) .56 .50 .44 .26 .23 

(iv) 1.00 .99 .98 .97 .96 (iv) .98 .94 .92 .88 .87 

.3 (i) .75 .80 .81 .80 .80 .3 (i) .50 .66 .70 .70 .70 

(ii) .99 .97 .96 .94 .94 (ii) .98 " .93 .90 .83 .83 

(iii) .45 .45 .43 .34 .32 (iii) .16 .22 .24 .21 .20 

(iv) 1.00 .99 .99 .97 .96 (iv) 1.00 .97 .97 .89 .87 

'.5 (i) .49 .60 .66 .75 .77 .5 (i) .18 .38 .48 .63 .67 

(ii) 1.00 .99 .98 .94 .94 (ii) 1.00 .97 .93 .83 .83 

Off) .21 .25 .27 .29 .29 (iii) .03 .08 .11 .17 .18 

(iv) 1.00 .99 .99 .97 .96 (iv) 1.00 .98 .96 .89 .87 

.7 (i) .25 .39 .48 .70 .75 .7 (i) .04 .17 .28 .56 .64 

(ii) .99 .97 .96 .94 .94 (ii) .98 .93 .90 .83 .83 

(iii) .07 .11 .15 .24 .27 (iii) .003 .02 .04 .13 .16 

(iv) 1.00 .99 .99 .97 .96 (iv) 1.00 .97 .95 .89 .87 

.9 (i) .06 .20 .31 .64 .72 .9 (i) .002 .05 .13 .49 .60 

(ii) .95 .92 .92 .93 .94 (ii) .89 .83 .82 .82 .83 

(iii) .01 .04 .07 .20 .25 (iii) .9 • 10 -4  .003 .01 .10 .14 

(iv) 1.00 .99 .98 .97 .96 (iv) .98 .94 .92 .88 .87 

(i) Mean-zeros, (ii) 2-moment, (iii) 1 
moment - 1  probability, (iv) minimum 
chi-square based on 3 moment relations. 

RAM C. TRIPATHI ET AL. 

Table l(b).  ARE of some est imators for the 
parameters in the beta  binomial family. 

(i) Mean and zeros, (ii) 2 moment,  (iii) 1 
moment and - 1  probability, (iv) minimum 
chi-square based on 3 moment  relations. 

likelihood function, involves derivatives of the hypergeometric function with re- 
spect to the parameters appearing in it. Differentiation based on extrapolat ion to 
the limit was used for the computat ions in all the tables of ARE values in this 
article. The method  mentioned above is capable of obtaining from two lower order 
approximations a higher order approximation and is, thus, computat ional ly  more 
accurate and more efficient. This method has been described in detail  by Conte 
and deBoor ((1980), p. 333). 

In Table l(a)  for N = 5, and  Table l(b) for N = 10, the ARE values for the  
estimators of ~ and r are given for the following four estimators: 

i) Based on mean and zeros. 
ii) Based on the ratios of factorial moments.  

iii) Based on the mean and the ratios of ones to zeros. 
iv) Min imum chi-square estimators based on three moments.  
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Fig. I. Reverse J-shaped plots of beta-binomial. 

The  first three correspond respectively to (1), (2), (3) in Subsection 2.1. The  
four th  will be described in Section 4 below. 

The  be ta  binomial distr ibution is reverse J-shaped for small values of a ,  or 7r, 
see Fig. 1. 

For the pa ramete r  values in the first row of Tables l (a)  and l (b) ,  the es t imator  
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(i) based on the mean and zeros does not have high efficiencies especially for low 
values of ~ and high values of ~. The ARE of estimator (ii), based on the first two 
moments, is also very high in the first row of the tables. In fact, the ARE values 
of (ii) over all of Table l(a) are at least 92% with some values indistinguishable 
from 100%. As for Table l(b),  the ARE values of estimator (ii) are well above 
90% for r < 2.5 and moderate values of ~ that  are not too small or too large. In 
both Tables l(a) and l(b),  the ARE values of estimator (i) drop rapidly from its 
values in the first row, with some values close to or indistinguishable from zero in 
Table l(b). The third estimator based on the mean and ratio of ones to zeros has 
low ARE values throughout the tables and, therefore, is not to be recommended. 

For a fourth estimator, obtained through minimum chi-square utilizing the 
first three moments, designated here as (iv), the ARE values are also given in 
Tables l(a) and l(b). The technique for obtaining this estimator will be described 
in Section 4 below. At this point it is worthwhile noting that all its ARE values are 
well above 87% and surpass or are equal to the values for all the other estimators 
considered. In the light of the excellent performance of estimator (ii), however, 
which is very easily computed from the ratios of factorial sample moments, it may 
hardly be worth the extra effort to compute estimator (iv), except perhaps for 
larger values of N,  e.g. N = 10, and for larger values of r 

3. The truncated beta binomial (TBB) family of distributions 

We designated here the TBB family as the BB distribution with zeros ex- 
cluded, and its p.g.f, as G*(z). Thus 

C * ( z )  = 2 F ~ ( - N ,  o~; ~ + ~; 1 - z )  - Po 

l - P 0  

where 2F1 ( - N ,  a; a + 3 ;  1 - z )  and P0 are respectively the p.g.f, and the probability 
of the zero count for the BB family. Let P~ and #~j) denote the probability of the 
j - th  count and the j - th  factorial moment respectively, of the TBB family. Further, 
let 

. #(*j+l) 
~ j -  ..--7-- , j - - - 1 , 2 , . . . ,  

#(j) 

, P~*+I 
U j -  pj. , j = I , 2 , . . . , N - 1 ,  

N a  
~ = till) = (a + t3)(1 - P0) where Po = 2 F ~ ( - N , ~ ;  ~ + f~; 1). 

Then the ~ and {~ satisfy the same equations as do the ~j's and {j 's in (2.7) and 
(2.8), but with the range of the j subscript starting at 1. 

A further relation can be obtained by summing the modified version of (2.5) 
corresponding to the TBB distribution with the Pj replaced by Pj* and the sum- 
mation ranging from 1 to N - 1. This yields 

(3.1) ~ ( N  - ~ )  + ~ ( P ~  - ~ )  = Pi~(1 - N ) .  
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This relation, along with (2.7) and (2.8) sui tably modified, will be used in forming 
est imators of the parameters  as described below. 

3.1 Estimation of the parameters in the TBB distribution 
(1) Estimator based on first two moment relations 

As in Section 3, let/5(*j) denote the j - th  sample factorial moment  and 

^ ~  

Setting j -- 1, 2 in (2.8) and solving the two resulting equations,  yields the esti- 
mator  

= ~ ( N  - 1 - ~ )  - 2 ~ ( N  - 2 - ~ )  

~* ^* 1) ^* % 2) ' ~2 (~1 - N + - ~ (~2 - N + 

^* ~* 2) /~=  2 ( N - 2 - ~ ) ( ~ - N + 1 ) - ( N - 1 - ~ l ) ( ~ 2 - N +  

~*^* 1) ^ * ^ *  ~2 (~1 - N + - ~1 ( ~ 2  - -  N + 2) 

based on the first two moment  relations. 
(2) Estimator based on first moment relation and one involving P~l) and P1* 

(relation (3.1)) 
Setting j = 1 in (2.8) for the first equation, and including (3.1) as the  second 

equat ion yields the following est imator 

= 
(N  - 1 - ~ )  (/51" - / ~ 1 ) )  - / 5 1 " ~  (1 - N)  

(/51" - ~* ~ *  ~, , 

( ~  + 1 - N ) ( N  - ft~l)) +/51"(1 - N ) ( ~  - N + 1) 

#0) ) (~  1 N + - - ^* 

where ft~l),/51" and ~; are the sample counterpar ts  of #~1), P1* and ~ respectively. 

3.2 Comparison of the asymptotic relative efficiency of estimators 
In Table 2(a), for N -- 5, and Table 2(b) for N = 10, appear  the  A R E  values 

for four est imators as follows: 
i) Based on first two moment  relations. 

ii) Based on first moment  relation and one involving #~1) and P{.  

iii) Minimum chi-square est imator  based on first three moment  relations. 
iv) Minimum chi-square est imator based on first two moment  relations and 

one involving #~1) and P{. 

The first two est imators correspond respectively to (1), (2) in Subsect ion 3.1. 
The minimum chi-square technique required for obtaining est imators  (iii) and (iv) 
will be described in Section 4. 

The entries of Tables 2(a) and 2(b) suggest tha t  the A R E  values of es t imator  
(ii) are higher when N = 5 than those of es t imator  (i) over an upper  tr iangular 
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Table 2(a). ARE of some estimators for the 
parameters in the TBB family. 

N = 5  
r 

w 

.1 .3 .5 2.5 5.5 

.1 (i) .81 .79 .81 .76 .88 

(ii) 1.00 .99 .97 .85 .81 

(iii) .99 .98 .97 .97 .97 

(iv) 1.00 1.00 1.00 1.00 .99 

.3 (i) .80 .81 .83 .88 .88 

(ii) .98 .97 .94 .83 .80 

(iii) .98 .98 .98 .97 .97 

(iv) 1.00 1.00 1.00 .99 .99 

.5 (i) .80 .83 .85 .88 .89 

(ii) .97 .93 .90 .81 .79 

(iii) .97 .97 .98 .97 .97 

(iv) 1.00 1,00 1.00 .99 .99 

.7 (i) .84 .87 .88 .89 .89 

(ii) .95 .90 .86 .79 .77 

(iii) .97 .97 .97 .97 .97 

(iv) 1.00 1.00 1.00 .99 .99 

.9 (i) .93 .92 .91 .89 .89 

(ii) .93 .84 .81 .77 .76 

(iii) .98 .98 .98 .97 .97 

(iv) 1.00 1.00 .99 .99 .99 

Table 2(b). ARE of some estimators for 
the parameters in the TBB family. 

N = I O  

r 
71" 

.1 .3 .5 2.5 5.5 

.1 (i) .54 .52 .55 .63 .63 

(ii) .99 .97 .95 .75 .68 

(iii) .85 .79 .79 .79 .79 

(iv) 1.00 .99 .99 .95 .93 

.3 (i) .57 .58 .60 .63 .63 

(ii) .97 .94 .90 .72 .66 

(iii) .83 .81 .80 .80 .79 

(iv) .99 .99 .98 .94 .92 

.5 (i) .67 .65 .65 .64 .64 

(ii) .97 .91 .86 .69 .65 

(iii) .86 .83 .82 .80 .79 

(iv) .99 .98 .97 .93 .92 

.7 (i) ,82 .75 .71 .65 .64 

(ii) ,96 .87 .81 .66 .63 

(iii) ,92 .86 .84 .80 .79 

(iv) 1,00 .98 .96 .92 .91 

.9 (i) .96 .84 .77 .65 .64 

(ii) .89 ,79 .73 .63 .61 

(iii) .97 ,90 .86 .80 .80 

(iv) .98 ,95 .93 .91 .90 

(i) 2 moment relations, (ii) 1 moment 
relation and another relation involving #~1) 

and P~, (iii) minimum chi-square based on 3 
moment relations, (iv) minimum chi-square 
based on 2 moment relations and the relation 
involving #(1) and P ; .  

(i) 2 moment relations, (ii) 1 
moment relation and another relation in- 
volving tz~l ) and P ; ,  (iii) minimum chi- 
square based on 3 moment  relations, (iv) 
minimum chi-square based on 2 moment 
relations and the relation involving /~(1) 
and P ; .  

r e g i o n  i n  t h e  ~ - r  p l ane .  T h e  A R E  v a l u e s  of  t h e  e s t i m a t o r  (i) a r e  h i g h e r  t h a n  

t h o s e  of  e s t i m a t o r  (ii) i n  t h e  r e m a i n i n g  p a r t  of  t h e  p a r a m e t e r  space .  H o w e v e r ,  

w h e n  N --  10, t h e  A R E  v a l u e s  of  e s t i m a t o r  (ii) a re  h i g h e r  t h a n  t h o s e  of  e s t i m a t o r  

(i) e x c e p t  w h e n  7r is close t o  1. Howeve r ,  t h e  e s t i m a t o r s  (iii) a n d  ( iv)  b a s e d  o n  

m i n i m u m  c h i - s q u a r e  h a v e  q u i t e  h i g h  A R E  v a l u e s  for b o t h  t h e  t a b l e s  e x c e p t  (iii) 

h a v i n g  s o m e  low A R E  v a l u e s  w h e n  ~ is s m a l l  a n d  N = 10. 
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4. Minimum chi-square estimators 

Consider a distribution with the probability function p(x, 0) where 0 is a k • 1 

vector. To obtain minimum chi-square estimator of 0, we consider s (s > k)func-  

tions ~-1, ~-2, �9 �9 ~'s of the first few moments and/or probabilities of the distribution 
such that T = WO where v t = (~-1,T2,... ,Ts) and W is an s • matrix of known 

constants. The vector 0 may be some reparameterized version of the parameters 

of the distribution. Let t be a sample counterpart of ~- and E be a consistent esti- 

mate of the asymptotic covariance matrix E of t. Then, the minimum chi-square 

estimator of 0 is obtained by minimizing (Barankin and Gurland (1951)) 

Q =  (t - w 0 ) ' ~ - l ( ~ - w 0 )  

and is given by 
~_ = ( w , ~ - l w ) - l w , ~ - l t .  

The minimum value (~ of Q obtained by replacing _0 by _0 gives a test statistic 

for testing fit of the underlying model. The asymptotic null distribution of Q is 
X 2 with s - k degrees of freedom (d.f.). 

For illustration, we present the procedure for obtaining the minimum chi- 
square estimators for the parameters of the BBD based on s = 3 relations (estima- 
tor (iv), Table l(a)). This seems to be a reasonable choice because larger values 
of s will involve higher order moments and thus will introduce larger sampling 
fluctuations in estimating E. Consider two moment relations obtained from (2.8) 
by putting j = 0, 1 and one probability relation obtained from (2.7) by putting 
j = 0. This gives 

a ( { o - N ) + / 3 { o = 0 ,  

a({1 - N + 1 ) + / 3 ~ 1  = ( N -  1 - {1 ) ,  

a ( { 2 - N + 2 ) + / 3 ~ 2  = 2 ( N - 2 - { 2 ) .  

Solving these for c~ and/3 gives: 

(4.1) ~ = / 3 =  

7-3 ~ O~ ___ 

~0(N - 1 - ~1) 

~0(~1 - N + 1) - ~1(~0  - -  N ) '  

2 ( N  - 2 - ~ 2 ) ( ~ 0  - N )  

~2(~0  - N )  - ~o(~2  - N + 2 ) '  

~ 2 ( N  - 1 - ~1)  - -  2 ~ l ( N  - 2 - ~2)  

~ 2 ( ~ l - N + l ) - ~ l ( ~ 2 - N + 2 ) "  
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Then, on taking ~/ = (T1,~-2,~-3), W = 0 1 

T = W0. If' t be the sample counterpart of 7 and E be 

asymptotic covariance matrix of t_, then the minimum chi-square estimator of 7 is 

given by (4.1). Other minimum chi-square estimators for the BBD and the TBB 
distribution can be developed similarly by considering desired number of moments 
and/or probability relations. 

and 0' ---- (a,/3), we have 

a consistent estimate of the 

5. Numerical examples 

In this section we present fits to two data sets: one by the BBD and the 
other by the TBBD. For comparison some fits to these data  as obtained by other 
authors are also included. For obtaining minimum chi-square estimators, a consis- 
tent estimate of E, the asymptotic covariance matrix of t_, is needed which usually 

involves higher order moments. In order to avoid large random fluctuations re- 
sulting from substituting sample moments for the population moments involved 
in E, i t  is advisable to obtain estimates of such moments by putting consistent 
estimates of the parameters. 
The 2-parameter BBD 

Consider the data on distribution of "weeks" for 12 weeks appearing in the 
columns (1) and (2) of Table 3. The column (2) of this table contains the number 
of consumers out of 50 who purchased at least one unit of some specified consumer 
goods in exactly r out of 12 weeks, r = 0, 1, 2 , . . . ,  12. Denoting by p, the probabil- 
ity of making at least one purchase, the number of weeks out of n (12 in our case) 
in which the consumer makes at least one purchase will be binomially distributed 
with parameters n and p. However, the value of p will vary from consumer to 
consumer and so it is reasonable to consider p as a random variable with a beta 
distribution. 

Column (3) shows a fit by the BBD using the method of mean and zeros 
(Chatfield and Goodhart (1970)). Columns (4) and (5) contain the fits to this data 
by the BBD using the estimator based on first two moments, and the minimum 
chi-square estimator based on 3 moment relations. For each of these fits the value 
of the Pearson's chi-square statistic along with its d.f. are also given. For the fits 
in columns (4) and (5) we also give the probabilities associated with the Pearson's 
chi-square statistic. For the fit in column (5), we give the value of the minimum 
chi-square statistic along with the associated d.f. and the probability. For the 
fits in columns (4) and (5), the values .793 and .722 of the Pearson's chi-square 
statistic with the associated probabilities .977 and .982 respectively show very 
good fits. This conclusion is also supported by the value .217 of the minimum 
chi-square statistic with the probability value .641 for the minimum chi-square fit 
in the column (5). Both of these fits are close to the fit obtained by Chatfield and 
Goodhart (1970) based on the method of mean and zeros. 
The truncated BB distribution ( TBBD ) 

Consider the data on family epidemics of the common cold for families of size 5 
appearing in columns (1) and (2) of Table 4. Column (3) of the table shows the fit 
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A fit by BB family to the  d is t r ibut ion  of "weeks" (Chatfield and G o o d h a r t  (1970)). 

(1) (2) (3) (4) (5) 

Observed 

No of weeks ~equency  BB family BB family BB family 

0 25 25.0 24,0 23.7 

1 7 8.5 9,0 9.3 

2 6 5.1 5.5 5.6 

3 4 3,5 3.7 3.8 

4 3 2.5 2.6 2.6 

5 2 1.8 1.8 1.8 

6 1 1.3 1.3 1.3 

8 0 .6 .6 .5 

9 2 .4 2.2 -3 .3 
10 .2 .2 .2 

11 .1 .1 .1 

12 .0 0.0 .0 

Table 3. 

Total  50 49.9 50 50 

X~ .805 .722 .793 

d.f. 5 5 5 

Pxg .982 .977 

2 .217 Xmin 
d.f. 1 

Px~in .641 

.125 .125 .125 

.321 .286 .269 

(3) Fi t  ob ta ined  by BB family using the  me thod  of mean  and zeros (Chatf ield and  G o o d h a r t  
(1970)). 

(4) Fi t  ob ta ined  by BB family using es t imators  based on two momen t  relations.  
(5) F i t  ob ta ined  by BB family using m i n i m um  chi-square es t imator  based on 3 m o m e n t  

relations.  

by the TBBD using maximum likelihood estimates (Griffiths (1973)). Columns (4) 
and (5) show fits by the TBBD utilizing the estimates based on first two moments 
and the probability of the first count, and the minimum chi-square estimates based 
on 2 moment relations and the relations involving #~1) and P{, For all the fits 
the value of the Pearson's chi-square statistic is given along with its d.f. For the 
fits in columns (4) and (5) the values of .766 for the Pearson's ehi-square statistic 
with the associated probability of .682 show very good fits. The value .027 of the 
minimum chi-square statistic with the associated probability .870 for the minimum 
chi-square fit in column (5) also shows very good fit. The closeness of the fit in 
column (4) based on the simple estimators obtained from the first two moments 
and the probability of the first count is remarkable. 
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Table 4. Data on family epidemics of the common cold for families of size 5, i.e., N = 5, 
(Heasman and Reid (1961)) (Griffiths (1973), Table 3, Column 2). 

(1) (2) (3) (4) (5) 
TBB family 

No of cases Observed (Griffiths (1973)) TBB family TBB family 

1 156 156.4 156.2 156.2 

2 55 53.2 53.2 53.3 

3 19 21.7 21.8 21.8 

4 10 8.4 8.4 8.4 
5 2 2.3 2.3 2.3 

Total 242 242.0 232.0 242.0 
X~ .8 .766 .766 
d.f. 2 2 2 
G~ .6s2 .6s2 
2 .027 Xmin 

d.f. 1 

P~,n 0.870 
0 .003 .002 

.34 .342 .343 

(3) Fit obtained by BB family using the method of mean and zeros (Chatfield and Goodhart 
(1970)). 

(4) Fit obtained by BB family using estimators based on 1 moment relation and another 
relation involving ]z~l ) and P~. 

(5) Fit obtained by truncated BB family using minimum chi-square estimators based on 2 
moment relations and the relation involving #~1) and P~. 

6. Conclusion and summary 

T h e  p a p e r  presents  some  a l t e rna t ive  m e t h o d s  for e s t ima t ing  the  p a r a m e t e r s  
of  the  b e t a  b inomia l  a nd  t r u n c a t e d  b e t a  b inomia l  models .  Some of  these  m e t h o d s  
are a t t r ac t ive  since t h e y  yield  e s t ima to r s  based  on l inear  equat ions .  T h e  m e t h o d  
of  m i n i m u m  chi -square  yields e s t ima to r s  hav ing  high a s y m p t o t i c  re la t ive  efficiency 
in add i t ion  to  be ing  bes t  a s y m p t o t i c a l l y  no rma l  (BAN) .  Th i s  faci l i ta tes  the  con- 
s t ruc t ion  of  conf idence  intervals  and  tes ts  r ega rd ing  the  pa r ame te r s .  
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