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Abstract. We propose three statistics for testing that a predictor variable
has no effect on the response variable in regression analysis. The test statistics
are integrals of squared derivatives of various orders of a periodic smoothing
spline fit to the data. The large sample properties of the test statistics are
investigated under the null hypothesis and sequences of local alternatives and
a Monte Carlo study is conducted to assess finite sample power properties.
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1. Introduction

Regression analysis is used to study relationships between the response vari-
able and a predictor variable; therefore, all of the inference is based on the as-
sumption that the response variable actually depends on the predictor variable.
Testing for no effect is the same as checking this assumption. In this paper, we
propose three statistics for testing that a predictor variable has no effect on the
response variable and derive their asymptotic distributions.

Suppose we have an experiment which yields observations (iyn,v1),..-,
(tnn, Yn), Where y; represents the value of a response variable y at equally spaced

values t;, = (j — 1)/n, j = 1,...,n, of the predictor variable ¢. The regression
model is
(1.1) yj=u(tjn)+ej, j=1....n,

where the ¢; are iid random errors with Efe;] = 0, Var[e;] = 02 and 0 < Elef] < oo.
We assume that g € W3 ,.[0,1] = {g : g is absolutely continuous, j = 0,1,
fol g?@(#)%dt < oo and g (0) = gU)(1), 5 = 0,1}. The periodicity conditions
imposed on y allow us to use Fourier analysis techniques that simplify subsequent
comparisons and mathematical developments. For notational convenience, we will
also take n to be odd throughout the paper.
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Testing for no effect means testing that the regression function is a constant.
Hence, we rewrite model (1.1) as

(1.2) yi = B+ f(tin) + €,

j = 1,...,n, where 3 is an unknown constant and f in (1.2) is an unknown
function that can be assumed, without loss of generality, to satisfy fol f(t)dt =0.
Therefore, the null hypothesis of no effect is equivalent to Hp : f = 0. Since
€ WE,;[0,1], and f is orthogonal to the unit function, f = 0 if and only if,
fol f™(1)2dt =0, m = 0, 1 or 2. Consequently, one could test Hy using statistics
of the form fol f (m)(t)2dt, m = 0, 1 and 2 where f is some estimator of f. This is
what we propose to do.

As an estimator of f, we will use a periodic smoothing spline. Specifically, let
r; = 1; — §. Then, a smoothing spline estimator of f is the minimizer of

(1.3) 1 \i(rj — g(tjn))2 + A / 1[g<2>(t)]2dt, A >0,
n st 0

over all g € W3 [0, 1]. The term (1/n) 377_, (r;—g(tjn))? in (1.3) measures good-
ness of fit, while fol g‘?(t)2dt measures smoothness. The smoothing parameter
in (1.3) controls the tradeoff between variance and bias of the estimator.

The minimizer of (1.3) is well approximated by (cf. Rice and Rosenblatt (1981)
or Eubank (1988), p. 304)

2migt

’ Qink
(1.4) helty= > L,
i<z T A2T)

where the > indicates summation excluding the zero index and the &;, are the
discrete sample Fourier coefficients defined as

n—1

n
(1.5) Gjn =n"" Zyke—Qﬂ'ij((k—l)/n), 7l <
k=1

We use (1.4) as our estimator of f in what follows and refer to it as a periodic
smoothing spline.

There are a number of tests available for the no effect hypothesis or, more
generally, for testing goodness of fit of a linear model. For example, Graybill
(1976) or Kleinbaum et al. (1988) discuss the classical parametric methodology
for this purpose. Recently, Cox et al. (1988), Cox and Koh (1989) and Buckley
(1991) applied a Bayesian approach to construct test statistics. Tests derived by
von Neumann (1941), Hardle and Mammen (1988), Munson and Jernigan (1989),
Eubank and Spiegelman (1990), Jayasuriya (1990), Raz (1990), Staniswalis and
Severini (1991), Miiller (1992), Eubank and Hart (1993), and Eubank and LaRiccia
(1993) use various nonparametric smoothing techniques to find an estimator of f
and construct a test statistic for Hy. Procedures which employ the smoothing
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parameter as a test statistic have been studied by Eubank and Hart (1992) and
Hart and Wehrly (1992).
The test statistics we will consider are

Trnp = / m)(1)2dt,  m =0, 1and 2.

When m = 0 this statistic has been studied by Eubank and LaRiccia (1993)
under the assumption of normal errors. For m = 1 and 2, the T,,, provide new
proposals. In the next section, we study the asymptotic distribution theory of
these test statistics under both the null hypothesis and local alternatives. The
results of a small simulation to study the power properties of the test statistics are
reported in Section 3. Proofs of the theorems are then collected in the Appendix.

2. Asymptotic distribution theory

In this section, we study the large sample properties of the T, for m =0, 1
and 2. Initially, we assume here that 02 is known and discuss how this assumption
can be relaxed subsequently. We begin with some notational preliminaries.

Let * denote complex conjugation and for any functions ¢ and h belonging
to Lo[0,1] = {f fol |f(t)?dt < oo} with |f(¢)]> = f(t)f*(t), define the inner
product (g, h fo g(t)h*(t)dt and norm ||g|| = (g, g)*/2. Setting z;(t) = €2t
the j-th Fourler coeflicient of a function f is then defined to be a; = (f,z;) =
J F(t)e2matdt.

1 - .
For m = 0, Top = [;[Hp(t)]?dt = Zlmg(n—l)/z lan|?/(1 + A(27m5)*)%. The
specific test statistic we consider is a standardization of Tp,; namely,

g ’ 1
- B1<n=1)/2 (1 X(27j)%)2
: :
o ! 1
- 23, I<t=1/2 (1 £ A2rf) 82

(2.1) Zop =

Theorem 2.1 below states that Zy, has an asymptotic normal distribution.

THEOREM 2.1. Assume that n — oo, A — 0 in such a way that nA\'/?2 —
co. Suppose f = h(n)g with g € W3 ,..[0,1] and h(n) = n=V2\"1/16_ Then
Zop converges in distribution to a N(||gl|2/0%v/2Co,1) random variable for Cy =
7701/ (1+ 24)de.

Theorem 2.1 generalizes results in Eubank and LaRiccia (1993) to the case
of nonnormal error distributions. It has the implication that a test of the above
form can detect local alternatives converging to the null at the rate n=1/2)—1/16
or slower. For any fixed alternative, it can be shown that Zy, also provides a
consistent test.
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For m = 1 we obtain a new test statistic Ty, fo f>\ t)]%dt
Z,ljls(n——l)/Z (277)2|a 0|2/ (1 + A(275)*)? whose standardized form is

07 (2n)”
Do = 5 X li<o-0r2 T AR
(2.2) Z1p = |
0'2 1 (QWJ)LL

n 2) l7l<(n-1)/2 (1+ A(2rj)H)A

THEOREM 2.2. Assume that n — 0o, A — 0 in such a way that n\>/® — co.
Suppose f = h(n)g with g € Wi .[0,1] and h(n) = n=Y2X5/16 Then, Zy,
converges in distribution to a N(||g™M||?/0%y/2C1,1) random variable for Cy =
ﬂ"lfooo /(1 + z*)%dz.

Finally, we have the statistic for m = 2, Ty, fo f(z)(t) 2dt
> i< no1)/2(273)*1@;n]?/ (14 A(27§)*)? which, when recentered and rescaled, be-
comes

2 (2mj)*
Top = — 2 ji<(n-1)/2 L+ 2@m)")?
(23) ZZp = 2 Y] .
. ) (25)

22 Wis(h=1)/2 (1 4 \(27)4)4

THEOREM 2.3. Assume that n — 0o, A — 0 in such a way that n)\%/8 — oo.
Suppose f = h(n)g with g € W22per[0, 1] and let b; be the j-th Fourier coefficient
of g. Further assume that |b;|> ~ j=O8 for some § > 1. Then, if h(n) =

n~Y2\=9/16 7., converges in distribution to a N(||g'®|?/02\/2C5,1) random
variable for Cg = a7 728 /(1 + 2*)4de.

Remark 1. Theorems 2.2 and 2.3 have the implication that Z, and Zy, both
have asymptotic standard normal distributions under the null hypothesis. Our
local alternative analysis also reveals that Z;, can detect alternatives converging
to the null at the rate n=1/2X3/16 or slower while Zs, can detect local alternatives
converging as fast as n~1/22~9/16_ Like the Zq, based test, the ones using either
Z1p or Zy, are consistent against any fixed alternative.

Remark 2. Although Theorems 2.1-2.3 suggest that suitable critical values
for the Zpp, m = 0,1,2 can be obtained from the standard normal distribution,
results in Jayasuriya (1990) and Eubank and LaRiccia (1993) indicate that such
normal approximations are typically not adequate even for fairly large samples.
The problem is that the test statistics behave like weighted sums of chi-square
random variable, in an asymptotic sense, and accordingly approach normality
quite slowly. An alternative approximation developed to deal with such cases (i.e.,
weighted sums of chi-squares that are asymptotically normal) has been proposed
by Buckley and Eagleson (1988). Using their approach we can approximation
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the 100(1 — a)-th percentile of Znmp, m = 0,1,2, by (x5,_, — d)/V2d, where

[Z l5|<(n—1)/2 m]] /> li|<(n~1)/2 Em]] , the Ey; are given in (A1)—(A3) of
the Appendix and Xd,l— ., denotes the 100(1 — o)-th percentile of a chi-squared
distribution with d degrees of freedom. This method produced satisfactory results
in the simulations in Section 3.

Remark 3. We assumed that o2 in (2.1), (2.2) and (2.3) was known in estab-
lishing the asymptotic distributions for the Z,,,, m =0,1,2. However, Theorems
2.1-2.3 remain valid if o2 is replaced by any /n-consistent estimator. Examples
of such estimators can be found in Gasser et al. (1986) and Hall et al. (1990).

3. Power properties

The power properties of our testing procedures will be examined in this section.
We begin with a discussion of asymptotic power.

For a given level a and alternative g, we can use Theorems 2.1-2.3 to get
expressions for the large sample powers of our tests. Let P(A | f) denote the
conditional probability of an event A under the alternative y = 3+ f. Then, we
have the following result.

THEOREM 3.1. Assume the conditions of Theorems 2.1-2.3 hold and let
h{n) = n~1/2A\=Um+D/16 " Then, for any given a € (0,1) and 0 < ||g¢™ |2 < oo,

Pl
Jim P(Zy > 21 | hr)g) =1~ @ (210 - JL ),

where Z1_, is the 100(1 — a)-th percentile of the standard normal distribution.

If we assume that f(0) = 0, then f(t) = [, i () (u)du and the Cauchy-Schwarz
inequality gives fo (t)2dt < Hf(l)Hzf tdt = .5||fV]|2. Similarly, if f1(0) = 0
we obtain ||f]|? < 5Hf(1)||2 < .25 f®]]2. One finds that Cp = .265 and C; =
Cy = .088. Consequently, Theorem 3.1 has the implication that the asymptotic
power of T, is an increasing function of m in this case.

Cox and Koh (1989) and Buckley (1991) propose tests based on Bayesian
methodology that can also be adapted for use in our setting. Basically, one fits
models the regression function as 8 + kW (-), where W is a zero mean, normal
process and then derives a locally most powerful test for the hypothesis that k = 0,
which is eql}ivalent to our Hp. If we choose the covariance kernel for W to be
B(s,t) = 33,(1/(2mj)*)e*™s=1J | we obtain a parallel of the Cox/Koh test for the
no effect hypothesis. The resulting test statistic is well approximated by

~ 12
(3.1) Tex= > _agnl®

2 \4 °
pl<eeye O 2rd)

This resembles the Cox and Koh (1989) statistic for testing goodness-of-fit of a
polynomial model given in equation (2.13) of their paper. Our problem differs
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somewhat from theirs since we are concerned with testing for no effect with a
periodic regression function. This requires some minor alterations in the Bayesian
modeling. In particular, we must use a different covariance kernel for our Gaussian
process which is what causes the differences in the actual form of the test statistic.

The Fourier representation (3.1) for Tox makes it possible to affect some
direct qualitative comparisons with the statistics in Section 2. First, observe that
@jn in (1.5) provides an estimator of a;, the j-th Fourier coefficient of f. If f is
a high frequency function then |a;| will tend to be large for larger values of |j|.
Notice that the test statistics Tox, Top, T1p and Ty, all rely on the sample Fourier
coefficients, but have different weights. Tox downweights |@,,| as j increases,
while Tp, uses roughly uniform weights for j < (2rA/4)~! and downweights for
larger j. Tip and T, give larger weights to |d;y,|? for large |j| than Tox and Tp,.
We, therefore, expect the test statistics 71, and T3, to have more power to detect
high frequency alternatives than Tcx and Tpp.

The goal of the remainder of the paper is to ascertain the extent that our
Fourier analysis intuition is realized in quantitative comparisons. In this regard,
one may use Theorem 3.1 to prove parallels of the Corollary and Theorem 2 in
Eubank and LaRiccia (1993) that provide analytic (asymptotic) comparisons of
Tck and the Tp,p,. We will not pursue that here but instead conduct more direct
comparisons using Monte Carlo techniques.

To ascertain how well our test might work in finite samples with fixed alter-
natives we conducted a small scale simulation experiment. Normal errors were
used to generate random samples of size 101 from model (1.2). Without loss of
generality, we took # = 0. The error variance was assumed known and equal to
1 and the design points ¢;, were chosen to be equally spaced over [0,1]. For the
function f in (1.2) we chose f(t) = pcos(2nvt). Since o = 1, the value used for p
can be regarded as a signal to noise ratio with smaller values indicating increasing
difficulty in estimation. We considered the specific choices p = 0.25, 0.5, 1.0 and
1.5 in our power study. For v we used v =1, 3, 9 and 12 so that the alternatives
f will be of higher frequency as v increases.

All three of the tests Tp,, 71, and T5, depend on a smoothing parameter
A. We used integrated mean squared error optimal choices for A in the simula-
tion. More specifically, one may show (Chen (1992)) that the value of A which
minimizes the integrated mean squared error for estimating f by fp is, approx-
imately, Ao,opt = ((62Co)/(4n|lfP||2))*/5 if f € W2,,[0,1]. Under this same

restriction, the asymptotically optimal choice for A when estimating () by f/&) is
Aopt = ((302C1)/(2n]| fP)2))*/®. Assuming f € W3[0, 1], the asymptotically

optimal A for estimating f(? by f/(\? is Aoopt = ((502C2)/(2n||f®|2))¥/7. For
our choice of f(t) = pcos(2nvt), this translates into

v [ 02es165 1% _ [_o2es165 1V
0Pt T | Bomp(ymyt] T MO | T6np? (v

A _ [5(0.08838835)1 ¥

2Pt = | T6anp? (vmr)o

which are the values used in the simulation.
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Our method of selecting the amount of smoothing for the tests is not practi-
cal since it requires knowledge of f. Tts advantage is in allowing us to avoid the
problems and additional variability that would result from data driven smooth-
ing parameter selection for derivative estimation. With the exception of work by
Rice (1986), the problem of bandwidth selection for estimating the derivative of
a regression curve has not received the attention of the corresponding problem
of smoothing parameter selection for estimation of the regression function alone.
The estimators studied in Rice (1986) are derived from an “unbiased” risk type
estimator. They are designed for use with tapered Fourier series estimators similar
to ours and can be employed to estimate derivatives of any order, provided the
regression curve is sufficiently smooth. Under some additional smoothness condi-
tions on f, they would seem to be suitable for use in our setting and we hope to
explore this possibility in future work.

In practice, an estimator of Agopt Will generally be used to fit the data and it
may be preferable to use this choice for the smoothing parameter (rather than one
designed for derivative estimation) when computing tests. There are many ways
to estimate Agopy from data, including cross-validation. Thus, one of the goals
here was to ascertain, for example, how well the commonly estimated smoothing
parameter Agopt Worked in place of Ay ope and Ao opt for Th, and Ts, and, more
generally, determine the sensitivity of the derivative based tests to suboptimal
choices for A.

Critical values for Tox and Tr,p, m = 0, 1 and 2 with nominal level .05 were
all obtained using the Buckley/Eagleson approximation discussed in Remark 2
of Section 2. To assess the accuracy of the Buckley/Eagleson approximation for
constructing critical values for our tests, we simulated 1000 samples of size 101
under the null model of a constant regression function and then computed the
values of our test statistics and their associated critical values for the different
choices of the smoothing parameters used in the power study. A different random
seed was used for each of the 16 combinations of p and v. The results from this
simulation in Table 1 therefore give empirical levels for our tests under various
bandwidths. For example, the first entry in the second row of Table 1 gives
the proportion of times the null hypothesis of a constant regression function was
rejected by 7o, when the smoothing parameter was taken to have the value Ag opt =
[0.265165/32n0%(v7)4]*/% with v = 1 and p = .25.

The proportions in Table 1 are all around 0.05. The only significant (at the
.05 level) departures occur for Tcx when v = 9 and p = 1.0, which significantly
exceeds the nominal level, and for the four smallest proportions when v = 1
where the tests are significantly conservative. We conclude from this that the
Buckley/Eagleson approximation performs well and is relatively robust to the
amount of smoothing used in the test.

Table 2 contains the empirical powers of our tests against the alternative
f(t) = pcos(2mvt). Each of these entries corresponds to 1000 samples of size 101
generated using the same seeds as for Table 1. Standard errors for the non-unit
entries in Table 2 ranged from .0155 to .0009.

Examining Table 2 for when v = 1, shows all of the tests perform well except
for the combination of T3, and Ageps. For v =3, 9 or 12, we find that the power
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Table 1. Proportion of rejections in 1000 samples of size 101 under null model.

p=026 p=05 p=10 p=15

v=1 Tex 041 047 050  .044
Top Mo,opt 041 045 050 .01
Tip Moopt  -037 053  .038 042
Tip Aopt  -040 043 035 .035
Top Moopt  -036 047 049 043
Top Agopt 035 049 042 .038
v=3 Tox .040 051 051  .057
Top Ao,opt 053 039 046 .056
Tip Moopt 053 043 057 057
Tip Mopt 043 038  .052  .054
Top Aoopt 058 045 085 054
Top A2ops  -053 047 053 .061
v=9 Teox .050 045 067  .055
Top Mo,opt 046 055  .054  .054
Tip Aoopt 038 041 053 051
Tip Mops 042 045 053 048
Top Aaopt 043 050  .042 055
Top Ao opt 043 049 056  .048
v=12 Tox 053 043  .058  .053
Top Moopt 054 047 054  .061
Tip Moopt 048 055  .056  .051
Tip Aopt 043 053  .054 059
Top Moops 054 054 054  .040
Top Azopt 051 055 060  .054

of Tok is approximately equal to the level. This shows Tk is not sensitive to
higher frequency alternatives. Tj, only has good power for v = 1 and 3. When
v = 9 and 12, Tp, does not have good power but is better than Tcg. This is
consistent with the results in Eubank and LaRiccia (1993).

In contrast, when the bandwidths are chosen correctly, the test statistics 71,
and T5, have good power against all sixteen alternatives. It appears there is little
difference in the powers of Ty, using either Ag gpe OF A1 opt. This is likely a conse-
quence of the fact that Ao opt and A1 opt are similar in the sense that both decay to
zero at the same rate. Indeed, for this example, we find A opt = 0.57A1 opt. The
power of T3, is much more sensitive to the choice of A than that of Ty,. This pos-
sibility was anticipated since we know that Ap opt and Az ope converge at different
rates.

In summary, there does seem to be some improvement in power using T3, over
Ti,, although this advantage is offset by the sensitivity of Ty, to the choice of A.
Since Tip, performs well using Ao opt, and Ag,opt can be readily estimated from the
data, the test based on the first derivative may be more effective in practice.
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Table 2. Proportion of rejections in 1000 samples of size 101.

p=025 p=05 p=10 p=15

v=1 Tok 319 899  1.000  1.000
Top Mo,opt  -319 893 1.000  1.000
Tip Ao,opt  -308 801 1.000  1.000
Tip Arope 314 867  1.000  1.000
Top Aoopt  -199 254 324 339
Top Aoopt  -307 844 1.000  1.000
v=3 Tox .040 056 074 106
Top Aoopt 117 695  1.000  1.000
Tip Moopt 256 759 999 1.000
Tip Aiopt 241 806  1.000  1.000
Top Aojopt 214 404 618 741
Top Azjopt 270 776 999 1.000
v=9 Toxk .050 045 067 056
Top Aoopt 059 290 998 1.000
Tip Aojopt 120 610 999 1.000
Tip Myops  -086 602 999 1.000
Top Aoopt 170 452 840 970
Top Aajopt 152 625 999 1.000
v=12 Tcx 053 043 059  .053
Top Aojopt 063 225 987 1.000
Tip Aoopt  -105 557 1.000  1.000
Tip Mopt 082 502 1.000  1.000
Top Aojopt 152 465 877 974
Top A2opt -136 575 1.000  1.000
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Appendix

Define y, = (yla v ,yn)lv Jo = (f(tln)a s af(tnn))la gn = (g(tln)a s 7g(tnn))/
and Xpn = [2; (Tkn)]k=1,...,n;j|<(n—1)/2, Where z;(t) = 2™ for e = cost +isint
and §2 = —1. Since n~1 Y _, e 2mi(k—/ne2rillk—1)/n — 1 if j =] =0, if j # 1,
we have X X,, = nl,, where the * notation is used to indicate the complex
conjugate transpose of a matrix and [, is the n X n identity matrix. The following
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notation will also be needed for the proofs

: zz z YEY e i—zzzz

5.k 1,7,k
laﬁj g;ék k;ﬁl wéy g;ék z#l J;«ék
JF#L kel

The proof of Theorems 2.1, 2.2 and 2.3 requires a result from Eubank and
LaRiccia (1993). We state this formally below as Lemma A.1l. We also need
a result concerning the asymptotic distribution of quadratic forms provided in
Lemma A.2. Its proof is a simple application of results in de Jong (1987). See
Jayasuriya (1990) for details.

LEmMMA A.l. (Eubank and LaRiccia (1993)). Let g € W3 ..[0,1], define
bin =LY 0 g(trn)e 2 % and set b; = fol g(t)e=2™3tdt. Then |bjn — bj| =
o(n™2), uniformly in 5| < (n —1)/2.

LemMMmA A2, Let y, = (y1,.-.,Yn) be a random vector and fr, = (fin,..-,
fan) € R™. Define €, = (€1,...,€,) = yn — fn and suppose €1,..., €, are inde-
pendent, identically distributed random variables with Ele;] = 0, Var[e;] = o* and
0 < Ele}] < 00. Let M be a symmetric n X n matric of constants and my; be its

lj-th element with m denotzng the 1j-th element of M¥, for k =2,3,.... Define
2
o?(n) = Y7oy (my; —m2j),

. 4

- § mnlj’
l7j

— § 2 2

- mnljmnlk: and
1,3k

Q3 = E Mnii MnikMnli Minlk-
i!j>k7l

Then
— Yn Mnyn_'o' tr M, fn M,fn

024/2tr M?

converges in distribution to a standard normal random variable as n — oo if,

An

2
(A) %—;}J—HO as  n— o0,
n
fM2n
(B) f—’t%ﬁ%:-—»o as mn—oo and

(C) a;=o(c*(n)) forj=1,2,3 as n-— oo

ProorF or THEOREM 2.1. Eubank and LaRiccia (1993) prove Conditions
(A) and (B) are true for Ty,. Thus, it suffices to show that Condition (C) of
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Lemma A.2 is satisfied. We have Ty, = Z/IjIS(n—l)/2 |an|?/(1+ A(2m5)*)? =
n_zyT’LXHnX*yn. So, we can apply Lemma A.2 using M, = n~2XH,X* with
H, an n x n diagonal matrix with j-th diagonal element h;; = 1/(1 + A(275)4)%,
7] < (n—1)/2, 7 # 0 and hqgo = 0.

We have mur = 1723 mpye I/(1+ A(2m))%)2em2miU=1/m)
e2mii((k=1)/n) - Therefore, |mpx| < n~2 Elljlﬁ(n—l)/Z 1/(1 + X(275)%)2. Now ob-
serve that

, 1 (n—1)/2
S\ 2/0 T+ A2rg)h)e

oe 1
~ 9\ 1/4 - -
D [ e

dy+ O(1)
l7]1<(n—1)/2

Thus, M = O(n~2A71/4).
Since M2 = n"3XH2X*, the eigenvalues of M2 are

0, if j =0,
n _————(1+>\(27rj)4)4’ if 7] < 5 and j # 0.

Using, 3" i<(n1)/2 1/(1 + A@2m5)4)* ~ 24714 [ 1/(1 + (2nz)*) de = Cor~1/4
with Cp = 7= [7°1/(1 + 2*)*dz, we then obtain tr M2 = n~2 Z,Ijls(n—l)ﬂ 1/(1+
A27m5)H)E ~ Con™2A"1/4 = O(n=2A~1/4).

To show that Condition (C) holds, we need to prove that o; = o{c*(n)) for
j=1,2,3 in Lemma A.2. We have 0?(n) = lejls(n—l)/2(mv(12j)j —m2;;) =tr M2~
2,[j|§(n-—-1)/2 m2,;. From this and Condition (A) we see that ¢(n)/tr M2 =
1-— (lejls(n—l)ﬂ m2 )/t Mfl — lasn — 00, A — 0 and nA\1/2 — co. Therefore,
o?(n) ~ tr MZ as n — oo, A = 0 and nAY2 — oo and o%(n) ~ C2n—4A-1/2,

First consider a; = il,jmfdj = n20(n72A"V4)% = O(n~%A~1!). We have
a1 /o%(n) = O(n=9X71) /(CEn™*A~Y/2 + o(0*(n))) = O(n"2X"1/2) = 6(1), as n —
00, A — 0 and nAY? — co. Similarly, oy = i:ld’kmfdjmilk = n30(n~4A"1/2).
O(n™*A~12) = O(n~°A71) and az /0 (n) = O(n°A~1) /(C3n~4A"1/2 4 o(0%(n)))
= O(n™'A71/2) = o(1).

Finally,

g = E M Mgk Ml Mpll = E MpijMnik E M Mnlk
i) .1k’l i,j,k l
! ik

_ NZ @
= mnijmnik(mnjk T MpijMnik — MnjiMnjk — mnkjmnkk)
inlk
_ (m(2) _ b1 = ) ) e 2 2
= nik Mg Mnjk — Mnkj Mnkk My i Mpik — mnijmnik
Jik

i .7,k
it itk 7
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2
= E mk — My Mgk — Mk Mnkk)” + Q2
Gk

_ 2\2 , N2 2 (2)
= Z Myiie)” + Zmnjjmnjk - E:mmkmna‘a‘mnjk
7.k

Jk ik

+ Zmnjjmnkkmijk — Qo
j,k
We will deal with each term in this sum separately.
= 2
First, Zj,&() v(m)k) = Z 1< (n-1)/2 ™" sm Z lJl<(n(1))/2(anJ)2 <
'

Y jl<(no1)/2 Mngj- By definition, tr M7 = 3\ o, _qyp My With My =
nT3XHAX* and {mgﬁc < n7d lej[S(n—l)/2 1/(1 4 X275)4)8 ~ 2n~5x"1/4.
Jo"1/(1 + (2ra)"yPde. - So. myi = (=AY and X pygqoonyys gy =
O(n~4\~1/4). Also, we have m2,, = O(n~*)\~1/2) which gives Zj ¥ ME; m2 E =
O(n=8x71).

Next consider Zj,kmfj)kmnjjmnjk. Since |m7(1213€| <n? Z,ljls(n—l)ﬂ /(14
A(275)H)* = O(n~3A71/4), we have

ngj)kmnjjmnjk = n2O(n_3)\"1/4)0(n_2)\“1/4)O(n_2/\_1/4)

gk
— O(n—5)\—-3/4)
and ij,kmnjjmnkkmijk = 2O AA"YHOMAIATYHOo (AN =
O(n=%)~1). Therefore,
a3 O(n=*X~14) + O(n=8x~1)
oi(n)  C2n—4A"12 +o(ot(n)) C3n—*A~1/2 + o(c4(n))
O(n=513/4) O(n= 8171 an

T I D12 T o(od(n)) | CEntA-12 4 o(o%(m)) | od(n)

= OAYH + 022"V O(n~ A"V - O(n2A"Y2) + 0(1)
=o(1).
Consequently, oz = o(c*(n)) as n — 00, A — 0 and nA'/2 — oo and Condition
(C) holds.

We now apply Lemma A.2 to get Zop, — (FLMnfn/0?+/2tr M2) 2, N(0,1) as
n — oo, A — 0 and nA/2 — co. But, f, = h(n)gs for gn = (g(t1n), -, 9(tmn))
and h(n) = n~/2X~1/16, Therefore,

oMyt -~ ngl/\_l/gg;zMngn _ 9, My gn - ||9Hz
\/2131‘ n \/2000’2?1_1)\_1/8 0’2\/200 0'2\/200
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asn — 00, A — 0 and nA/2 — oo, because Eubank and LaRiccia (1993) show that
9. M,g, = Zlmg(n—l)/z 16;n2/(1 + A(275)*)% — ||g|?, where the b, are defined
in Lemma A.1. The proof is completed by an application of Slutsky’s Theorem. O

Proor oF THEOREM 2.2. The proof of Theorem 2.2 is similar to that for
Theorem 2.1. It also uses Lemma A.2 except that now M? is a matrix with
eigenvalues

0, if 7 =0,
(AQ) Elj = —2 (277‘7‘)4 1] < n—1
A raeg fhls

and j #£ 0.

The details can be found in Chen (1992). O

PROOF OF THEOREM 2.3. We have Tbp = 3= < (n_1),2((27m5)*[@sn[?)/(1 +
A275)4)? = n~2%y! XH,X*y,, so we apply Lemma A.2 with M,, = n"2XH,X*
and H, a diagonal matrix with elements hgo = 0 and k;; = (275)*/(1+ A(277)*)?
for |j] < (n—1)/2 and j # 0.

. — 14 . . —_— 2 (1 —
First note that muk = n™* 31 1< 1y 0(2m5) /(1 + A(2mg) ) 2e2ma=0/n
e2’”7(’°"1)/". and |mpy] < n72%0 i1<n—1y/2(2m5)*/ (1 + A(275)*)®. An integral
approximation then gives

! (2mj)* s ©  (27z)
T o i ~ 22 /4/ .
|j|s<§n:—1)/2 (1+A(2mj)*)? y (1+ 2rr)h)z

Thus, mue = O(n™2A75/4).
The eigenvalues of M2 are

0, ] if j =0,

(A-3) Eyy={ _a_ (27]) e =1 .

’ " AT A if [j| < —5— and j # 0.
Thus,

- 2mj)® ®  (2rx)®

tr M2 =n"2 ' _,(__‘_7_‘_‘__,\,2”—2)\——9/4/ __ (2m2)®
U|S(;—1)/2 (1+A(2mj)4)* o (14 (2rz)4)4
= O(n"22"%4),

Consequently, Condition (A) of Lemma A.2 holds because

( ZI m%jj) /8t MZ ~ (nO(n™*A75/2)) /(Can™2A=%/%)

l7lS(n—-1)/2

= O(n~IA"4) = 0(2)
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as n — 0o, A — 0 and n\%® - co.

For Condition (B) note that, since h(n) = n~1/2X=9/16_ f'A12f — h(n)2g. -

— — 7 . . — —_ —_

Mlg, = n2A~%/8 % |j[g(n—1)/2((27r3)81bjn,2)/(1 + A2 < nTEATENTE
Z/mg(n—n/z((27Tj)4lbjn[2)/(1 + A(27§)*)2. Thus, to verify the condition we need
only show that Zlms(n_l)/z((27rj)4lbjnl2)/(1 +X(2m7)*)? — (lg”||*. For this pur-
pose observe that [|g"||> = fol lg"1Pdt = 352 JIbf1P = 3032 (2mi)bs?P =
Z,mg(n—l)/z(2773.)4“’3‘|2 +o(1). Thus,

’ 74012 ' W
> A2n) oyl S— Y (2wt

1+ A(2mj)*
i<z CTACTINE )
1 (2mg)ti 6+ ! N4 . —(5+6)
Y| 2 T 2 @)Y
l4l<(n—1)/2 lil<(n—1)/2
_ ro_emi T Z, (27)45~(+6)
iy A+ A@m)? I
lil<(n—1)/2 lil<(n-1)/2
~ (2} Z' GO - (14 A(2m5)%)?)
- 412
1< (n-1)/2 (142"
< Z, 2/\(27()8]'3—6 N Z, )\2(271')12]'7_’5
- N4)2 Y4N\2 7
pi<manye L HACTIN? 0 ) (L A2TI)Y)
By integral approximations
f 2)\(27.‘.)83'3—6 5 o] y3—-—6
e~ X4 (2r 4+5/ T dy = O(X4
A Tty T [ = 00
and
2 2,76 1 -6
S R 2X8/4(2mr)4+6 / S dy = O(X/%).
(14 A(2mj5)*)? o (1+(2m)tyt)?

i1 (n-1)/2

Therefore, | 5y1n-1)/2((277) b3al?)/ (1 + A@T)A)? ~ g1 < O(¥/4) +
O(M\/%) +0(1) = o(1) and (f/ M2f,)/ tr M? = O(AV/?).

The proof that Condition (C) holds follows along similar lines as in the proof
of Theorem 2.1. We omit the details.

Lemma A.2 now gives Za, — (fiM,f./0%/2tr M2) —D——»N(O, 1) as n — oo,
A — 0 and n)\%/® — oo, for h(n) = n~/2X"9/16, The result then follows from
observing that

T Mt - n_l/\—g/sgrlLMngn _ 9, Mg, - “g”H2
02\/2tr M? V2C02n—1)\~9/8 o220, 02+/2C,

as n — 00, A — 0 and n)%® — oo, since g/, M, g, — ||g"||? if |b;]> ~ 75+ for
6>1.0
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