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A b s t r a c t ,  Equally weighted mixture models are recommended for situations 
where it is required to draw precise finite sample inferences requiring popu- 
lation parameters, but where the population distribution is not constrained 
to belong to a simple parametric family. They lead to an alternative pro- 
cedure to the Laird-DerSimonian maximum likelihood algorithm for unequally 
weighted mixture models. Their primary purpose lies in the facilitation of exact 
Bayesian computations via importance sampling. Under very general sampling 
and prior specifications, exact Bayesian computations can be based upon an ap- 
plication of importance sampling, referred to as Permutable Bayesian Marginal- 
ization (PBM). An importance function based upon a truncated multivariate 
t-distribution is proposed, which refers to a generalization of the maximum 
likelihood procedure. The estimation of discrete distributions, by binomial 
mixtures, and inference for survivor distributions, via mixtures of exponen- 
tial or Weibull distributions, are considered. Equally weighted mixture models 
are also shown to lead to an alternative Gibbs sampling methodology to the 
Lavine-West approach. 

Key words and phrases: Equally weighted mixtures, survivor distribution, 
maximum likelihood, EM algorithm, binomial mixtures, Bayesian marginal- 
ization, importance sampling, Gibbs sampler. 

1. Equally weighted mixtures for density estimation 

Let x l , . . . , x n  denote  independent  r a n d o m  variables wi th  c o m m o n  densi ty  
f ( t )  and cumula t ive  d is t r ibut ion function (c.d.f) F ( t ) ,  for t E ( - o o ,  oo). Suppose  
t h a t  the  observed d a t a  y consists of those x~ falling outside a specific "censoring 
region", ~ti, for the  i - th  observat ion,  and d l , .  �9 �9 dn, where 

1 if xi ~ ~ i  
(i.i) di = 0 i f x i  E a i  (i = l,...,n). 
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An example, where x l , . . . ,  x.n are censored survivor times, is discussed in Section 6. 
Following Leonard (1984), assume that the unknown density f may be repre- 

sented as an equally weighted mixture of the form 

m 

(1.2) fro(t; ~) = m -1 E A(t, {k), 
k ~ l  

where ~1,- . . ,  ~m are unknown scalar parameters, and, for each ~, A(t, 4) is a speci- 
fied density in t, assumed twice differentiable with respect to ~, for each t. It would 
also be possible to let the density ), depend upon one or two common unknown 
parameters, without unduly complicating our analysis. 

The assumption (1.2) generalizes kernel estimators (e.g., Rosenblatt (1956), 
Tapia and Thompson (1978)) which, in the uncensored case, rather restrictively 
locate n kernels over the observed data points, leading to problems with estima- 
tion in the tails, and the identification of bandwidth parameters. The current 
assumption enables us to estimate the m locations ~1, . . . ,  ~-~ from the data, e.g., 
by maximization of L(f,~) with respect to ~1,. . . ,{,~,  where L(f) denotes the 
log-likelihood functional 

(1.3) L(f) = E logf(xi)+ E logG(fti), 
i:di=l i :d i=0  

and G(f~) = fa dF(t). 
This procedure smoothes f without assuming that f belongs to a simple para- 

metric family; unconditional maximization of (1.3) would (e.g., Efron (1967)) pro- 
vide a non-parametric step function for F .  We hence consider a simple alternative 
to the semi-parametric procedures recommended by Leonard (1978 i and Lenk 
(1991). There are some similarities between this approach and the Gaussian sums 
suggested by Sorenson and Alspach (1971), and Alspach (1975). 

For moderate to large m, the model (1.2) includes, as special cases, unequally 
weighted mixture models of the form 

q 

(1.4) f(t) : E Cjl(t, by) 
j= l  

(--(20 < t < OO, @1 -~ " " " -t- (~q ~- 1, ~ j  ~ 0 a n d  - e ~  < bj < c o ,  f o r  j = 1 , . . . ,  q; q = 

1, 2 , . . . ) ,  for many convenient choices of q _< m, but where each Cj is constrained to 
be a multiple of m -1. Hence, the model (1.2) provides a convenient way of saying 
that (1.4) may hold, but that we are unwilling to constrain q to assume a specific 
value. Applications of models (1.3) and (1.4) include situations where Cj may be 
interpreted as the probability that  an observation belongs to a subpopulation j ,  
where the observation would possess density A(t, bj). 

Since the model (1.2) does not contain unknown unequal mixing probabilities, 
it is generally easier to analyze, from either a likelihood or Bayesian perspective, 
when compared with (1.4). Note that (1.2) includes as a special case (41 = 42 = 
. . . .  4-~) a parametric model represented by the density X. It is therefore possible 
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to use (1.2) to investigate whether the data  supports a working hypothesis/~. If 
this hypothesis is untrue, the data can suggest a much more general estimate, 
based upon (1.2). 

Laird (1978, 1982) and DerSimonian (1986), who published Laird's algorithm, 
seek to maximize (1.3) among the class of densities (1.4), thus seeking a maximum 
likelihood estimate f(t) for f( t ) ,  which possesses Efron's self consistency property. 
The geometry of this solution is considered by Lindsay (1981, 1983), and a related 
algorithm in the context of random coefficient regression models, is discussed by 
Mallet (1986). The algorithm proposed by DerSimonian incorporated a search for 
the global maximum, proposed by Simar (1978), which does not however always 
return a global maximum (in practical problems many local maxima may exist). 
While our procedures will not completely guarantee a global maximum, they per- 
mit a quite exhaustive search for a global maximum, and also assist the choice of 
q. 

Titterington et al. (1985) propose a variety of inferential procedures for un- 
equally weighted mixtures. Their recursive formulae (Ch. 6) are proposed as po- 
tential approximations to a Bayesian solution, and parallel Sorenson and Alspach 
(1971). However, only Lavine and West (1992) have suggested an exact Bayesian 
solution for useful special cases of the model (1.4), with q fixed. They refer to 
the Gibbs sampler, as introduced to the Bayesian literature by Gelfand and Smith 
(1990), and Carlin and Gelfand (1991); this simulates from a succession of con- 
ditional distributions, rather than directly simulating from the exact posterior 
distribution of the parameters. 

In Section 5, we will show that an exact Bayesian solution for the model 
(1.2) can be calculated, under a very broad range of assumptions, using a varia- 
tion of importance sampling referred to as permutable Bayesian marginalization 
(PBM). Importance sampling is much more broadly applicable than Gibbs sam- 
pling, which requires a collection of conditional distributions to assume technically 
simple forms. 

2. Maximum likelihood methods 

It is straightforward to find local maxima of (1.3), under the class of equally 
weighted mixtures (1.2), by considering ~I,..., ~m satisfying 

n n 

(2.1) ~ k = E d i P i k / E u i P ~ k  (k = 1 , . . . , m ) ,  
i----1 i = 1  

with ui = rnin(xi, e~), 

m 

( 2 . 2 )  = 
g----1 

and 
{ )~(x~, ~k) if d~ = 1 

(2.3) ei(~k)= fa ~(t,~k)dt i f d i = O .  



206 TOM LEONARD ET AL. 

As a special case of the EM algorithm, discussed by Laird, trial values for 
~1, . . . ,  ~,~ may be substituted, via (2.2) and (2.3) into the right hand sides of (2.1), 
new values obtained from the left hand sides, and the process may be repeated 
until convergence. The values ~1, . . . ,  ~m will always exactly collapse into ~ groups, 
with ~ _< m. In practice ~ is typically much smaller than m, so that the ~'s tend to 
exactly cluster into a small number of groups. This is to be intuitively anticipated 
as model (1.2) simply constrains the Cj in model (1.4) to be integer multiples 
of rn -1, so that we would expect the maximum likelihood estimates for the two 
models to behave somewhat similarly. Suppose that  rh(j) of the ~k are set equal to 

/~j, for j = 1 , . . . ,  q. Then this solution will yield a member of the class (1.4), but  

with q estimated by q, Cj estimated by Cj = ~(j)/rn, and by estimated by/~j. In 
practice, we estimate q, by putting any two ~'s in the same group if they are differ 
by no more than some value e (e.g., c = 0.0001 • the smallest difference between 
two distinct observations, for the example in Section 6 involving a mixture of 
exponential densities), and then find ~ simply by counting the number of distinct 
groups of the ~'s. In most numerical examples, we have found the distinction 
between the groups to be remarkably clear as long as the iterative procedure for 
the ~'s is allowed to completely converge, e.g., to five decimal place accuracy. Note 
that, in some applications, ~(j)li(t~j)/Eqk=l ~n(k)li(bk) estimates the probability 
that  the i-th observation belongs to subpopulation j .  

In the special case where the quantities 

n 

(2.4) rk = E P ~ k  (k = 1 , . . . , m ) ,  
i=1 

are constant in k, the above procedure will also provide an exact solution to Laird's 
maximum likelihood equations for the model (1.3), with q = ~. This can easily be 
demonstrated by substituting our solutions into Laird's equations. By increasing 
m, it is possible to ensure that  rl  = r2 . . . . .  rm to any required degree of 
accuracy. Numerical comparison of rl,r2,.. .  ,rra, for any finite m, permits us to 
judge how closely the procedure defined by (2.1)-(2.3), is likely to approximate 
Laird's solution. 

As long as ~1, . . . ,  ~,~ are scalars, our procedure however permits a straightfor- 
ward systematic search for a global maximum, for any fixed m, and as m increases 
the search may be made narrower, thus permitting a reasonably exhaustive search 
for a global maximum of the likelihood under Laird's model (1.3). If a single 
specified value of m is of interest we recommend 

(a) Start with several different sets of initial values for ~1, . . . ,  ~m, but where 
~1 < ~2 < " "  < ~m. For each set, use the above iterations to find 41 <_ ~2 ~ " "  _< 
~ra, ~, and Cj and/~j, for j = 1 , . . . ,  q. Choose the solution, and the corresponding 

maximizing the log likelihood (1.2). Arrange that/~1 </~2 < "'" </~q. 
(b) Repeat the solution of (2.1), . . . ,  (2.3) using a variety of initial values 

based upon the quantities calculated in (a). For example, if ~ = 2, 
(i) Use bl as initial value for first ml - 1 of the ~'s, and b2 as initial values 

for remaining rh2 + 1 of the ~'s. If this yields a larger log-likelihood than 
before, use new bl as initial value for first 7~nl - 2 of the ~'s and new 



BAYESIAN INFERENCE FOR MIXTURES 207 

82 as initial value for remaining rh2 + 2 of the ~'s. Keep subtracting a 
parameter from the first group, and adding to the second group, until the 
log-likelihood starts decreasing. 

(ii) Use original 81 as initial value for the first rhl + 1 of the ~'s and original 
82 as initial value for remaining rh2 - 1 of the ~'s. Keep subtracting a 
parameter from the second group, and adding to the first group, using 
the latest values for 81 and b2, until the log-likelihood starts decreasing. 
For all runs in (i) and (ii) choose the values of bl, I)2 and rh(1) and rh(2) 
maximizing the log-likelihood. To be completely thorough, all values of 
rh0) and rh(2 ) satisfying rh(1 ) + f?z(2 ) = rn should be considered. 

For general ~, obvious generalizations of the above scheme may be constructed, 
which successively perturb rh(1), rh(2),..., rh(~). Again, to be completely thorough, 
all integer values of rh(1), �9 ~h(~), summing to m, should be considered. 

When searching for Laird's solution (rn -~ oe) we recommend seeking the 
global maximum for rn = rn*, 2rn*, 4rn*, 8rn*,... until the quantities in (2.4) be- 
come constant in k. The choices rn* -= 25 i.e., rn = 25, 50, I00,200,400,..., often 
work well in practice. In this case we recommend a very thorough search for the 
global maximum, for^ the smallest value, rn = rn*. Suppose that this yields the 
solution ~i,~2,...,~m* which collapse into ~ groups. Then, as initial values for 
~1,...,~m, when rn -- 2rn*, use ~l,~l,~2,~2,...,~rn*,~ra*. However, also com- 
pare with other, unequal, initial values, to check that c) has not changed. Once 
an initial maximum likelihood solution has been obtained, when frt = 2rn*, per- 
turb in similar fashion to the procedures described in (i) and (ii), to seek a larger 
log-likelihood. However, if a fairly exhaustive search has been completed, when 
rn = rn*, it is only necessary to slightly perturb the solution, when m = 2rn*. 
Keep doubling rn, and proceed in similar fashion, always maximizing (1.2), until 
the condition based upon (2.4) is satisfied. 

3. Numerical comparison with the Laird-DerSimonian algorithm 

Consider the situation where, conditional on 01, . . . ,  0n, our observations Yl, 
�9 . . ,  Yn possess independent binomial distributions, with respective probabilities 
01 , . . . ,  0n and sample sizes t t , . . .  ,tn, and where 01, . . . ,  0n are a random sample 
from a discrete distribution. Under Laird's model this common mixing distribution 
assigns probabilities r . . . ,  Cq to the values bl , . .  �9 bq. Under our equally weighted 
model, the mixing distribution instead assigns equal probabilities to each of the 
points ~1,. �9 ~m. Similar techniques to those indicated in Sections 1 and 2 may 
be applied to the present situation. Binomial mixture sampling models provide 
alternatives to discrete exponential family models (e.g., Hsu et al. (1991)). 

Consider the gender data reported by Leonard (1972), with n = 10, and 
yi denoting the number of females attending course i out of ti males and females 
(i = 1 , . . . ,  10). For these data, the DerSimonian algorithm converges very quickly, 
using just two iterations on the location parameters, with a search for the mixing 
probabilities at each stage. This algorithm however reported a local maximum 
of ~ = 3, bl = 0.152, b2 = 0.158, and b3 = 0.439, with mixing probabilities 
~1 = 0.540,. ~2 = 0.015, and r = 0.445, and log-likelihood L = -27.9972, and 
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returned an error code stating that it was unable to find a global maximum. The 
DerSimonian algorithm, for the unconstrained model (1.4), does not fail due to 
lack of model identification, but rather due to computational problems during the 
search for the global maximum. This procedure finds the maximum with the 4)j 
fixed and attempts a grid search on the ~bj, for the global maximum. 

We firstly applied our procedure, with m = rrt* = 25. Our starting values 
included a set of 25 equi-distant values for ~i,. �9 ~m. The corresponding iterations 
converged to a local maximum, correct to four decimal places, in 24 iterations, with 
log-likelihood L = -28.2044. This solution set ii of the ~'s equal to 0.150 and 14 of 
the ~'s equal to 0.435, giving 0 = 2 and estimated mixing probabilities ~i = 11/25 

and q~2 = 14/25 for the locations lh = 0.150 and I)2 -- 0.435. 
We then perturbed this solution, once according to step (i) of Section 2, and 

four times according to step (ii). This yielded an improved solution of 0 = 2, 

~I = 14/25, ~2 -- 11/25, ~)i = 0.153, and I)2 = 0.439, with L = -27.9974. Just to 

make sure, we explored all possibilities of ~1, as an integer multiple of m-l, with 
-- 2. Since we did not achieve a larger log-likelihood we tried a few different sets 

of unequal starting values for ~1,..., ~n, in order to check 0. We conclude that our 
solution, with L = -27.9974 provides a global maximum, when m = 25. 

With rr~ = 50, the solution for m = 25 seemed to remain a global maximum, 
and in this case we attempted perturbations to the right and left of the m = 25 so- 
lution. With m = i00, we increased, by a single perturbation to L =- -27.997479, 
with ~ = 2, ~I = 55/100, ~2 -- 45/100. With m -= 200, we again increased L, 
via a single perturbation to L = -27.9966. With m = 400, the global maximum 
remained the same, with 0 = 2, ~i = 222/400 = 0.555, ~2 = 178/400 = 0.445, 

lh = 0.152 and I)2 = 0.439. 
We conclude, via our analyses for different values of m, that we have provided 

a reasonable exhaustive search for the global maximum when rn = 400. For each 
value of m, we also checked ~, by considering other, unequal, initial values for 
~i,..., ~m. Since the rk in (2.4) all become equal, when rrt = 400, to four decimal 
places, we conclude that, to a reasonable level of accuracy, (within about 1/400 = 
0.0025 on the mixing probabilities) we have achieved an adequate approximation 
for the global maximum, as m --+ c~ i.e., for the maximum likelihood estimates of 
q, the r and b's under the model (1.3). 

Since the DerSimonian computer program gives a smaller log-likelihood L, 
we conclude that her program, published in Applied Statistics, for Laird's solu- 
tion, does not always achieve a global maximum. It similarly does not achieve 
the global maximum for the baseball batting data analyzed by Laird (1982), even 
though Laird achieves the correct solution in her paper. It is clear, however, that 
the different solutions yield only small changes in the likelihood. Therefore Der- 
Simonian's solution can still provide sensible estimates which are not precisely 
maximum likelihood estimates. A broader application of the algorithm by DerSi- 
monian might well produce the correct answer. 

Our more detailed analysis does not require a large amount of computer time, 
and does not increase dramatically, as m increases. For example, all the above 
computations were completed within a total of 15.2 seconds of CPU time on a 
Sunsparc station, while the DerSimonian algorithm continued indefinitely, or until 
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reaching the maximum number of cycles allowed to reach convergence to a global 
maximum. While it might be possible to achieve the global maximum, by Laird's 
methodology, and other search procedures, our own search procedure seems more 
direct. However, the maximum likelihood procedure for the class of models (1.2) 
can readily be extended to the calculation of Bayesian posterior modes, which are 
simple enough to provide the basis for a Bayesian importance sampling procedure. 

4. Simulation results 

Each result in this section is based upon i00 simulations from some true 
distribution. Only our own procedure is considered, as the Laird-DerSimonian 
computer program used too much computer time to facilitate repeated simulation. 
We firstly simulated from mixtures of normal distributions with unit variance, 
and applied the methodology of Section 2, but with (1.2) replaced by mixtures of 
m = 20 normal densities, each with unit variance. 

The first column of Table 1 describes the true value of q, for a particular set 
of simulations from the model (1.3), with the locations of the normal densities in 
model (1.3) described in the second column of Table i, and each mixing probability 
equal to i/q. The third column of Table 1 gives the sample size, and the fourth 
through ninth columns describe the frequencies N(1),..., N(6), which relate to the 
numbers of occasions, during the i00 simulations, that our procedure estimated q 
to be respectively i, 2, 3, 4, 5, and 6. The tenth column of Table 1 describes the 
simulated mean integrated squared error (MISE) of our density estimator, when 
compared with the true density. The last column describes the simulated MISE, 
when the estimator is instead a single normal density, with correct variance, and 
location replaced by the sample mean. 

Table 1. Simulated results  (mixtures  of normal  densit ies wi th  uni t  variance).  

MISE MISE 

q Locat ions n N(1)  N(2)  N(3)  N(4)  N(5)  N(6)  (m----20) (m--- - l )  

2 3 ,6  200 0 41 46 12 1 0 0.00232 0.01566 

2 3,6 400 0 37 49 14 0 0 0.00141 0.01553 

2 4,5 200 1 67 30 2 0 0 0.00163 0.00081 

2 4,5 400 1 58 39 2 0 0 0.00100 0.00042 

3 3,6,9 200 0 0 46 43 Ii 0 0.00240 0.01284 

3 3 ,6 ,9  400 0 0 56 33 10 1 0.00122 0.01277 

4 3 ,6 ,9 ,12  400 0 0 0 32 44 24 0.00143 0.01063 

It can be concluded that, while this methodology does not perfectly recover the 
number of terms in the mixture, it does possess quite appealing MISE properties. 
Similar results are repeated in Table 2, when the true density is a mixture of 
exponential densities. Note that,  whenever the true density is close in numerical 
terms to a single exponential density, whose mean can be estimated by the sample 
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Table 2. Simulated results (mixtures of exponential densities). 

MISE MISE 
q Locations n N(1) N(2) N(3) N(4) (m=20) ( r e = l )  
2 3,6 200 8 76 16 0 0.00133 0.00086 
2 3,6 400 5 76 19 0 0.00064 0.00067 
2 4,5 200 38 54 7 1 0.00099 0.00030 

2 4,5 400 39 51 i0 0 0.00055 0.00014 

2 3,9 200 I 69 30 0 0.00115 0.00293 

2 3,9 400 0 70 30 0 0.00055 0.00274 
3 3,6,9 200 4 67 29 0 0.00152 0.00141 
3 3,6,9 400 0 56 39 5 0.00058 0.00127 
4 3,6,9,12 400 0 47 47 6 0.00053 0.00163 

mean, the latter will also provide an excellent estimator (see the simulated MISE's 
in the last column of Table 2). However, when the true density is radically different 
from a single exponential  density, our mixture method can provide substantial  
savings in MISE (e.g., the q = 4 results in Table 2, or when the q = 2 locations 
are as far apart  as 3 and 9). The performance of our procedure is therefore highly 
sensitive to the locations chosen in the mixture for the true density. It appears to 
work best when the true density is quite complex, but  still works well (e.g., Table 
1, when the locations are 4 and 5) when the true density is well approximated by 
a simple curve. It is anticipated tha t  our procedure will detect q more accurately, 
when the sample size is very large. 

5. Exact Bayesian analysis 

For fixed m, the posterior density of ~1 , . . . ,  ~m is denoted by 

n m 

( 5 . 1 )  I 
i -=1  k = l  

where ~(~) denotes the prior density and the g/(~k) satisfy (2.3). Since the likeli- 
hood contribution to (1.1) is a permutable function of ~1 , . . . ,  ~,~, we assume tha t  
~(~), and hence ~(~ I Y), is also a permutable function of ~1 , . . . ,  ~m, and address 
the problem of computing the posterior density, or expectation, of any parameter  
of interest 

( 5 . 2 )  = = 

which can be expressed as a permutable function of El,.-', ~m. Special cases of 
permutable V's include the population moments,  and, for fixed t, the populat ion 
density (1.2), and the corresponding population c.d.f. Our procedures are not 
applicable if ~ ---- ~-(~) is not a permutable function of ~1 , . . . ,  ~ .  

Importance sampling (Rubinstein (1981), Geweke (1988, 1989), Leonard et 
al. (1989) and Leonard and Hsu (1992)) works well whenever the exact posterior 
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density can be well approximated by another joint density which yields straight- 
forward simulations for ~1, . . . ,  ~ra. While no useful approximating density is ob- 
viously available under the general mixture model (1.3), quite general classes of 
distributions are available under the model (1.4). A moderate value of m e.g., 
m = 20 is recommended, to ensure that  the particular importance sampling pro- 
cedure introduced below leads to feasible computations. 

We suggest firstly seeking one to one transformations 71 = h(~l) , . . .  ,7,~ = 
h(~ra) of ~1,.-. ,~ra, such that the permutable piecewise multivariate t-approxi- 
mation (PPMT) describe below is most reasonable for the transformed parameters. 
In particular, the vector of 7 = (71,. . .  ,Tin) T, should be unconstrained in m- 
dimensional real space. Obvious transformations like tog or logit wilt often suffice. 
Other useful transformations are considered by Bates and Watts ((1988), Ch. 
6), since these are introduced in the context of providing suitable normalizing 
transformations for likelihood functions. 

Suppose that  the posterior density 

(5.3)  (71 v) B(7) (7 e Rm), 

of 7 is proportional to a function B(7) which can be fully specified on m-dimen- 
sional real space R "~, and consider a parameter of interest ~? which can be expressed 
as a permutable function ~-(() of ~, or equivalently, as a permutable function ~-* (7) 
of 7. 

Let ~ = ('~1,. �9 �9 7m) T provide a global maximum of B(7),  satisfying 71 _< x/2 _< 
"'" _< 7m. As B(7  ) is a permutable function of 71 , . . . ,  7n, any permutation of the 
elements of ~ will also provide a global maximum i.e., B(7  ) can possess up to m! 
global maxima. Unless 71 = "~2 . . . . .  %~, a multivariate normal or multivariate 
t-approximation to (5.3) will therefore be inappropriate. This property leads to 
considerable practical complications which need to be circumvented by a series of 
theoretical devices. Note that Leonard et al. (1989) indicate that the approach by 
Tierney and Kadane (1986) cannot be reasonably extended to the computation 
of approximate posterior distribution of many non-linear functions of the parame- 
ters. Moreover, the procedure introduced by Leonard et al., is virtually impossible 
to apply to the current situation, as very complicated conditional maximization 
procedure generalizing the methodology of Section 2, are required, together with 
complicated simulations for the f-contribution to their approximations. 

Let Ara denote the set of all possible permutations (i) = ( i l , . . . , i m )  of the 
integers (1 , . . . ,  m). For i = ( i l , . . . , i r a )  E A,~, consider 

(5.4) A(i) ~-- {7 7_ ( 7 1 , . . . , 7 m )  T : 7 i l  ~- ~/i2 ~ "'" ~ 7ira}" 

Then, for each (i) E A,~, there exists "~(~) maximizing B(7),  for 7 E A (~), 
such that .~(i) permutes the elements of "~. For each (i) E A,~ consider a Taylor 
Series expansion of [B(7)] -a,  with a = 2/(v + m), about 7 = 7 (~), for all 7 E 
A (~). Neglecting cubic and higher terms, in these m! expansions, and raising the 
remaining terms to the power (v + m)/2,  yields an approximation to (5.3) which 
we refer to as PPMT.  
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The P P M T  approximation refers to the posterior dispersion matrices D (i) 
satisfying 

a21~ I ((i) e ~ ) .  (5.5) (D( i ) )  -1 
~ .y=~/.) 

Then each D (i) involves the obvious permutations of the rows and columns of 
the matrix D satisfying 

(5.6) D - l =  O21~ y=.O(.y~T ) 

Let t^/(~, ~, T) denote a multivariate t-density for % with ~ degrees of freedom, 
mean vector "~, and precision matrix T. Then our possibly multimodal P P M T  
approximation may be expressed in the form 

(5.7) ~*(~l y) = ~ ~[~ e A(~)]t~(-,~ (~), T (~)) (~enm), 

where ~(~) maximizes B(7),  for 7 E A (~), I[A] denotes the indicator function for 
the event A, and 

(5.s) T (0 = ~(D(i))-I/(~ + m). 

The approximation (5.7) preserves permutability and global modality proper- 
ties, of the exact density (5.3), and is continuous at all boundary points of each 
A (i). The degrees of freedom ~ should be chosen pragmatically, to ensure that the 
PBM simulation procedure, described below, works well. The choice ~ = oc can 
be inefficient if the tails of (5.3) are much thicker than the tails of a multivariate 
normal density. With m = 20, the choice ~ -- 40 often works well, and leads to 
somewhat smoother convergence when compared with Hsu (1990). 

The approximation (5.7) may be used to compute the marginal posterior dis- 
tribution, or moments, of the permutable parameter of interest ~ in (5.2), providing 
an exact purely Bayesian approach, as follows: 

Simulation Procedure (PBM) 
(a) Simulate a large number M of independent vectors ~/1,'-', 'YM, from a 

distribution for ff which truncates a multivariate t-distribution with ~ degrees of 
freedom, mean vector ~ and precision matrix T = , D - 1 / ( , + m ) ,  satisfying (5.6), 
to the region F = {ff : the elements of 7 match the ordering of the elements of 
~}. The set F is fully explained during rejection step (a2) below. 

(b) Importance Sampling: Simulate the exact posterior c.d.f, of any per- 
mutable function ~ = T*(~/), of ~ from 

(5.9) 
M M 

F(,) = ~ Z[~*(~j) < ,]W(~5)/Z W(~j), 
j = l  j = l  
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with 

(5.1o) w(3") = s(3")/tT(., #, T), 

where B(3') satisfies (5.3). 
Step (a) of the above procedure can be performed as follows: 

(al) Simulate a large number 3'1,3'2,.-- of independent multivariate t-vectors 
with ~, degrees of freedom, mean vector ~ and precision matrix T = v D - 1 / ( u + m ) ,  
satisfying (5.6), 

(a2) Rejection Step. In (al) reject any simulated 3"s which are inconsistent 
with the ordering % < "~2 _< "'" < ~m of the elements of the vector ~. If the % 
have collapsed into ~ subsets (see Section 2) then consistency with their ordering is 
only required between subsets. This defines matching rule for the set F introduced 
at step (a). Compute  M unrejected vectors 3'1,3"2,..-, 3"M. 

In order to understand the above simulation procedure, it is important  to note 
that 

(i) The simulation in (a) do not provide simulations from the PPMT dis- 
tribution (5.7), owing to the truncation to the region F. However, if ~ = ~-*(@ 
is a permutable function of % then simulating values ~I,---, UM for ~ in this 
way, is equivalent to simulating 3'1,3'2,'-',3'M' from (5.7) and then calculated 
~i = T*(3'I),...,~M = T*(TM). Furthermore, the denominator of (5.10) should 
remain the same in both cases. 

(ii) Rejection Step (a2) is essential for the current procedure. Without this 
step, we would just be simulating from a straightforward multivariate t-distri- 
bution. In practice, we have found that this does not lead to convergence of the 
simulation procedure, within any reasonable time limits. 

(iii) Steps (al) and (a2) could be replaced by any efficient procedure for sim- 
ulating from the truncated multivariate t-distribution, described at Step (a), for 
example, based upon conditional distributions of the elements of % or upon the 
Gibbs sampler. 

The above approach permits a variety of prior formulations, though a proper 
prior distribution is often needed to ensure a proper posterior distribution. One 
flexible possibility is to assume that 3' belongs to a piecewise permutable multi- 
variate normal (PPMN) family, with permutable density of the form 

(5.11) zr(3' [ #, C) = E I[3' C A(i)]~3'(# (~), C (i)) 

where #(i) and C (i) provide appropriate permutations of a specified prior modal 
vector # and prior dispersion matrix C, and the �9 contribution to (5.1 I) represents 
a multivariate normal density for 3', with mean vector #(i), and covariance matrix 
C (i). Note that the assumption of a simple multivariate normal prior density 
could cause considerable problems concerning posterior multimodality. 
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6. Bayesian inference for survivor distributions 

Consider the special case of the assumptions described in Section 1, where, 
for i = 1 , . . . , n ,  fti = (ci, oe), and A(t,b) = bexp{-bt} for 0 < t < 0% and 
0 < b < 0% with c l , . . . , c ~  denoting fixed censoring times. Then (1.2) yields a 
mixture of exponential densities which constrains the density to be decreasing and 
concave. One possibility is to seek a power transformation 5 such that x~ , . . . ,  x~ 
possess the density (1.2). In this case xi, x2 , . . . ,  x~ possess a mixture of Weibull 
distributions with common power parameter 5. The parameter 5 may be chosen 
pragmatically (see below). 

For our equally weighted exponential mixture model, with parameters ~1, . . . ,  
~,~, we assume the following permutable prior distribution, also recommended by 
Gelfand and Smith (1990), for several Poisson means: 

Stage I. Given c~ and fl, ~1, . . . ,  ~,~ are independent and Gamma distributed, 
with common mean c~/fl and variance a/~2.  

Stage II. Given ~ and ~,/3 is Gamma distributed with mean ~/~ and variance 

Hence, ~1,. . . ,~,~ are taken to possess a permutable scale transformed F-  
distribution, with density 

(6.1) 
mc~+t~ 

The parameters ~0 = @~/~ provides a common prior estimate for each ~k, c~+k 
measures the closeness of each ~k to ~0, and ~ measures the common variability 
of each ~k. Consider the transformations ~/k = h(~k) = log~k, for k = 1 , . . . ,  rn. 
Then a posterior mode vector ~ = (~1, . . . ,  X/,~)T satisfying #1 _< #2 _< ""  < ~m, 
and maximizing the posterior density of ~'1, �9 �9 �9 ~/m is straightforward to compute, 
together with a dispersion matrix D, satisfying (5.6), by obvious generalizations of 
the maximum likelihood techniques described in Section 2. Problems in achieving 
a global maximum are not so acute, owing to the influence of the prior. Further 
details are described by Hsu (1990). Hence the PBM procedure of Section 5 may be 
readily employed. Parameters of interest include, for fixed t, the survivor function 

m 

(6.2) rl = T*(3') = G(t) = rn - 1 E  exp{-e~kt6} 
k = l  

together with the corresponding survivor density. These procedures provide al- 
ternatives to the existing methodology referenced by Cox and Oakes (1985), and 
Kalbfleisch and Prentice (1980), and the Bayesian approaches due to Susarla and 
Van Ryzin (1978), Burridge (1981), and Sweeting (1987). 

The data in Table 3 provides n = 52 observations and censoring times in weeks 
for the survival times of patients subject to an oral treatment for colon cancer (see 
Ansfield et al. (1977)). A total of 45 observations were uncensored and 7 were 
censored. The Kaplan-Meier estimate (see Kaplan and Meier (1958)) of the sur- 
vivor function is the step function, described by curve (c) of Fig. 1. With m = 20, 
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Fig. 1. Es t imated  survivor function. (a) Posterior mean value function (PBM, M = 
200,000). (b) Posterior  mean value function (PBM, M = 50,000). (c) Kaplan-Meier  
estimate.  (d) Maximum likelihood estimate.  (e) Posterior mean value function (Gibbs 
sampler, M ---- 50,000). (f) Posterior s tandard  deviation function (PBM, M ---- 200,000). 

Table 3. Possibly censored survival times. 

Uncensored observations: 6 6 9 9 10 13 14 14 14 15 15 16 16 16 19 21 24 25 25 26 28 28 29 

29 29 30 35 41 43 45 46 47 60 70 77 79 80 82 85 88 115 116 116 140 142 

Censoring t imes for censored observations: 19 23 25 56 89 111 134 

we firstly estimated ~1, . . . ,  ~m by the maximum likelihood procedure of Section 
1. We attempted to jointly maximize the likelihood of ~l , - - . ,~m and the power 
parameter 5. However, the maximum likelihood estimate of 5 was unconvincingly 
large, and did not lead to a good fit to the Kaplan-Meier estimate. A large range 
of choices of ~ did lead to a good fit, and we chose 5 = 2 for simplicity, and hence 
fit an equally weighted mixture of exponential distributions to the squares of the 
observations. When m = 20, our procedure suggested a mixture of two exponen- 
tial distributions assigning weights 0.50 and 0.50 to the (squared) locations 544.29 
and 9183.59. The corresponding estimate of the survivor function of the origi- 
nal observations is described in curve (d) of Fig. 1, and closely fits and smoothes 
Kaplan-Meier estimator, in particular extrapolating beyond the last uncensored 
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Fig. 2. Estimated survivor density. (a) Posterior mean value function (PBM, M = 
200,000). (b) Maximum likelihood estimate. (c) Grouped histogram based on Kaplan- 
Meier. 

observation. Curve (b) of Fig. 2 est imates the  common densi ty of the  original 
observations, by a mixture  of Weibull densities, and this closely fits an observed 
histogram, obtained by grouping the steps of the Kaplan-Meier  estimates.  W h e n  
ra = 200, very similar est imates  of the survivor funct ion and survivor densi ty  were 
obtained. The  maximum likelihood est imate  of the  distr ibution of the squared ob- 
servations, when m = 200, assigns weights 0.515 and 0.485 to the locations 545.48 
and 9328.99. We have provided a simple way of smoothing the Kaplan-Meier  esti- 
mate  which would possess the advantage of reducing to a simple paramet r ic  model  
i f ~ - -  1. 

To illustrate the Bayesian procedure,  we assumed the above two stage prior 
distribution,  with k = c~ = 0.5, and ~0 -- 1/522, corresponding to  a prior es t imate  
of 52 weeks for the mean of the survivor distr ibution,  and ~ = 2: Wi th  m -- 20, 12 
of the posterior  modes of "/1,. �9  "/20 collapsed to log 760.284, and eight collapsed 
to log 8437.747, again suggesting a mixture  of two exponential  distr ibutions.  

Using P B M  we simulated M = 200,000 unrejected vectors for q, = (" /1 , . . . ,  
"/20) T with degrees of f reedom ~ = 40 for our P P M T  approximation.  However, 
in many applications M = 50,000 provides reasonable results. About  10% of the 
vectors were unrejected,  and our  Bayesian computa t ions  are correct  to  at  least 
3 decimal places. Curves (a) and (f) of Fig. 1 respectively describe the  exact  
posterior mean  value funct ion and posterior  s tandard  deviat ion funct ion for the  
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Fig. 3. Posterior c.d.f.'s of survival probabilities. (a) Posterior c.d.f, of G(30). (b) 
Posterior c.d.f, of G(40). (c) Posterior c.d.f, of G(50). (d) Posterior c.d.f, of G(60). 

survivor function G(t) in (6.2). Curve (a) of Fig. 2 describes the posterior mean 
value function of the survivor density. In Fig. 3, curves (a), (b), (c), and (d) 
respectively describe the posterior c.d.f.'s of a(30), a(40), a(50), and G(60), the 
probabilities of survival beyond 30, 40, 50, and 60 weeks. 

7. Comparison with the Gibbs sampler 

Lavine and West (1992) suggest an elegant computational scheme for un- 
equally weighted mixtures of multivariate normal distributions, based on the Gibbs 
sampler. This, for example, permits the computation of posterior probabilities 
that  a given observation belongs to a particular subpopulation, a side benefit not 
obviously available under our model (1.2). Extensions of their method require the 
ability to simulate from a variety of conditional distributions which therefore need 
to assume analytically tractable forms. In such special cases their procedure is eas- 
ier to compute when compared with PBM. However, the Lavine-West approach is 
not generally applicable, for example (a) when (5.11) represents the prior density 
and the sampling distribution is not a mixture of multivariate normal densities 
and (b) the sampling distribution is not a mixture of distributions for which sim- 
ple conjugate families of prior distributions exist. It seems difficult to apply any 
form of the Gibbs sampler to many situations, though it is possible to apply the 
Lavine-West approach to mixtures of multivariate densities in a number of special 
cases. 
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The Lavine-West approach can be extended, for example, to the special case 
discussed in Section 6. Moreover, by considering the equally weighted mixture 
model (1.2), rather than assumption (1.4), the computations can be somewhat 
simplified. Suppose that zi, z2 , . . . ,  z~ are independent and unobservable poly- 
chotomous variables, each equal to j ,  with probability m -1 for j = 1 , . . . , m .  
Then, under the assumptions of Section 6, xi, x2 , . . . ,  x~ denote independent ran- 
dom variables, such that, conditional on zi = j ,  x~ has an exponential distribution 
with mean ~5 -1 (i = 1 , . . . , n ) .  

Consequently, under the prior density (6.1) 
(1) conditional on z l , . . . ,  z~, and/3, the parameters ~ i , . . . ,  ~m are a posteriori 

independent. For j = 1 , . . . ,  m, the parameter ~j conditionally possesses a Gamma 
distribution, with parameters c~ + y ] i d J [ z i  = j] and/3 + Y'] iuJ[z i  = j]. 

(2) conditional on ~1, . . . ,  ~ and /3, the polychotomous variables z i , . . . ,  z~ 
are a posteriori independent, with 

f / T  

(7.1) p(ze = j )  = {J~ e x p { - { j u i } /  /_., k exp{-{kui} (j = 1 , . . . ,  m). 
k=l  

(3) Conditional upon {1, . . .  ,{m, and z i , . . . ,  zn, the prior parameter/3 has a 
Gamma distribution, with parameters m s  + ec and m{. + 4. 

Based upon the conditional distributions in (1), (2), and (3), Gelfand and 
Smith (1990) tell us that we may obtain a simulation for {i, {2 , . . . ,  {,~ from their 
unconditional distribution. Starting with some initial z l , . . . ,  z~ and/3, simulate 
values for {z , . . . ,~m from the independent Gamma distributions in (1). Then 
simulate new values for Z l , . . . , z ~  from the polychotomous distributions in (2) 
based upon the latest values for { i , . . - ,  ~m. Next simulate a value for/3 from the 
Gamma distribution in (3), using the new z i , . . . , z n .  Return to (1), and keep 
cycling, always using the latest simulated values for the conditional variables. 
Ultimately, the values of ~1, . . . ,  {~ will converge to a single simulation from their 
unconditional distribution. There are similarities with the data  augmentation 
approach due to Tanner and Wont  (1987). 

Moreover, the Ergodic theorem described by Getfand and Smith tells us that,  
if we take all realizations of { i , . . . ,  {-~ in our iterative sequence, and the average 
value for any parameter r /=  g({1, {2,- . - ,  {,~) of interest, then, in the long run, this 
average will converge to the posterior expectation of rb There are some difficulties 
in judging when the average value of 77 has converged. Note that  the successive 
simulations for ~ = ({ i , . . .  ,{m) T are serially correlated, and that  this can give 
rise to the phenomenon of "apparent convergence" (Edward George, Nick Poison, 
personal communication). Sometimes, the sequence can appear to converge to 
three decimal places, but then slightly diverge again. However, comparison with 
our results based upon importance sampling (e.g., see below) suggests that 50,000 
replications of U can lead to an apparent convergence which is reasonably close 
to actual convergence (within about two decimal places if U is a posterior proba- 
bility, with possibly greater accuracy if r} is a posterior moment). Note that  the 
simulations for zi, �9 �9 �9 z~ can become tedious if r~ is large, in which case our im- 
portance sampling approach can become quite appealing, as approximation (5.7) 
with u --+ oo can become very accurate. 
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The Gibbs sampling procedure for the posterior mean value function of the 
survivor function provided curve (e) of Fig. 1, after 50,000 simulations and this is 
correct to about two decimal places compared with the essentially exact curve (a) 
based upon PBM and extensive importance sampling, though slightly less close 
than curve (b), based upon PBM but with only 50,000 unrejected vectors. 

We conclude that apparent convergence of the Gibbs sampler is good enough 
for practical purposes in this special case, and for this moderate sample size. 
However, PBM seems more useful as a general paradigm, or when high accuracy 
(based upon independent simulations) is required, since without PBM it is difficult 
to confirm that the Gibbs sampler has indeed converged. Note that accurate results 
may also be obtained by using techniques suggested by Ogata (1989, 1990), but 
tremendous computer time will also be needed to completed the computations. 
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