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A b s t r a c t .  Consider a k-times differentiable unknown regression function 0(-) 
of a d-dimensional measurement variable. Let T(0) denote a derivative of 0(.) 
of order m < k and set r = (k - m) / (2k  + d). Given a bivariate s tat ionary 
time series of length n, under some appropriate conditions, a sequence of local 
polynomial estimators of the function T(0) can be chosen to achieve the optimal 
rate of convergence n -~ in L2 norms restricted to compacts; and the optimal 
rate (n -1 log n) ~ in the L ~  norms on compacts.  These results generalize those 
by Stone (1982, Ann. Statist., 10, 1040-1053) which deals with nonparametr ic  
regression estimation for random (i.i.d.) samples. Applications of these results 
to nonlinear time series problems will also be discussed. 

Key words and phrases: Nonparametr ic  regression, kernel estimator, local 
polynomials, optimal rates of convergence. 

1. Introduction 

Let  { (Xi ,Y/ )  : Xi  e Rd, Y/ E R , i  = 0 , + 1 , + 2 , . . . }  be  a vec to r -va lued  sta-  

t i o n a r y  t ime  series and  let 0 ( x )  = E(Yo I Xo = x)  d e n o t e  the  regression func-  
t ion  o f  Y on  X .  For  nonnega t ive  integers  a l , . - - ,  ad ,  set  a = (C t l , . . . ,  C~d) and  
[a] = a l  + . - " + a d .  Let  k be  a posi t ive  integer,  k _> 1, and  suppose  0(.) is a k - t ime  

different iable  func t ion  on •d. Set  

T( . )  - T ( . ; 0 )  = E qaD~O(')' 
[~]<k 

where  q~ are  cons t an t s  a nd  D ~ deno tes  the  differential  o p e r a t o r  def ined by  

0[ ~] 
D ~ _~ 0x~1... oxen" 
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Denote the order of T by m; that  is, m = max{[c~] : 0 < [c~] < k and qa # 0}. 
Then the function TO(.) = 0(.) corresponds to rn = 0, while TO(.) = O0(.)/Oxa 
corresponds to m = 1. 

Given a set of realizations (X1, Y1), . . . ,  (Xn, Y~), the current paper studies 
the asymptotic behaviors of nonparametric estimators of the smooth regression 
function 0(.) and its derivatives T(.). This is responding to the current grow- 
ing interests in nonlinear time series modellings. A number of specific results on 
testing and estimation for these nonlinear models have been given in the compre- 
hensive accounts by Tong (1983, 1990), Subba Rao and Gabr (1984) and Priestley 
(1988). However, the important problem of identification still leaves something 
for desired. Recently, nonparametric methods for plotting the conditional mean 
and conditional variance have been suggested and proved to be useful in model 
selection. See, for example, GySrfi et al. (1989), Auestad and Tjcstheim (1990) 
and Hgrdle (1990). 

The paper is also aiming at generalizing Stone's results to time series, which 
can be described briefly as follows. Set r = ( k -  m)/ (2k + d). For random samples 
(Xl,  }f l) , . . . ,  (Xn, Yn) ~iid (X,  Y), Stone (1980, 1982) established that the mini- 
max bound for the estimation of the function T(-) is {n -~} in both pointwise and 
the Lq (1 < q < ec) norms, while it is {(n -1 logn) ~} in the L ~  norm restricted 
to compacts. Moreover, these optimal bounds can be achieved by nonparametric 
estimators constructed using local polynomials. Under appropriate conditions to 
be given in the following sections, it will be shown that these optimal properties 
continue to hold in the context of time series. 

Furthermore, it is worth noting that  the approaches considered by GySrfi et 
al. (1989), Auestad and Tjostheim (1990) and Hgrdle (1990) are kernel methods 
based on local means or local constant fits, and it is known that these estimators 
can not possess the optimal rates of convergence {n (k-m)/(2k+d) } (with k > m > 1) 
without imposing further smoothness conditions on the marginal distribution of 
X0. These conditions can be avoided by adopting an approach based on local 
polynomials, which will be shown in this paper. 

To make the problems more concrete, note that the vector or multivariate 
setup considered here has several applications depending on the nature of the 
problems. These will be illustrated in the following examples. 

Example 1 (Univariate time-series). Let Xi, i = 0, i1,=t=2,.. ,  be a real- 
valued stationary time series and let m be an integer. Then the plot of E(Xi+d+,~ I 
X i + l , . . . ,  Xi+d) can provide some insight about the autoregression of Y~ = X~+d+,~ 
on X~ = ( X i + l , . . . ,  X~+d). 

Example 2 (Bivariate time-series). Let (X~,Zi), i = 0,4-1, . . .  be an ~2_ 
valued stationary time series, let m be a nonnegative integer. Then the relationship 
between Y~ = Zi+d+m and Xi = (Xi+l , . . . ,X~+d)  can be examined by plotting 
E(Yo ] Xo). More generally, set 

Y~ = Z~+d+~ and X~ = (X~+I , . . . ,  Xi+k, Zi+k+l, �9 �9 �9 Z~+d), 

where k is a positive integer such that k < d. These types of series are often 
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encountered in control theory where feedback plays an impor tant  role. Here, non- 
linear problems can be studied by regressing Yi on Xi.  

The rest of the paper  is organized as follows. Nonparametr ic  est imators  of T(-) 
based on local polynomials will be described in Section 2. Condit ions required by 
these est imators for the achievability of the opt imal  rates of convergence are given 
in Section 3. Discussions and further extensions of these results are provided in 
Section 4. Proofs are given in Section 5. 

2. Nonparametric estimators 

The est imator  of the function T(-) will now be described. For each given 
n > 1, let (X1, Y1) , . . . ,  (X~, Yn) denote observations obtained from the bivariate 
series {(X,,  Y~) : i = 0, 4-1, •  and let (~ be positive numbers  tha t  tend to 
zero as n ~ e~. For a given x C R d, set 

l~ (x )  = { i :  1 < i < n and tlXi - xtl < 5~} 

and let Nn(x )  = # I n ( x )  denote the number  of points in In (x ) ,  where Ilxll = 
(x~ + . . .  + x~)1/2 for x = ( x l , . . . , X d )  E R d. 

For nonnegative integers C~l,.. . ,  C~d, set c~ = (c~1,.. . ,  a s ) ,  a! = (~1) ! . . .  (as)!, 
[c~] = a l + ' " + a s ,  and x ~ = x ~  1 . . . x ~  d. Given an integer k_> 1, let P ( x ; k )  
denote a polynomial  in x ~ of degree (k - 1). Tha t  is, P ( x ;  k) = ~-~[~]<k Cc~X~, 
where c~ are the coefficients. 

Denote/Sn(. ;  x)  the polynomial such that  it minimizes ~ieI~(~){Yi - P ( X i  - 

x; k)} 2 over the class of polynomials P( . ;  k) of degree (k - 1). (It will be shown 
in Section 5 tha t  the existence of/Sn(-; x)  follows from Lemmas  5.2 and 5.3.) 
Define the es t imator  of O(x) by 0n(x) = fgn(X; x) .  Moreover, the  es t imator  of 
T ( x )  = T(x ;  O) based on Pn(';  x) is defined by 

[~]<k 

As an example, suppose d = 1 and k = 2. Then /Sn(X;  x) =/~ + [ ) ( X -  x) with 
5 and b minimizing }-~.iei~(x){Yi - a - b(Xi - x)} 2. Here 5 and [) are called local 
linear est imators of O(x) = E ( Y  I X = x) and O'(x), respectively. 

3. Optimal rates of convergence 

Conditions for the nonparametr ic  est imators  described in Section 2 to achieve 
the optimal rates of convergence are given in this section. 

Let U be a nonempty  open subset  (of Nd) containing the origin. The  following 
smoothness  condition is imposed on the function 0(.) so that  the bias can be 
est imated.  

CONDITION 1. 0(-) has bounded part ial  derivatives of order k on U. 
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The following two conditions are required to show the existence o f / 5 ( . ;  x).  
Consequently, it also guarantees the existence of the  nonparametr ic  es t imator  
T~(.). These conditions are similar to those used in ordinary least square the- 
ory for random effect models. 

CONDITION 2. The distr ibution of X1 is absolutely continuous and its den- 
sity f ( . )  is bounded  away from zero and infinity on U; tha t  is, there is a positive 
constant  M1 such that  M~ -1 _< f(~c) < M1 for x C U. 

CONDITION 3. For j > 1, the conditional distr ibution of Xj  given X0 --- x 
has a density f j( .  I x); there is a positive constant  M2 such tha t  

M 2 i < f j ( x ' l x ) < M 2  for x , x ' e U  and j > l .  

A moment  condition is required: 

CONDITION 4. (1) There is a positive constant  q > 2(2k + d)/k such that  
E(lylq) < 

(2) There is a positive constant  s > 3 such that  

sup E(]YI~ I X = x)  < c~. 
~EU 

Let 5rj and 5 vj  denote the  a-fields generated respectively by (Xi,  Yi), - o c  < 
i < j ,  and (Xi, Yi), j <_ i < c~. Given a positive integer u set 

a (u )  -- sup{IP(A n B) - P (A)P(B) I :  A e .~j and B e 5rJ+u}. 

The  s tat ionary sequence is said to be a-mixing or strongly mixing if a(u) ~ 0 as 
u -~ c~. In this paper,  the s tat ionary t ime series {(Xi,  Y~) : i = 0, =~1, =k2,.. .} is 
assumed to be a-mixing and it satisfies one of the following conditions. 

CONDITION 5. (1) For some s > 2, ~ i > N  a l - 2 / s ( i )  = O ( N - l )  as N --~ oc. 
(2) For some 0 < p < 1, a(u) = O(p ~) as u --~ oc. 

Sufficient conditions for linear processes to be  a-mixing are s tudied by 
Gorodetskii  (1977) and Withers  (1981). See also Aues tad  and Tjcs the im (1990) 
for an illuminating discussion on the role of a-mixing (or geometric ergodicity) 
for model  identification in nonlinear t ime series analysis. Condit ion 5(2) can be  
weakened to algebraic rates. However, it is used here to simplify our presentat ion.  
See Tran (1993). 

Given positive numbers  bn and Cn, n _> 1, let b~ ~ c~ mean tha t  bn/cn is 
bounded  away from zero and infinity. Given random variables Vn, n > 1, let 
Vn = Op(bn) mean tha t  the  random variables b'glvn, n > 1, are bounded  in 
probabili ty;  tha t  is, 

lim l imsupP(IV~] > cb~) = 0. 
C - ~ O O  n 
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THEOREM 3.1. Suppose Conditions 1-5(1) hold and that 5~ ~ n -1/(2k+d). 
Then 

I ~ ( ~ ) - T ( ~ ; 0 ) r  = O~(n-(~-~)/(2k+d)), ~ e U. 

Let C be a fixed compact subset of U having a nonempty interior. Given a 
real-valued function g(.) on C, set 

1/2 

and llglloo = sup Jg(x)l. 
xCC 

The L2 and L ~  rates of convergence are given in the following results. 

THEOREM 3.2. 
Then 

Suppose Conditions 1-5(2) hold and that ~n ~ n -1/(2k+d). 

ll:~(.) - T(.; O)tl~ = O~(n-(~-'~)/(2k+d)). 

THEOREM 3.3. Suppose Conditions 1-5(2) hold and that 5~ ~ (n - 1 .  
logn) 1/(2k+d). Then there is a positive constant c such that 

l ~  P(II~( . )  - / ( . ;  0)lt~ ~ c(~ -1 log n) (~-~)/(2k+d)) = o. 

Proofs of Theorems 3.1-3.3 will be given in Section 5. 

4. Discussions 

Given a univariate or bivariate time series, nonparametric estimates of the 
regression function based on the vector-valued setup in Section 1 can be useful for 
gaining insight toward model identification. See Anestad and Tjostheim (1990). 
The current paper contributes to this approach by establishing optimal sampling 
properties for these nonparametric estimators. 

For a class of k-time differentiable regression function 0(.), optimal rates of 
convergence are achieved by using local polynomial estimators instead of the ordi- 
nary kernel method based on local mean, this is because optimal rates of conver- 
gence of the latter approach require extra smoothness conditions on the marginal 
distributions. 

This paper also answers a question raised by Truong and Stone (1992): "Can 
the local constant fits be generalized to the local polynomials?" By taking a 
semiparametric approach, which did not include the univariate time series, Truong 
and Stone (1993) obtained optimal rates of convergence (with k > 2) for the local 
polynomial estimators. The current results generalize our previous results, and 
they are established by using a truncation argument and a theorem of Bradley 
(1983), which was first exploited by Tran (1989). Truong and Stone (1992) also 
considered an approach using local constant fit based on median. Followings are 
related open questions. 

1. Set O(x) = median(Yo ] Xo = x) and denote its estimate by 0n(x) = 
-fin(x; x),  where /5( . ;  x) is a polynomial that minimizes }-~-ieI~(~)tYi-P(Xi-x; k)] 
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over the class of polynomials P(.; k) of degree (k - 1). (See Section 2.) Moreover, 
define the estimator of T(x)  = T(x;  0) = ~[~]<k q~D~O(~c) based on/Sn(-; x) by 

Tn(x) -- T(x;On) = ~ qc~D@n(x). 
[~]<k 

Then the question is: Will Tn(x) achieve the optimal rates of convergence given 
in Theorems 3.1-3.3? 

2. For kernel estimators based on local constants, the "smoothing parameter" 
5~ can be chosen by minimizing 

cv(~)  = n -I ~ ( ~  - 0n,~(x~))~w(x~), 

where 0n,i(') is computed by leaving (Xi, Yi) case out, and w(.) is a weight function. 
See Auestad and Tj~stheim (1990), Hgrdle and Vieu (1992) and the references 
given therein. This cross-validatory technique can be generalized similarly to locM 
polynomial fits in choosing 6n. An interesting question would be: Is (4.1) of Hgrdle 
and Vieu (1992) still valid for local polynomial fits? What can be gained here? 

3. Suppose the regression function for an univariate time series is given by 

E(Xi+l t Xil, Xi=,..., X~q), 

where i > il >_ . . .  >_ iq > i - d + 1. How would the final prediction error (FPE) 
(Akaike (1969)) and Akaike information criteria (AIC) (Akaike (1973)) for linear 
autoregressive process be further developed to handle the nonparametric case in 
selecting the lags? 

5. Proofs 

We recall the following notations. For a = ( a l , . . . ,  ag), [a] = al + ' "  + ad, 
O/] : (O~1)!''" (O~g)! and x ~ = x~ 1 . . . x~  ~. Also, set A = {a : [a] < k}. Given 
x e C, let Yn(X), X~(x)  and An(~) be defined as follows: Y•(x) = (Yni(x)) is 
the n-dimensional column vector given by Yni(x) = Y~ if i E In(x) and Yni(~) = 
0 otherwise; Xn(x)  = (Xnia(x)) is the n • ~ (A)  matrix given by Xni~(x) = 

(Xi - x)~/5[~ ~] if i e In(x) and a e ,4 and Xni~(~) = 0 otherwise; An(x)  = 
(An,~(x))  = X~n(x)X,~(x), which is a ~ (A)  x ~ (A)  matrix. Since/hn(.; ~) is the 
polynomial of degree k -  1 minimizing 

we have that 

where 

{~ - P(X,~ - x; k)} 2, 

[~]<k 

~n~(~) = (A~(~)X~'(~) Yn(~))~. 
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Let Qn denote the ~(.A)-dimensional column vector defined by Qn -- (a!q~/ 

5[n~])~eA. Then 

Tn(x) T(x; On) , -1 , = = Q,~A,~ (x)X;(x)  Y,~(x). 

Let 8k(.; x) denote the s order Taylor polynomial of 0(.) about x defined by 

D~--(x) (. 
o~(.; ~) = ~ ~! - ~)~ 

[~]<k 

Define the n-dimensional column vectors T~(r 
(Tk,~(x)) by 

Tni(m) ---- {~( X i ) ,  

Tk, . (x )  = ok( x~; .), 
and Tni(x) -- Tk~i(x) = 0, otherwise. Then 

S O  

x E C .  

= (T,~(x)) and 

i e I . ( . ) ,  

Tkni(X) = ~ (Xi  - x)  a dn<D~e(x) 

(A'~l(x)XIn(x)Tkn(X))a - a! and 

T(x; O) = Q~A~I(x)X~n(x) Tkn(X). 

Consequently, 

(5.1) ~bn(x) T(x;O) , -1 , 
- = QnAn ( x ) X i ( x ) [ Y n ( X ) -  T~(x)] 

§ Q~A~I(x )X~(x)[T~(x) -  Tkn(X)], 

Moreover, 

(5.2) I - - 1  / QnAn ( x ) X ; ( x ) [ Y n ( x ) -  T~(x)] 

a,~ ~n~] [Nn(x)(Anl(x))a~] 

" ( N n ( x ) - l  ~-~ M~(x ) (Y i -O(Xi ) ) )  

where M~(x) = (X~ - x)Z/5~ ]. Also, recall that 

N ~ ( x )  = # { i :  1 < i < n and IIX~ - xl] ~ an}, x E C .  

Tkn(X) = 

x E C .  



286 YOUNG K. TRUONG 

By Conditions 2, 3, 5(1) and Lemma 5 of Truong and Stone (1992), there are 
positive constants c~ and c2 such that 

(5.3) l imP(cln~ d ~ Nn(x)  <_ c2n6 a) = 1, x e C. n 

The existence of the po lynomia l /5  follows from (see Lemma 5.3 below) 

(5.4) N ~ ( x ) ( A ~ ( x ) ) ~ Z  = Op(1), x E C, a , ~  e A. 

Suppose Conditions 2-5(1) hold and that 5~ ~ n -1/(2k+d). LEMMA 5.1. 
Then 

Nn(x)-i 2 M~(x)(Yi-O(Xi)) =OP(~kn)' X E C, i~ E,A. 

PROOF. According to Lemma 6 of Truong and Stone (1992), 

E Z -o(xo) 

It follows from Markov's inequality and (5.3) that  

= o 

P(  "h/-n (x)- 1 i~In(x) ~ Mi~(x)(Yi-(~(Xi))>c~kn) 

< EI E ~ ( ~ )  M ~ ( ~ ) ( ~  - 0(X~))l 2 

- (ecln~+~)2 
( 1 

= O . 2 . 2 . ~ + 2 k  + o (1 )  

=o(1 )  as c ~ c c .  

5.1 Proof of Theorem 3.1 
According to Condition 1, 

IT~i(x) - Tk~{(x)l : o(sk) ,  

It follows from (5.4) that 

ie&(x),  x e C .  

(5.5) , -1 , O r6 k-m~ Q,~A~ ( a 0 X ~ ( a ~ ) [ T ~ ( , ~ ) -  T k ~ ( x ) ]  = p ,  ~ , ,  x e C.  

By (5.2), (5.4) and Lemma 5.1 

(5 .6)  , - 1  Q~An (x)X~n(x)[Yn(x) - Tn(X)] = Op(Sk-m). 

[] 
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The desired result follows from (5.1), (5.5) and (5.6). [] 

The proofs of Theorems 3.2-3.3 depend on a sequence of lemmas. First  of all, 
(5.3) and (5.4) are required to hold uniformly over x E C. 

LEMMA 5.2. Suppose Conditions 2, 3, 5(2) hold and that 5~ ~ n -~ or 6~ 
(n -1 logn) ~. Then there are positive constants c3 and c4 such that lim~ P ( ~ )  = 1, 
where ~ = {c~n~ < Nn(x)  < c4n~ for x e C}. 

PROOF. See Lemma 7 of Truong and Stone (1992). [] 

The following lemma will be needed to show the existence of the est imators 
s  and T~(.). 

LEMMA 5.3. Suppose Conditions 2, 3, 5(2) hold. Then there is a posi- 
tive constant c5 such that limn P(~n)  = 1, where ~2n = {N~(x ) (An l (x ) )~Z  < 
c5 for all x E C and c~,/3 E A}.  

PROOF. See Lemma 1 of Truong and Stone (1993). [] 

5.2 Proof of Theorem 3.2 
By Lemmas 5.2 and 5.3, there is a positive constant  c6 such that  

P I~C t -1 ! I IQ~A~ ( x )X~(x ) [Yn (x )  - T~(x)]12dx >_ c25~ ( k - ~ )  

P e6(~n2m ma~ f E M/~(x)[Y/- dx ~ C2e2n(k-m)(c3~ed) 2 
Z JC i~(r 

+ 

- 2 2 2k d 2 + P(12~) c c3~ ~ ( n ~ )  

0 k+d c2n 
+ 

It follows from n~2n k+d ~ 1 and Lemma 5.2 that 

(5.7) C J -i I IQnAn (x )Xn(x ) [Yn(X)  -- Tn(x)]I2dx = Op(6~(k-m)). 

The conclusion follows from (5.5) and (5.7). [] 

To prepare for the proof of Theorem 3.3, we need a truncation argument. Let 

(5.8) Bn = {n(logn)a} Uu, u = 2(2k + d)/k, 1 < a < (4k + d)/(2k). 
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LEMMA 5.4. Suppose Condition 4(1) holds. Then P(IYnl > Bn i.o.) = O. 

PROOF. This follows from Condit ion 4(1) and Markov's inequality 

P(lYnl > B~) _< B~"EIY~I" 

via Borel-Cantelli Lemma. [] 

We also need a lemma on approximating c~-mixing sequence of random vari- 
ables by independent random variables. 

LEMMA 5.5. Let B be a Borel space and let V be a random element taking 
value in B. Let U and S denote random variables so that U ~ unif(0, 1) and U 
is independent of (V, S).  Suppose further that ( and q are positive constants so 
that ~ < [ISIIq = (EISIq) 1/q < oe. Then there exists a real-valued random variable 
W -- p(V, S, U), where ~ : 13 • ~ • (0, 1) ~ ~ is measurable, so that 

1. W is independent of V ,  
2. W and S have the same distribution, and 

P ( I W  - SI >_ () s 18(11SIIq/() q/(2q+l) �9 c~(cr(V), o-(S)) 2q/(2q+l), 

where (~(a(V), a (S) )  -= sup{IP(A N B)  - P ( A ) P ( B ) I  : A e a(V),  B e ~(S)}. 

PROOF. See Theorem 3 of Bradley (1983). [] 

Set 

(5.9) Yi B -~ Y'il{]Y~l<_B~} , i = 1, 2 , . . . ,  n. 

LEMMA 5.6. Suppose Conditions 2-5 hold and that 5n ~ (n -1 logn) 1/(2k+d). 
Then there are positive constants c7 and c8 such that, for ~ > 0, and n is sufficiently 
large, 

x e C ,  3 ~ A .  

PROOF. We may suppose that n = 2nln2 and set 

nl  = [5~k(n(logn)b)-U~'], b > a, 

where a and u are given in (5.8). Note tha t  n l  --~ oo because u > (2k + d) /k .  
Write 

~2 n2 

(5.1o) Z - [ = + 
i~I~(x) j=l  j=l  
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where 

and 

V U = 

V2j = 

j n l  

i=( j - -1)nl+l  

K~,~(5  ~ - E ( ~  ~ I x~)) ,  
i=jn  l +1 

Ki,Z = l{llX~_xll_<e~}M ~ (x). 

By Lemma 5.5, there exists a sequence of independent random variables W1, . . . ,  

I/V~ so that Wj d Vly, and 

P ( I W j -  VIjI >_ r <_ 18([lv1j[lUr q/(2q+]) . Ct(nl) 2q/(2q+1). 

Set z~ = v/ne d logn. If ( ( /2n2)z~  < []rejllq, then 

(5.11) P(tWj - Vx~l > (U2n2)z~) < 18 (llv~jlIq " ~(nl) 2) 
q/(2qq-t) 

(nBno~(?.tl)2) q/(2q+l) 
_< is \ ~z. 

If (~/2n2)z~ > IIvtjHq, then 

(5.12) P(]Wj  - Vlj] > (( /2n2)zn)  < P( IWj  - Vlj] > I]Vu][q) 

<_ 18a(nl )  2q/(2q+l). 

By Condition 5(2), (5.11) and (5.12), there exists a constant c9 so that  

(5.13) P(IWy -- V l j l  ~ (r = O(pnCg), 

By Lemma 6 of Truong and Stone (1992), there exists a constant c10 so that 

rL2 
z l w ,  I 2 = ~ z f ~ ?  _< ~1o~<. 

1 

Set t = di~. Then t lWjl  = O(( logn)  -(b-~)/s) --+ O. Thus, e tW~ <_ 1 + tWj  + t2W].  
By Markov's inequality, 

(5.14) P Wj > (~/2)z~ < E ( e x p ( t ~ 2  Wj)) 
- - exp(t(~/2)z~)  

< exp(t 2 ~ E W e )  

- exp ( t (~ /2 ) z , )  
= exp(cl0 log n - (~/2) log n). 
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Note tha t  

(5.15) 
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P Ylj ~___ ~Zn) 
+ P j - ___ ({/2)z,~ . 

The desired result now follows from Lemma 5.2, (5.10), (5.13)-(5.15). [] 

5.3 Proof of Theorem 3.3 
Set T ~ ( x ) =  ' -1 ' Q~A~ (x)X~(m)T~(~) .  Then 

%(a~) - T(x ;  0) = Q'A~l (m)X ' ( x ) [Tn(x )  - T~k(~c)]. 

Note tha t  Tn(x) - Tnk(a~) is the remainder t e rm of Taylor expansion. Hence by 
Condition 1, 

(5.16) sup ITn(x) - T(x; 0)1 = Op(5~-m). 
x E C  

This gives the bound for the "bias". 
To establish the uniform error bound (over the set C) of the "variance" te rm 

( T n ( x )  Tn(m)), we need a t runcat ion  and an approximation argument.  
The truncation. By Lemma 5.4, for all sufficiently large n, 

(5.17) I ~ I - < B ~ ,  j _ < n  w.p. 1. 

In fact, if co e Uj_>I ni>j  {tY~I _< Bi}, there exists a J0 so tha t  IY~I < B~ for all 
i > j0. Since B~ is increasing, the desired result follows by noting tha t  there is a 
J* > J0 such tha t  By. >_ max{tYl(CO)t, IY2(co)l,..., IYo.o(co)l,Bjo}. 

Set U~(x) = (U~(a~)), V~(a~) = (V~(x)) ,  where U~i(x) = y B _  0(Xi),  
Vni(x) = Y/I{w~I>B~} for i E I~(a~) and Uni(X) = 0, V~i(x) = 0 otherwise. Then 

(5.1s) :~n(x) - T~(~) = W~(~)  V,~(~) + W~(~)  Y~(~) = Wn(~) Vn(~) 
w.p. 1, 

where 
/ --1 a~ / w ~ ( ~ )  = (w~(~))  --- Q An ( ) X ; ( ~ ) ,  ~ ~ C. 

Note tha t  W~(x) = 0 for i ~ In(x). By Lemmas 5.2 and 5.3, there is a positive 
constant  c n  such tha t  

( ~1 -~-~- '~  ) (5.19) 1 ~ P  m W~(~)I _< ~ o,~ ,~ e C = 1. 

An approximation. We need to approximate C by a set C~ having a finite 
number of elements. The set C~ can be described as follows. Since C is a compact  
subset of U with nonempty interior, we may assume tha t  C = [ -1 /2 ,  1/2] n. Let  
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)~ be a positive integer so that Ln = n )'. Let W,~ be the collection of (2L~ + 1) d 
points in [-1/2, 1/2] d each of whose coordinates is of the form j / (2Ln) for some 
integer j such that ]j] < L~. Then [-1/2, 1/2] 4 can be written as the union of 
(2L~) d subcubes, each having length 1/2L~ and all of its vertices in Wn. For each 
x E [-1/2,  1/2] d there is a subcube Qw with center w such that x E Qw. Let C~ 
denote the collection of centers of these subcubes. 

For each fixed/~ > 0, the uniform error bound restricted to C~ is given by 

(5.20) limP~ (max, o~c~ , T~ (w) -  T~(w),>_ c S ~ i ( l o g n ) / n S ~ ) = O ,  

for some positive constant c. In fact, this follows from Lemma 5.6, (5.2), (5.18) 
and Condition 4(2) v i a  

E(I{IIx,-~II<_e~}E(Y~I{Iv, I>Bn} I X~)) 

< B~ -~ sup E(IY~I ~ I X~ = aDP(llXi - xll < 5~) 
aEU 

d 1 - s  = O(hnB ~ ) = o(5n ~+k) uniformly in x E C. 

Moreover, for A > 0 sufficiently small, 

(5.21) max sup [T~(x) - Tn(x) - :F,,(w) + T~(w)l = O p ( h g ' ~ ~ ) .  
wEC,, reEQ~ 

(Proof of (5.21) will be given shortly.) 
We conclude from (5.20) and (5.21) that there is a positive constant c such 

that 

( 5 . 2 2 )  - > = o .  

The conclusion of Theorem 3.3 follows from (5.16) and (5.22). 

PROOF OF (5.21). Let Co be a compact subset of U containing C in its 
interior. Since 5n -~ 0, we can assume that if { C In(x) for some x E C, then 
Xi e Co. Thus, max{i0(X~)] : Xi E Co} < oo. Hence, from (5.17), 

(5.23) sup max IUni(x)] = sup max IYi B - 0(Xi)l = Op(Bn). 
xEC wEC i 

By Conditions 2 and 5(2) (see the proof of (2.13) of Truong and Stone (1992)), 
for A sufficiently large, 

(5.24) max sup #(I~(x)AIn(w))  = Op(Bn). 
wECn ~EQ,,, 

(For sets A and B, A A B  is the symmetric difference defined by A A B  = (A \ B) U 
(B \ d).) We conclude from Lemmas 5.2, 5.3, (5.19), (5.23) and (5.24) that, for A 
sufficiently large, 

max sup IW~(x)[Un(x) - U~(w)]]--  Op(B~n-ih~d-'~). 
wEC~ xEQ,o 
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Consequently, by (5.8), 

(5.25) max sup I Wn(x) [U~(~)  -- U~(w)]l = o p ( ~ ~ ) .  
wEC~ xEQ~ 

Observe next that 

(5.26) max sup max mca ~ ]X,,i~(m) - Xnm(w)l  = O(n-)'5~i). 
wEC,~ xeQ,. ~1~(~)A&(w) 

We conclude from Lemmas 5.2, 5.3, (5.23), (5.24) and (5.26) that, for ), sufficiently 
large, 

(5.27) max sup [ ' -1 , ~ c .  ~Qo Q,~A~ (~)[x;~(x) - x ' ( w ) ]  u ~ ( ~ ) l  = oA6~ m ). 

Recall tha t  A ~ ( x )  = ( A n a l ( x ) )  = X ' ( x ) X n ( a c ) .  It follows from (5.24) and 
(5.26) that,  for A sufficiently large, 

(5.28) max sup max I A ~ z ( x )  - A ~ Z ( w ) I  = o~,(B,,). 
wECn mEQw c~,I3EA 

We conclude from Lemmas 5.2, 5.3 and (5.28) that ,  for )~ sufficiently large, 

max sup max I(AX1(x))~z - ( A ; i ( w ) ) ~ o [  = op(Bn(nS{)  -~) 
wECn ~EQw a,/JEA 

and hence tha t  

(5.29) max sup l ' -1 ~ ) .  ~ s c ,  ~eQ~ Q~[An (x) - A X i ( w ) ] X ' ( w ) V ~ ( w ) l  = o , ( ~  "~ 

It follows from (5.18), (5.25), (5.27) and (5.29) that (5.21) holds. [::] 
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