
Ann. Inst. Statist. Math. 
Vol. 46, No. 2, 251-265 (1994) 

TESTING FOR NO EFFECT IN NONPARAMETRIC REGRESSION 
VIA SPLINE SMOOTHING TECHNIQUES 

JUEI-CHAO CHEN 

Graduate Institute of Statistics and Actuarial Science, 
Feng Chic University, Taiehung ~072~, Taiwan, ROC 

(Received June 8, 1992; revised August 2, 1993) 

A b s t r a c t .  We propose three statistics for testing that a predictor variable 
has no effect on the response variable in regression analysis. The test statistics 
are integrals of squared derivatives of various orders of a periodic smoothing 
spline fit to the data. The large sample properties of the test statistics are 
investigated under the null hypothesis and sequences of local alternatives and 
a Monte Carlo study is conducted to assess finite sample power properties. 
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1. Introduction 

Regression analysis is used to s tudy  relationships between the response vari- 
able and a predictor  variable; therefore,  all of the  inference is based on the as- 
sumpt ion  tha t  the response variable actual ly depends on the  predictor  variable. 
Testing for no effect is the same as checking this assumption.  In this paper,  we 
propose three  statistics for test ing tha t  a predictor  variable has no effect on the 
response variable and derive their  asymptot ic  distributions.  

Suppose we have an exper iment  which yields observations ( t i n , y 1 ) , . . . ,  
(tn~, Yn), where yj represents the value of a response variable y at  equally spaced 
values t jn  = (j  - 1) /n ,  j = 1 , . . . , n ,  of the predictor  variable t. The  regression 
model  is 

(1.1) yj = # ( t in )  + ey, j --- 1 , . . . , n ,  

where the  ej are iid r andom errors wi th  E[el] = 0, Va r [ r  ~2 and 0 K E[e 41 K oe. 
We assume tha t  # E W~,per[0, 1] = {g : g(J) is absolutely continuous, j = 0, 1, 

f~g(2 ) ( t )ad t  < ee and g(d)(0) = g(J)(1), j = 0, 1}. The  per iodici ty  conditions 
imposed on # allow us to  use Fourier analysis techniques tha t  simplify subsequent  
comparisons and mathemat ica l  developments.  For nota t ional  convenience, we will 
also take n to be odd th roughout  the  paper.  
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Testing for no effect means testing that  the regression function is a constant. 
Hence, we rewrite model (1.1) as 

(1.2) yj =/~ + f ( t j~)  + ej, 

j = 1 , . . . , n ,  where ~ is an unknown constant and f in (1.2) is an unknown 

function that can be assumed, without loss of generality, to satisfy f {  f ( t )d t  = O. 
Therefore, the null hypothesis of no effect is equivalent to H0 : f = 0. Since 
# E W~,per[0, 1], and f is orthogonal to the unit function, f = 0 if and only if, 

f l  o f(m)(t)2dt = 0, m = 0, 1 or 2. Consequently, one could test Ho using statistics 

of the form f3  f(m)(t)2dt, m = 0, 1 and 2 where ] is some estimator of f .  This is 
what we propose to do. 

As an estimator of f, we will use a periodic smoothing spline. Specifically, let 
rj = yj - ~. Then, a smoothing spline estimator of f is the minimizer of 

f01 (1.3) 1 E ( r j - g ( t j ~ ) ) 2 + A  [g(2)(t)]2dt, A > 0 ,  
n j----1 

over all g E W2,per[0, 1]. The term ( l /n )  ~ j ~ l ( r j - g ( t j n ) )  2 in (1.3) measures good- 

ness of fit, while f~ g(2) (t)2dt measures smoothness. The smoothing parameter 
in (1.3) controls the tradeoff between variance and bias of the estimator. 

The minimizer of (1.3) is well approximated by (cf. Rice and Rosenblatt  (1981) 
or Eubank (1988), p. 304) 

~ j n  e2~riJ t 

(1.4) lap(t) = E '  1 ~- A(27rj) 4' 
Ljl<(n-1)/2 

where the ~-~/ indicates summation excluding the zero index and the ~j~ are the 
discrete sample Fourier coefficients defined as 

n 

(1.5) ajn = n -1 E Yke-2=ij((k-1)/n) IJl < n -- 1 
' - -  2 

k = l  

We use (1.4) as our estimator of f in what follows and refer to it as a periodic 
smoothing spline. 

There are a number of tests available for the no effect hypothesis or, more 
generally, for testing goodness of fit of a linear model. For example, Graybill 
(1976) or Kleinbaum et al. (1988) discuss the classical parametric methodology 
for this purpose. Recently, Cox et al. (1988), Cox and Koh (1989) and Buckley 
(1991) applied a Bayesian approach to construct test statistics. Tests derived by 
yon Neumann (1941), Hs and Mammen (1988), Munson and Jernigan (1989), 
Eubank and Spiegelman (1990), Jayasuriya (1990), Raz (1990), Staniswalis and 
Severini (1991), Miiller (1992), Eubank and Hart (1993), and Eubank and LaRiccia 
(1993) use various nonparametric smoothing techniques to find an estimator of f 
and construct a test statistic for H0. Procedures which employ the smoothing 
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parameter as a test statistic have been studied by Eubank and Hart (1992) and 

Hart and Wehrly (1992). 

The test statistics we will consider are 

L 
1 

= m = 0 ,  l a n d 2 .  

When m = 0 this statistic has been studied by Eubank and LaRiccia (1993) 
under the assumption of normal errors. For m = 1 and 2, the  Trap provide new 
proposals. In the next section, we s tudy the asymptot ic  dis tr ibut ion theory of 
these test statistics under  both the null hypothesis and local alternatives. The 
results of a small simulation to s tudy  the power properties of the test  statistics are 
reported in Section 3. Proofs of the theorems are then  collected in the Appendix. 

2. Asymptotic distribution theory 

In this section, we s tudy  the large sample properties of the Trap for m = 0, 1 
and 2. Initially, we assume here tha t  a2 is known and discuss how this assumption 
can be relaxed subsequently. We begin with some notat ional  preliminaries. 

Let �9 denote complex conjugation and for any functions g and h belonging 

to L2[0, 1] = { f  : f~  [f(t)12dt < ce} with If(t)[ 2 = f ( t ) f * ( t ) ,  define the inner 

product  (g, h} = f~  g(t)h*(t)dt  and norm IIg[[ = (g,g)l /2.  Setting x j ( t )  = e 2~ijt, 
the j - t h  Fourier coefficient of a function f is then  defined to be aj  = (f,  xj)  = 
f l  f ( t)e_2~iJtdt .  

For m = 0, Top = f l [ fxp( t )]2dt  = Y~/Ijl_<(n-1)/2 [aj~]2/( 1 + A(2~j)4) 2" The 
specific test statistic we consider is a s tandardizat ion of TOp; namely, 

(2.1) Zop = 

~2 ~-~l 1 

Top - -~._~ [j[~_(n-X)/2 (1 + A(27~j)4) 2 

2~'~']Jl<-(n-1)/2 (1 +/~(2~'j)4) 4 

Theorem 2.1 below states that Zop has an asymptotic normal distribution. 

THEOREM 2.1. Assume that n --~ c~, A ~ 0 in such a way that nA 1/2 --~ 
ec. Suppose f -- h(n)g with g E W~,p~r[0, 1] and h(n) = n -1 /2A  -1/16. Then 

Zop converges in distribution to a N([lgt]2/a2 2v~-C-oo, 1) random variable for  Co = 
f o  1/(1 + x4)4dx. 

Theorem 2.1 generalizes results in Eubank and LaRiccia (1993) to the case 
of nonnormal error distributions. It has the implication that a test of the above 
form can detect local alternatives converging to the null at the rate n-I/2A -I/16 

or slower. For any fixed alternative, it can be shown that Zop also provides a 
consistent test. 
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= rlrd~)(t)]2dt = For m = 1 we obtain a new test statistic Tip ao tJ),p 

~'ljl<_(~-l)/2 (27rj)2tajn]2/( 1 + A(21rJ)4) 2 whose standardized form is 

(2.2) Zip = 

~2 E '  (2~J)2 
Tip - --n [Jl<(n-1)/2 (1 + A(27rj)4) 2 

~ , / 2  E'  (2~2)4 
-n  V Ijl<(,~-l)/2 (1 + A(2rj)4) a 

THEOREM 2.2. Assume  that n ~ ce, )~ --~ 0 in such a way that nA 5/8 --~ oe. 
Suppose f = h(n)9  with g e W22,per[0,1] and h(n)  = n-1/2A -5/16. Then, Zip 

converges in distribution to a N(Hg(1)[]2/a2 2v/-~l, 1) random variable for  C1 = 
~-I f o  x~/( 1 + x4) 4d~. 

Finally, we have the statistic for rn = 2, T2p = f~[f(~2)(t)]2dt = 

~-]'tjl<<_(n_l)/2(2~rj)41gj~12/(l+A(2~rj)4) 2 which, when recentered and rescaled, be- 
comes 

(2.3) Z2p = 

a2 E '  (2~rj)4 
T2p - --n ]Jl<-(n-1)/2 (1 + A(2~rj)4) 2 

i (2~rJ) s 
-~  2E'lJI<(n-1)/2 (1 + A(2~rj)4) 4 

THEOREM 2.3. Assume  that n --* oc, )~ --~ 0 in such a way that n~ 9/8 --+ (x). 
Suppose f = h(n)g  with g e W~,per[0, 1] and let by be the j - t h  Fourier coefficient 

of g. Further assume that [by[2 ~ j-(5+~) for  some 5 > 1. Then, i f  h(n)  = 
n-U2)~ -9/16, Z2p converges in distribution to a N(l[g(2)II2/c~2v/~2, 1) random 
variable for  C2 = ~ - l  f o  x8/(1 + x4)4dx. 

Remark  1. Theorems 2.2 and 2.3 have the implication that  Zlp and Z2p both 
have asymptotic standard normal distributions under the null hypothesis. Our 
local alternative analysis also reveals that Zip can detect alternatives converging 
to the null at the rate n-1/2)~ -5/16 or slower while Z2p can  detect local alternatives 
converging as fast as n-1/2)~ -9/16. Like the Zop based test, the ones using either 
Zip or  Z2p are consistent against any fixed alternative. 

Remark 2. Although Theorems 2.1-2.3 suggest that  suitable critical values 
for the Zrnp, m - 0, 1, 2 can be obtained from the standard normal distribution, 
results in Jayasuriya (1990) and Eubank and LaRiccia (1993) indicate that  such 
normal approximations are typically not adequate even for fairly large samples. 
The problem is that the test statistics behave like weighted sums of chi-square 
random variable, in an asymptotic sense, and accordingly approach normality 
quite slowly. An alternative approximation developed to deal with such cases (i.e., 
weighted sums of chi-squares that are asymptotically normal) has been proposed 
by Buekley and Eagleson (1988). Using their approach we can approximation 
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_ = X 2 the 100(1 @-th  percentile of Zmp, m O, 1, 2, by ( d,l-,~ -- d)/v'2-d, where 

d = [~--]flJl_<(~-l)/2 E2j]a/[Y']~'IJI<_(n-1)/2 Eamj] 2' the  Emy are given in (A1)-(A3) of 
the Appendix  and X 2 denotes the 100(1 - a ) - th  percentile of a chi-squared d,l-c~ 
distr ibution with d degrees of freedom. This me thod  produced satisfactory results 
in the simulations in Section 3. 

Remark 3. We assumed that  a 2 in (2.1), (2.2) and (2.3) was known in estab- 
lishing the asymptot ic  distr ibutions for the  Z,~p, m = 0, 1, 2. However, Theorems 
2.1-2.3 remain valid if a 2 is replaced by any v/-n-consistent estimator.  Examples 
of such est imators  can be  found in Gasser et al. (1986) and Hall et al. (1990). 

3. Power properties 

The power properties of our testing procedures will be examined in this section. 
We begin with a discussion of asymptotic power. 

For a given level (~ and alternative g, we can use Theorems 2.1-2.3 to get 
expressions for the large sample powers of our tests. Let P(A [ f) denote the 
conditional probability of an event A under the alternative # ----/3 + f. Then, we 
have the following result. 

THEOREM 3.1. Assume the conditions of Theorems 2.1-2.3 hold and let 
h(n) = n-1/2A -(4m+1)/16. Then, for any given a E (0, 1) and 0 < jig(m)[[2 < c~, 

Ilg >ll 2 l i m  P(Zmp >_ ZI-~ I h(n)g) = 1 - �9 Z l -a  c ~ 2 ~  ] , 

where Z l -a  is the 100(1 - a ) - th  percentile of the standard normal distribution. 

If we assume tha t  f (0 )  = 0, then f ( t )  = f t  fO)(u)du and the Cauchy-Schwarz 

inequality gives f~ f(t)2dt < [If (1) []2 f l  tdt = .5[If (1) [12. Similarly, if f(1)(0) = 0 

we obtain [[f[]2 _< .51]f(1)[[2 _< .25][f(2)1[2. One finds that  Co - .265 and C1 -- 
C2 - .088. Consequently, Theorem 3.1 has the  implication that  the asymptot ic  
power of T,~p is an increasing function of m in this case. 

Cox and Koh (1989) and Buckley (1991) propose tests based on Bayesian 
methodology that  can also be adapted  for use in our setting. Basically, one fits 
models the regression function as /3 + kW(.), where W is a zero mean, normal 
process and then derives a locally most  powerful test  for the hypothesis  tha t  k = 0, 
which is equivalent to our H0. If we choose the covariance kernel for W to be 
B(s, t) = }-~.'j(1/(2zcj)4)e 2Tri(s-t)j, we obtain a parallel of the Cox /Koh  test  for the 
no effect hypothesis.  The resulting test  statist ic is well approximated by 

(3.1) TCK = E '  or2 (27r j )  4" 
[j[_<(n--1)/2 

This resembles the Cox and Koh (1989) statist ic for testing goodness-of-fit of a 
polynomial  model given in equation (2.13) of their  paper. Our problem differs 
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somewhat from theirs since we are concerned with testing for no effect with a 
periodic regression function. This requires some minor alterations in the Bayesian 
modeling. In particular, we must use a different covariance kernel for our Gaussian 
process which is what causes the differences in the actual form of the test statistic. 

The Fourier representation (3.1) for TCK makes it possible to affect some 
direct qualitative comparisons with the statistics in Section 2. First, observe that  
5j~ in (1.5) provides an estimator of aj, the j - th  Fourier coefficient of f .  If f is 
a high frequency function ti]en tail will tend to be large for larger values of [j]. 
Notice that the test statistics TCK, Top, Tip and T2p all rely on the sample Fourier 
coefficients, but have different weights. TCK downweights 15jn] as j increases, 
while Top uses roughly uniform weights for j < (2It)j/4) -1 and downweights for 
larger j .  Tip and T2p give larger weights to ]5~j~i 2 for large IJt than Tc~ and Top. 
We, therefore, expect the test statistics Tip and T2p to have more power to detect 
high frequency alternatives than TCK and Top. 

The goal of the remainder of the paper is to ascertain the extent that  our 
Fourier analysis intuition is realized in quantitative comparisons. In this regard, 
one may use Theorem 3.1 to prove parallels of the Corollary and Theorem 2 in 
Eubank and LaRiccia (1993) that  provide analytic (asymptotic) comparisons of 
TCK and the T,~p. We will not pursue that  here but instead conduct more direct 
comparisons using Monte Carlo techniques. 

To ascertain how well our test might work in finite samples with fixed alter- 
natives we conducted a small scale simulation experiment. Normal errors were 
used to generate random samples of size 101 from model (1.2). Without  loss of 
generality, we took/3 -- 0. The error variance was assumed known and equal to 
1 and the design points tin were chosen to be equally spaced over [0, 1]. For the 
function f in (1.2) we chose f(t) = pcos(2~r,t). Since ~ = 1, the value used for p 
can be regarded as a signal to noise ratio with smaller values indicating increasing 
difficulty in estimation. We considered the specific choices p = 0.25, 0.5, 1.0 and 
1.5 in our power study. For ~ we used ~, -- 1, 3, 9 and 12 so that  the alternatives 
f will be of higher frequency as ~ increases. 

All three of the tests TOp, Tip and T2p depend on a smoothing parameter 
)~. We used integrated mean squared error optimal choices for ;~ in the simula- 
tion. More specifically, one may show (Chen (1992)) that  the value of A which 
minimizes the integrated mean squared error for estimating f by f),p is, approx- 
imately, /~0,opt =- ((~2Co)/(4nllf(2)l]2)) 4/5 if f e W2per[0,  1]. Under this same 

restriction, the asymptotically optimal choice for ), when estimating f(1) by f(lp) is 

hi,opt = ((3a2C1)/(2nl[f(2)l12)) 4/5. Assuming f e W~,per[0, 1], the asymptotically 

optimal /k for estimating f(2) by f(2p) is )~2,opt -- ((5a2C2)/(2nl[f(3)l12)) 4/7. For 
our choice of f(t) = p cos(27rvt), this translates into 

[0.265165 ]4/5 r 0.265165 ]4/s 
)~0,opt = 3 ~ 4 J  , Al,opt = L l ~ 4 j  and 

/5(o.ossassa5)] 
~2,op~ = L ~ .I 

which are the values used in the simulation. 
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Our method of selecting the amount of smoothing for the tests is not practi- 
cal since it requires knowledge of f .  Its advantage is in allowing us to avoid the 
problems and additional variability that would result from data driven smooth- 
ing parameter selection for derivative estimation. With the exception of work by 
Rice (1986), the problem of bandwidth selection for estimating the derivative of 
a regression curve has not received the attention of the corresponding problem 
of smoothing parameter selection for estimation of the regression function alone. 
The estimators studied in Rice (1986) are derived from an "unbiased" risk type 
estimator. They are designed for use with tapered Fourier series estimators similar 
to ours and can be employed to estimate derivatives of any order, provided the 
regression curve is sufficiently smooth. Under some additional smoothness condi- 
tions on f ,  they would seem to be suitable for use in our setting and we hope to 
explore this possibility in future work. 

In practice, an estimator of ~0,opt will generally be used to fit the data and it 
may be preferable to use this choice for the smoothing parameter (rather than one 
designed for derivative estimation) when computing tests. There are many ways 
to estimate z~0,op t from data, including cross-validation. Thus, one of the goals 
here was to ascertain, for example, how well the commonly estimated smoothing 

parameter A0,opt worked in place of At,opt and A2,opt for Tip and T2p and, more 
generally, determine the sensitivity of the derivative based tests to suboptimal 
choices for )~. 

Critical values for TcK and Trap, m = 0, 1 and 2 with nominal level .05 were 
all obtained using the Buckley/Eagleson approximation discussed in Remark 2 
of Section 2. To assess the accuracy of the Buckley/Eagleson approximation for 
constructing critical values for our tests, we simulated I000 samples of size i01 
under the null model of a constant regression function and then computed the 
values of our test statistics and their associated critical values for the different 
choices of the smoothing parameters used in the power study. A different random 
seed was used for each of the 16 combinations of p and u. The results from this 
simulation in Table 1 therefore give empirical levels for our tests under various 
bandwidths. For example, the first entry in the second row of Table 1 gives 
the proportion of times the null hypothesis of a constant regression function was 
rejected by Top when the smoothing parameter was taken to have the value A0,opt =- 
[0.265165/32np2(~Ir)4] 4/5 with u = 1 and p = .25. 

The proportions in Table 1 are all around 0.05. The only significant (at the 
.05 level) departures occur for TCK when ~ = 9 and p = 1.0, which significantly 
exceeds the nominal level, and for the four smallest proportions when ~ = 1 
where the tests are significantly conservative. We conclude from this that  the 
Buckley/Eagleson approximation performs well and is relatively robust to the 
amount of smoothing used in the test. 

Table 2 contains the empirical powers of our tests against the alternative 
f(t) = pcos(2~r~t). Each of these entries corresponds to 1000 samples of size 101 
generated using the same seeds as for Table 1. Standard errors for the non-unit 
entries in Table 2 ranged from .0155 to .0009. 

Examining Table 2 for when ~ -- 1, shows all of the tests perform well except 
for the combination of T2p and "~0,opt" For ~ = 3, 9 or 12, we find that  the power 
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Table 1. 
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Proportion of rejections in 1000 samples of size 101 under null model. 

p=0.25 p=0 .5  p= l .O  p=1 .5  

v = 1 TCK .041 .047 .050 .044 

TOp ~0,opt .041 .045 .050 .031 
Tlp ~0,opt .037 .053 .038 .042 

Tlp ~l,opt .040 .043 .035 .035 
T2p A0,opt .036 .047 .049 .043 
T2p ~2,opt .035 .049 .042 .038 

V = 3 TCK .040 .051 .051 .057 
Top ~0,opt .053 .039 .046 .056 
Tip A0,opt .053 .043 .057 .057 
Tip Al,opt .043 .038 .052 .054 
T2p A0,opt .058 .045 .055 .054 
T2p ~2,opt .053 .047 .053 .061 

= 9 TCK .050 .045 .067 .055 
Top ~0,opt .046 .055 .054 .054 
TIp ~0,opt .038 .041 .053 .051 
Tlp ~l,opt .042 .045 .053 .048 
T2p ~0,opt .043 .050 .042 .055 
T2p ~2,opt .043 .049 .056 .048 

= 12 TCK .053 .043 .058 .053 
Top A0,opt .054 .047 .054 .061 
Tip ~O,opt .048 .055 .056 .051 
Tlp hi,opt .043 .053 .054 .059 
T2p ~O,opt .054 .054 .054 .040 

T2p A2,opt .051 .055 .060 .054 

of TCK is approximately equal to the level. This shows TCK is not  sensitive to 
higher frequency alternatives. TOp only has good power for ~ = 1 and 3. When  
y = 9 and 12, Top does not have good power but  is be t ter  than  TCK. This is 
consistent with the results in Eubank  and LaRiccia (1993). 

In contrast,  when the bandwidths  are chosen correctly, the test  statistics Tip 
and T2p have good power against all sixteen alternatives. It  appears there is little 
difference in the powers of Tip using either /~0,opt or )~l,opt. This is likely a conse- 
quence of the fact tha t  )~0,opt and ~l,opt are similar in the sense tha t  bo th  decay to 
zero at the same rate. Indeed, for this example, we find/~0,opt -:-" 0.57)~l,opt. The 
power of T2p is much more sensitive to the choice of ), t han  tha t  of Tip. This pos- 
sibility was anticipated since we know tha t  )~0,opt and ),2,opt converge at different 
rates. 

In summary,  there does seem to be some improvement  in power using T2p over 
Tip, al though this advantage is offset by the sensitivity of T2p to the choice of )~. 
Since Tip performs well using )~0,opt~ and )~0,opt can be readily est imated from the 
data,  the test based on the first derivative may be more effective in practice. 
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Table 2. Proportion of rejections in 1000 samples of size 101. 

p = 0 . 2 5  p = 0 . 5  p = l . 0  p = 1 . 5  

v = 1 TCK .319 .899 1.000 1.000 

Top /~0,opt .319 .893 1.000 1.000 

Tip )~0,opt .308 .801 1.000 1.000 

Tlp "~ 1,opt .314 .867 1.000 1.000 

T2p A0,opt .199 .254 .324 .339 

T2p )~2,opt .307 .844 1.000 1.000 

= 3 TCK .040 .056 .074 .106 

TOp ~0,opt .117 .695 1.000 1.000 

Tip /k0,opt .256 .759 .999 1.000 

Tlp ~l,opt .241 .806 1.0O0 1.000 

T2p ~0,opt .214 .404 .618 .741 

T2p )~2,opt .270 .776 .999 1.000 

r, = 9 TCK .050 .045 .067 .056 

Top /~0,opt .059 .290 .998 1.000 

Tip )~0,opt .120 .610 .999 1.000 

Tlp ~l,opt .086 .602 .999 1.000 

T2p "~0,opt .170 .452 .840 .970 

T2p ~2,opt .152 .625 .999 1.000 

= 12 TCK .053 .043 .059 .053 

Top )~0,opt .063 .225 .987 1.000 

Tip )k0,opt .105 .557 1.000 1.000 

Tip )~l,opt .082 .502 1.000 1.000 

T2p )~0,opt .152 .465 .877 .974 

T2p )~2,opt .136 .575 1.000 1.000 
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Appendix 

Define  Yn ---- ( Y l , . . . ,  Yn)', f~ = ( f ( t l ~ ) , . . . ,  f ( t ~ ) ) ' ,  g~ = ( g ( t l n ) , . . . ,  g ( t nn ) ) '  
a n d  X ~  ---- [xj ( tkn)]k=l  ..... n;Ij]<_(~-l)/2, where  x j  (t) = e 2~iyt for e it = cos t + i s in  t 

a n d  i 2 = - 1 .  Since n -1  }-~=1 e-2~rij(k-1)/ne2~ril(k-1)/n ---- 1, i f j  = l, = 0, i f j  r l, 

we have  X n n X ~  = nI~ ,  where  the  �9 n o t a t i o n  is used to  i nd i ca t e  t he  complex  
c o n j u g a t e  t r a n s p o s e  of a m a t r i x  and  In is t he  n • n i d e n t i t y  ma t r i x .  T h e  fol lowing 



260 J U E I - C H A O  C H E N  

notation will also be needed for the proofs 

1,j l j l , j ,k  l j k i , j ,k , l  " " 1 
l # j  l # j  j # k  k # l  i ~ j  j ~ k  k i # l  j # k  

j#l k#~ 

The proof of Theorems 2.1, 2.2 and 2.3 requires a result from Eubank and 
LaRiccia (1993). We state this formally below as Lemma A.1. We also need 
a result concerning the asymptotic distribution of quadratic forms provided in 
Lemma A.2. Its proof is a simple application of results in de Jong (1987). See 
Jayasuriya (1990) for details. 

LEMMA A.1. (Eubank and LaRiccia (1993)). Let g ~ W2per[0, 1], define 

bjs = n - 1 Y ~ = I  g(tks)  e-2~iytk~ and set bj = f~  g(t)e-2~iJ~dt. Then [bj~ - bjl = 

o ( n - 2 ) ,  uniformly  in lJl <- - 1)/2. 

LEMMA A.2. Let Ys = (Yl,. . . ,Yn)'  be a random vector and fs  = ( f i n , . . . ,  
f s s ) '  E R s.  Define en = (~1 , . . . ,  r = Ys - - f~  and suppose e l , . . . ,  en are inde- 
pendent, identically distributed random variables with E[el] = 0, Var[r = 0-2 and 
0 < E[e 4] < c~. Let M s  be a symmetric  n x n matrix of constants and mntj  be its 

_(k)  denoting the l j - th  element of M~,  for  k = 2, 3 , . . . .  Define l j - th  element with "tszj 
c r2 (n )  v - ,n  , (2) 2 = ?-,j=l [m~jj - mn j j ) ,  

N 

E 4 OL 1 -~- m n l j ,  

l , j  

2 2 
= ~-~mnljmnl  k and o~ 2 

1,j,k 

OL3 ~ E ?T~ni j??%n~kmnl jmnfk"  

i , j ,k , l  

T h e n  
/ M, 0 -2 = - - f / ~ M n f n  As Ys sYs tr M~ ' 

0-2  
converges in distribution to a standard normal random variable as n ---+ ~ if, 

~ j  m2njj 
(A) tr M2n -+ 0 as n --+ ce, 

t 2 YM L 
(B) tr M2~ ~ 0 as n -+ ec and 

(C) (~j = o(0-a(n)) for j = 1, 2, 3 as n ---~ (X). 

PROOF OF THEOREM 2.1. Eubank and LaRiccia (1993) prove Conditions 
(A) and (B) are true for Top. Thus, it suffices to show that Condition (C) of 
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Lemma A.2 is satisfied. We have Top = Y~J = Ijl<_(n-1)/~ laj~?/(1  + a(2~j)~) ~ 
n - ~ y ~ X H ~ X * y ~ .  So, we can apply Lemma A.2 using Mn = n - 2 X H ~ X  * with 
H~ an n x n diagonal matr ix  with j - t h  diagonal element hj j  = 1/(1 + A(27rj)4) 2, 
IJ[ -< ( n -  1)/2, j ~ 0 and hoo = 0. 

We have m ~ k  = n -2 }-'~' 1/(1 + A(27rj)4)2e-2~rij((l-1)/n) [j[<_(n--1)/2 
e 2~ij((k-1)/n).  Therefore, Im~Ik[ < n -2 ~-~.' 1/(1 + A(2zrj)4) 2. Now ob- 

- i j l < ( ~ - ~ ) / 2  
serve tha t  

E 
t 1 j l  (~-1)/2 1 

[Jl<-(n-1)/2 (1 + A(27rj)4) 2 = 2 (1 + A(27ry)4) 2dy + O(1) 

,.~ 2 A _ 1 / 4  fO c~ 1 (1 + (2~x)4) 2 d ~  

Thus, mnlk = O ( n - 2 A - 1 / 4 ) .  
Since M~ = n - 3 X H 2 X  *, the eigenvalues of Mn 2 are 

0, i f j  = 0 ,  

1 n - 1  and j r 0. (A.1) Eoj = n -2  (1 + A(2~rj)4) 4' if IJl -< - - - i f -  

Using, ~rljl<_(n_l)/2 1/(1 + A(2zrj)4) 4 ~ 2A -1/4 f o  1/(1 + (27rx)4)4dx = C0z~ -1/4 

with Co = ~-1  f o  1/(1 + x4)4dx, we then obtain tr M~ = n -2 E ' j j l< (n-1 ) /21 / (1+  
A(2~rj)4) 4 ~ C0n-2/~-1/4 = O ( ? ~ - 2 / ~ - 1 / 4 ) .  

To show tha t  Condit ion (C) holds, we need to prove tha t  a j  = o(~r4(n)) for 

j = 1, 2, 3 in Lemma A.2. We have ~2(n) = ~ t  ~ (2) 2 2 [jl<_(n_l)/2 [mnj  j -- mn j j )  ----- t r  M~ - 
~'lJl<_(n_l)/2 m n j j  . 2  From this and Condition (A) we see tha t  cr2 (n ) / t rM~  = 

1 - (}-~.tljl<(n_l)/2 m 2 j j ) / t r M ~  -~ 1 as n --* 00, A --* 0 and nA 1/2 -~ 00. Therefore, 

cr2(n) ~ t r M ~  as n ~ co, A --* 0 and nA 1/2 --~ oo and ~r4(n) ~ C g n - 4 A - 1 / 2 .  
~ 4 First  consider a l  = ~ l , j m n l j  ---- n 2 0 ( n - 2 A - 1 / 4 )  4 = O(n-6A-1) .  We have 

al/Cr4(n) = O( n - 6A-1 ) / (C~n-4A-1 /2  + o ( c r 4 ( n ) ) )  = O(n-2A -1/2) = 0 ( 1 ) ,  a s  n - *  

~-" m 2 2 = n 3 0 ( n - 4 A - 1 / 2 ) .  oo, A -~ 0 and nA 1/2 --* oo. Similarly, a2 -- 2~t,j,k n l jmnlk  
O(n--4,~ -112) = O(n-5.~ -I)  and a~/o'4(n) = O ( n - S A - 1 ) / ( C 2 n - 4 A - 1 / 2 + o ( ~ r 4 ( n ) ) )  
~- O(?z--1)k - 1 / 2 )  = o(1). 

Finally, 

C~3 = E mni jmnikmnIjmnlk  = E mni jmnik  E mnljmnlk  
i,j,k,l i,j,k l 

17~i,j,k 

~ - ' m  . .m  �9 ~ (2) 7 ,  n~2 n~k~mnjk -- mni jmnik  -- mn j jmn jk  -- mnkjmnkk)  
i,j,k 

(2) _ mnkjmnkk)  ~'~ ~ 2 2 ~..~?i2nj k --?Ttnjjmnjk ~ mnij  mnik E T n n i j m n i k  
j,k i i,j,k 

i~j,iT~k 
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j,k 

j,k j,k j,k 

+ E m n j j m n k k m 2 j k  -- Ct2. 
j,k 

We will deal wi th  each t e r m  in this sum separately.  
, : .  , (2) ,2 ~ ,  _(4) _ ~ ,  r~(2)~2 < 

First ,  2_~j,k~mnjk) : ljlG(n_l)/2 II~nj j i j[<(n_l)/2k,,%jjy _ 

}-~/ ~.(4) By definition, t r M n  4 = ~ '  ~(4)  wi th  M 4 ---- [jl~(n--1)/2 "~ j j" [j[~(n--1)/2 "~njj 
(4) 7~-5 E '  1 / ( t  -}- A(27rj)4) 8 ,~ 2n-SA -1/4 n-sXHanX * and rant k < ijl<_(n_l)/2 

f o  1 / ( 1 +  (2~x)4)Sdx. So, ~,~(4) ---- 0(n_5)_1/4) and E '  _(4) _ _  "~nlk I j t< (n-- 1)/2 "Ht'njj 
- 2 2 O ( n - d A - 1 / 4 ) .  Also, we have mnl k 2  = O ( n - d A  -~/2) which gives Ej,kmnjjmnjk. ~- 

O(rt-6)~-l).  
~-, (2) m (2) n -3 ' 1/(1 Next  consider 2_~j,kmnjkmnjj  njk. Since < mnlk - Y~ ]j[<_(n-1)/2 + 

A(27rj)4) 4 = O(n-3A-1/4), we have 

i y,k m  kmnjj rn jk I = n 2 0 ( r t - 3 ~ - l / 4 ) O ( n - 2 ~ - l / 4 ) O ( n - 2 , , ~ - l / 4  ) 

= O ( n - S A - 3 / 4 )  

~ m2 and ~-~j,k m n j j m n k k  njk 
O ( n - 6 A - 1 ) .  Therefore,  

= n 2 0 ( n - 2 A - 1 / 4 ) O ( n - 2 A - 1 / 4 ) O ( n - 4 A - 1 / 2 )  = 

a3 O(rt-4A -1/4) O(n-6A -1) 
_ _  - -  ~[- 
0r4(~t) Cgn-4)~- l /2  .-]- o((74(Tt)) Cg?~-4~-1/2 -~- 0(~74(?~)) 

O ( n - 5 A  -3/4 ) O( Tt- 6/~- 1 ) r 
~ Cg?~_4)_l/2 --~ o(crd(n)) ~- C2rt_4/~_l/2 Jr- o(aa(n))  + tffd(n---- ~ 

---- O(A 1/4) ~- O(n-2 A -1/2) + O(n- l  A -U4) + O(n-2 A -U2) + o(1) 

= o(1). 

Consequently,  a3 = o(~4(n))  as n --~ 0% A -* 0 and nA 1/2 -+ cc and  Condi t ion 

(C) holds. 

We now app ly  L e m m a  A.2 to get Zop - (f~Mnf~/a2v/2trM~) v> N(O, 1) as 
n --~ oc, A ~ 0 and  nA t/2 -~ oc. But ,  fn  = h(n)g, for gn = ( g ( t l ~ ) , . . . ,  g(tn,))' 
and h(n) = n-1/2A -1/16. Therefore,  

f~M,,f,, - i - - i / s  ~ , x ~ M n A g n l v l n g ,  g .  . g n  Ilgll 
2v -d 2n-l  -l/s  2 VCo 
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as n --* oc, A ~ 0 and nA 1/2 ~ oc, because Eubank  and LaRiccia  (1993) show that  
g~M,~g~ = E/ t j [~ (n_ l )12  Ibjn[2/(1 + A(2z~j)4) 2 -~ Ilgll 2, where the by~ are defined 
in Lemma A. 1. The proof  is completed by an application of Stutsky's  Theorem. [] 

PROOF OF THEOREM 2.2. The proof  of Theorem 2.2 is similar to tha t  for 
Theorem 2.1. It also uses Lemma A.2 except  that  now M 2 is a matr ix with 
eigenvalues 

0, (27rj) 4 if j = 0, 

(A.2) EU = n-2  (1 + A(27cj)4) 4'  if [Jl - < n -2 1 and j r 0. 

The details can be found in Chen (1992). [] 

PROOF OF THEOREM 2.3. We have T2p = ~_,'ljl<_(,~_1)/2((27cj)4[gzjn[2)/(1 + 
A(27rj)4) 2 = n - 2 Y t n X H n X * y n ,  so we apply Lemma A.2 with Mn = n - 2 X H n X  * 
and Hn a diagonal matr ix  with elements h00 = 0 and h j j  = (27r + A(2~j)4) 2 
for IJ[ -< ( n -  1)/2 and j r 0. 

First  note tha t  mnIk = n - :  ~-]~'ljl<(n_l)/2(27cj)4/(1 + A(27ej)4)2e-2=ijq-1)/n �9 

e 2=ij(k-1)/'~ and Im~Ikl <_ n -2 }-']~'lji<(n_l)/2(21rj)4/(1 + A(27rj)4) 2. An integral 
approximation then gives 

(27r J) 4 f0  c~ (27rx) 4 
E '  (1 + A(2~rj)4) 2 ~ 2) ' -5/4 iJl<_(n_l)/2 (1 § (27rx)4) 2 dx. 

Thus, mnlk = O(n-2A-5/4) .  
The eigenvalues of M~ 2 are 

(A.3) 
0, (27rJ) s if j = 0, 

-E2j = n -2  (1 § 4' if lJ[ - < n -2 1 and j r 0. 

Thus, 

, (27r j )  s 
tr M~ = n -2  E (1 + A(27rj)4) 4 

Ij]_(n-1)/2 
= 0(n-2)~-9f4) .  

N 2n-2A-9/a  (1 + (2~rx)4) 4 dx 

Consequently, Condit ion (A) of Lemma A.2 holds because 

~-~' ~ ) / t rM~ ~ (nO(n-~;-~/~))/(O~n-~;-~/") mnjj  
[Yl<_(n-1)/2 

= O ( n - t A  -1/4) = o(1) 
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as n -~ 0% A --+ 0 and nA 9/s ~ oo. 
For Condi t ion (B) note tha t ,  since h(n) = n-1/2A-9/16, r  2r = ~ ~ h(~)~a'~ �9 

M2g~ = Tt-2A-9/8 ~'ljt<(n_l)/2((27cj)Stbjn12)/(1 + A(27rj)4) 4 < n-2A-9/8A -1 . 

~_,'lyl<_(n_l)/2((27cj)albj~12)/(1 + A(2~ry)4) 2. Thus,  to verify the  condi t ion we need 

only show tha t  ~ -* ijt<(n_l)/2((2~rj)'tlbj,~12)/(1 + A(2~j)4) 2 IIg"ll ~. For this pur- 

pose observe tha t  lid"f] 2 = f~)Ig"]2dt = ~-~j=_~ Ib~[ 2 = ~,j=_~(27~j)41bj[ 2 - 
~_,'ljl<(~_l)/2(27cj)41bj[ 2 + o(1). Thus,  

(2~j)elbj~l 2 
wz_.' (1+ ~(~j) ')~ 

Ijl<(n-1)/2 
E '  (27rj)41bj12 

Ijl<_(~-l)/2 

(27rj)4j-(5+ 5) 
~ '  (1 + A(2~j)~)~ - ~ (2~-j)~J-(~+~) 

IJl<(,~-l)/2 j <(n-I)/2 

(2~)aj-(1+5) = ~ '  (~ + ~(2~j)~)~ - ~ '  (2~)4J-(~+~) 

Ijl<_(n-1)/2 ljl<_(n--1)/2 

j-(1+~)__(1_: (1__+ ~(2~-j)4) 2) 
= (27r)4 E '  (1 -F A(27rj)4) 2 I 

Ijl<_(n--1)/2 

2A(27r)Sj 3-e 

x-~z_.' (1 + A(2~j)~)~ 
+ 

[jl<(n--l)/2 

By integral approximat ions  

2A(27r)sj a-~ 

Ij[<_(n--1)/2 

and 
A2(27r)12j 7-5 

K-~/--"' (1 + A(27rj)4) 2 
IJl<_(n-1)/2 

A2(27r)12j 7-5 

IJI<_(n-1)/2 

jfO ~ y3-6 4Ab/4(27r)4+5 (1 + y4) 2dy = 0(15/4) 

/0 
1 y7-6 

~ 2~/~(2~) '+~  (1 + (2.)~y4)~ @ : ~  

Therefore, I~'ljl<(n_l)/2((2~j)albjn[2)/(1 + A(2~j)4) 2 -[]g"ll21 _< O(A 6/4) + 

O(A 6/a) + o ( 1 )  o(1) and , 2 : ( f~M~fn ) / t r  M 2 = O ( ~ 1 / 8 ) .  

The  proof tha t  Condi t ion (C) holds follows along similar lines as in the  proof  
of Theorem 2.1. We omit  the  details. 

Lemma A.2 now gives Z~,, - (.r v N(0, 1) a s .  -~ ~ ,  
A --+ 0 and nA 9/8 ~ oc, for h(n) = n-1/2A -9/16. The  result  t hen  follows from 
observing tha t  

t M .  - l ~ - 9 / s  ! ~.r ! n ,,4 gn lVlngn  

as n -~ c~, A --~ 0 and nA 9/s ~ oc, since g~M~gn -~ ]]g"]l u if Ibj] 2 ~ j-(5+~) for 
5 > 1 . [ ]  
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