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A b s t r a c t .  In this  paper ,  we s tudy  the l ikelihood ra t io  tes ts  for s i tua t ions  in 
which the null and a l ternat ive  hypotheses  are de te rmined  by two polyhedra l  
cones, C1 and 6'2, which are nested so tha t  C1 C L C C2 and L is a l inear 
space. The  two cones are proved to be non-oblique. Members  which sat isfy this  
nest ing condi t ion are easily identified and include the cases in which C1 = L 
or L = C2. When  tes t ing two non-oblique hypotheses  wi th  variances unknown, 
the  least  favorable point  within the  null hypothesis  has not  been de te rmined  in 
general.  However, for the  s i tua t ion  considered here, the  zero vector  is shown 
to be least favorable wi th in  the  null hypothesis .  Two sets of hypotheses  are 
said to be equivalent if they  lead to the  same likelihood ra t io  test .  For two 
non-oblique polyhedra l  cones, C1 and C2, four sets of equivalent hypotheses  
are identified. If Ct  C L C C2, then  the two cones in each of these four sets of 
hypotheses  are s imilar ly nested with  a l inear space in between.  

Key words and phrases: Inferences subject  to inequal i ty  constraints ,  i t e ra ted  
pro jec t ion  property,  non-oblique cones, order  res t r ic ted inferences. 

1. In t roduct ion  

B a r t h o l o m e w  (1959, 1961) d e v e l o p e d  t h e  l i ke l i hood  r a t i o  t e s t s  (LRTs )  of  ho-  

m o g e n e i t y  of  n o r m a l  m e a n s  w i t h  t h e  a l t e r n a t i v e  r e s t r i c t e d  b y  an  o r d e r i n g  on  t h e  

m e a n s ,  such  as #1 _< >2 < " '"  _< #k or  #1 _< >2 _< " '"  _< >h _> > h + l  >_ " "  _> >k. 
R o b e r t s o n  a n d  W e g m a n  (1978) c o n s i d e r e d  t h e  L R T s  w i t h  t h e  o r d e r  r e s t r i c t i o n  as  

t h e  nul l  h y p o t h e s i s  a n d  no  r e s t r i c t i o n s  on  t h e  a l t e r n a t i v e .  T h e  co l l ec t i on  of  m e a n  

vec to r s  wh ich  s a t i s fy  a p a r t i c u l a r  o r d e r  r e s t r i c t i o n  is a c losed,  convex  cone.  T h e  

cones  d e t e r m i n e d  b y  t h e  m o s t  r e s t r i c t i v e  o rde r ing ,  h o m o g e n e i t y  of  c o m p o n e n t s ,  

a n d  t h e  l eas t  r e s t r i c t i v e  o rde r ing ,  no r e s t r i c t i o n ,  a re  l i nea r  spaces .  R o b e r t s o n  et 
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al. (1988) summarize many of the details involved in making statistical inferences 
subject to order restrictions. 

The collection of mean vectors which satisfy a set of linear inequality con- 
k 

straints, such as }-]-j=l aij#j  < 0 for i = 1, 2 , . . . ,  rn, is also a closed, convex cone 
which is said to be polyhedral. With # a normal mean vector, Raubertas et al. 
(1986) extend the results above to obtain the LRTs of H0 versus Ha - H0 where 
/70 : # E C1 and Ha : # E C2 with C1 and C2 polyhedral cones, provided C1 or 
C2 is a linear space. We say such sets of hypotheses are of the LC type if C1 is a 
linear space and C2 is a polyhedral cone but not a linear space. Sets of hypotheses 
of the CL and CC type are defined similarly. 

Warrack and Robertson (1984) studied an example of CC type hypotheses 
and found that the LRT is dominated by the LRT of another set of LC type 
hypotheses in that  case. Menendez and Salvador (1991) examined the same issue 
in a general context. Using the concept of obliqueness of two cones, which was 
introduced by Warrack and Robertson (1984), Menendez et aI. (1992a) explained 
this dominance. Menendez st aI. (1992b) studied the LRTs for CC type hypotheses 
in which the two cones are not oblique. Non-obliqueness is characterized by an 
iterated projection property. In particular, two nested cones, C1 C C2, satisfy this 
property if the projection of any vector onto C1 is the same as the projection onto 
C1 of the projection of that  vector onto C2. Of course, this property depends on 
the distance function which determines the projection. The iterated projection 
property is difficult to verify in some situations. 

In this paper, we consider the LRTs for a special class of C C  type hypotheses 
which are non-oblique. We say that the hypotheses H0 and Ha are of C L C  type if 
C1 C L C C2 with L a linear space. We will show that in such settings the cones 
C1 and C2 are non-oblique. The members of this class are easy to identify and 
include all of the problems discussed in Raubertas et al. (1986) and Robertson 
et al. (1988). Menendez et al. (1992b) point out that  when testing non-oblique 
hypotheses with unknown variances, the least favorable point in the null hypothesis 
has not been determined in general. For the types of hypotheses studied here the 
zero vector is least favorable and hence the significance level can be computed by 
taking the mean equal to zero. 

In Section 2, we prepare the necessary tools for the development of the tests. 
In Section 3, the LRTs are developed for C L C  type hypotheses with polyhedral 
cones in the cases of independent random samples and a random sample from a 
multivariate distribution. In Section 4, equivalent sets of hypotheses are discussed 
and four sets of equivalent hypotheses are identified for the variance known case. 

2. Preliminaries 

Assume that the Hilbert space R k has inner product (., .). With [1" ]] the norm 
induced by the inner product, the projection of the vector x onto set D, P(x  [ D), 
is a vector that minimizes [[x - y[] over y E D. For a closed, convex set D and any 
vector x, P(x  ] D) exists and is unique. Furthermore, 

(2.1) P(x [D) = x* 

if and only if a* C D and ( x -  x*,a* - y} _> 0 for each y E D. 
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The characterization given in (2.1) will be used repeatedly to verify tha t  a can- 
didate is the desired projection. For a set A, A P denotes the set {y : (x,y} < 0, 
for each x E A} which is a closed, convex cone. For a closed, convex cone C, C s 
is called the polar cone associated with C. It is well known tha t  for any vector 
x, x = P(x  I C) + P(x  I CP), and (P(x I C ) , P ( x  I CP)} = 0 .  D e f i n e A + B  as 
the set {x + y : x E A , y  E B}. If both  A and B are convex cones, so is A + / 3 .  
Hestenes (1975) gives an example where both A and B are closed, convex cones, 
but  A + B is not closed. When A and B are orthogonal, the notat ion A ® B is 
used for A + B. These definitions and related results are given in many references, 
see for example Robertson et al. (1988). 

LEMMA 2.1. If C 1 C L C C2, C1 and 6'2 are closed, convex cones in R k and 
L is a linear space, then the following conclusions hold: 

(1) For any set D in L, D and C~ are orthogonal; 
(2) For any closed,convex set D in L, D and C2 are non-oblique, i.e. P ( P ( x  I 

c~) In)  = P(x In)  for each x e Rk; 
(3) P(x + y I C2) = P(x  I C~) ± y and P(x + y I C~) = P(x  I C~) for each 

x E R k and each y E L; and 
(4) IIP(x I C 2 ) - P ( x  I C1)11 <_ I I P ( x - y  l C 2 ) - P ( x - y  l C1)ll for eachx E R ~ 

and each y E C1 ® C p.  

PROOF. (1) 
the conditions in 
by conclusion (2) 

is true since C P C L ±. (2) and (3) can be proved by checking 
(2.1). We now consider (4). For each x E R k and each y E C1 
and the definition of a projection, 

IIP(x I c2) - p ( x  I Cl)ll ~ IIp(x I c2) - (y + p ( x  - y I c1))11, 

By conclusion (3) above, the right hand side is ]IP(x - y I C2) - P(x  - y I C*)ll. 
Thus 

I I P ( x [ C 2 ) - P ( x I C l ) l l _ < l l P ( x - y l C 2 ) - r ( m - y l C 1 ) l l  . 

Applying this result to the nested structure C~ C L ± C C~,  we have tha t  

liP( x -  Y I C~) - P ( x -  y I C~)II -< liP( x -  Y -  z I C~) - P ( x -  y -  z I C~)ll 

for each z in C P. Thus, 

I lP(x l c2)  - P ( x  l C1)ll < l jP(x - (y + z) l C2) - P ( x  - (y + z) l C1)ll. [] 

A polyhedral  cone is a set of points which satisfy a finite set of linear inequal- 
ities. Wi th  A an m by k matrix,  the polyhedral  cone {x E R k : Ax <_ 0} is 
denoted by C[A], where an inequality between a vector and a real number is to 
be interpreted component  wise. Let A~ be a matr ix  consisting of some rows in A, 
and fi~i be the matr ix  consisting of the rows in A but  not in Ai. The matr ix  with- 
out any rows is denoted by ~. We assume tha t  C[A 1 has no redundant  rows, i.e. 
C[Ail ¢ C[A] if A~ • A. The face of C[A] associated with A~, FIAt], is defined as 
{x :  A~x = 0, Aix < 0}. The face F[A~] is in the linear space {x :  A~x = 0} which is 
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called the null space associated with Ai and denoted by N[A~]. The interior of the 
face F[A~] with respect to the topology in N[A~] is the set {x : A~x = 0, A~x < 0} 
and is denoted by F°[A~]. It is known that C[A] can be partitioned into a finite 
number of interiors of faces. 

LEMMA 2.2. If L~ C C C L2 where L1, L2 are linear subspaces of R k, 
C = C[A] is a polyhedral cone, then for each x in R k the following are equivalent: 

(1) P(x I C) • F°[Ai]; 
(2) P(x I c)  = P(x I N[Ad) • F°[Ai]; and 
(3) P(x I N[di]) - P(x I L1) • F°[Ai] and P(x I L=) - P(x N[di]) • C P. 

PROOF. The implications are proved in the order indicated below. 
(1) ~ (2): For each y E N[Ai] there exists 5 > 0 such that P (x  I C) 4- @ E 

F°[Ai] C C since P(x I C) • F°[Ai] and F°[Ai] is an open set with respect to 
the topology in N[Ai]. By (2.1) we have (x - P(x I C), y) = 0 which establishes 
P(x I C) = P(x I N[A~]). 

(2) ~ (3): f l  C C implies that P(x I N[Ai]) - P(x I L1) and P(x I N[Ai]) 
are in the same interior of a face. Notice that P(x I L2) - P(x I N[Ai]) = P(x I 
C P ) - P ( x l n } ) a n d L ~  c C  P. So, P ( x l L 2 ) - P ( x l N [ A i ] ) • C  P. 

(3) ~ (1): Clearly, P(x I N[Ai]) • F°[Ai] C C. Applying conclusion (1) of 
Lemma 2.1 and P(x t L2) - P(x I N[A~]) • C P, checking the conditions in (2.1), 
we have that P(P(x I L2) ] C) = e ( x  I X[Ad). But by conclusion (2) of Lemma 
2.1, P(P(x I L2) I C) -- r ( x  I C). Therefore P(x I c) • F°[Ai]. [] 

Let W be a k by k positive definite matrix. For any vectors x and y in R k, 
define (x, Y)w as xTWy. Then (., ")w is a well defined inner product. The norm 
induced by this inner product is denoted by 11' IIw. The projection of a vector x 
onto set D is denoted by Pw(x ] D). The following lemma is essentially Lemma 
3.1 of Shapiro (1985). We present its proof because it may be of interest from a 
methodological point of view. 

LEMMA 2.3. If X is a k-dimensional normal random vector with zero mean 
and covariance matrix W -1, C is a cone in R k and L is a linear space, then 
IIPw( X I L)ll~v conditioned on P w ( X  I L) E C has a central chi-squared distribu- 
tion with degrees of freedom dim(L). 

PROOF. If Y -~ N(0, V) and AVA T = diag(cr2, . . . ,o  2 , 0 , . . . , 0 ) ,  then 
(Ay)T(Ay)  and AY E C are independent by Basu's Theorem, cf. Hogg and Craig 
(1978) since (Ay)T(Ay)  is sufficient for cr 2, but AY/cr is ancillary. Let P X  be 
Pw(X  I L), then P is idempotent and self-adjoint, cf. Bachman and Narici (1972). 
Thus, x / W P W - 1 p T v ' W  is symmetric and idempotent. Therefore, there exists an 
orthogonal matrix Q such that Qx/'WPW-1pTv/WQT = diag(1 , . . . ,  1, 0 , . . . ,  0). 
Applying the claim at the beginning of the proof with Y = P w ( X  I L), V = 
p W - 1 p  T and A = Qv/W, we see that IIPw(X I L)II~ v and P w ( X  ] L) E C are 
independent. But HPw(X I L)II  has chi-squared distribution with degrees of 
freedom equal to r = rank(P) = dim(L). The conclusion follows. [] 
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In the nested structure C1 C L C C2, if C2 is the polyhedral  cone C[A], then  
C1 is in N[A] since L C N[A]. So, without  loss of generality, we assume tha t  
CI = N[A] r~ C[B]. 

LEMMA 2.4. If X ~ N(0, W -1) and C1 = NEA] N CEB] and C2 = CEA 1 are 
polyhedral cones in R k, then H X -  P w ( X  I C2)II~v, IIPw(X I C2)-  P w ( X  I C1)II~ 
and IIPw(X I C1)ll~y, conditioned on P w ( X  I C1) • N[A] N F°[Bj] and P w ( X  I 
C2) • F°[Ai], are independent central chi-squared variables with the degrees of 
freedom k - d im(X [A{]), d im(N [A/]) - dim (N[A] N X[By]) and d im(X [A] N X [Bjl ) . 

PROOF. By Lemma 2.2, the variables in this lemma conditioned on the events 
in this lamina are identical in distribution to the variables HPw(XIN±[Ai])II~,  
IIPw(X I N[AdN(N[A]nN[Bj])±)II  and IIPw(X I N[A]NN[Bj)II v conditioned 
on the three events Pw(X I NZ[A~]) E C P, Pw(X I N[A~] N (N[A] N N[Bj]) ±) E 
C1P N F°[Ail and f w ( X  I N[A] n N[B01) ~ N[A] N F°[Bj.  But P w ( X  I N[A] N 
N[Bj]), P w ( X  I N±[Ai]) and P w ( X  ] N[di]  N (N[A] r~ N[Bj]) ±) are independent  
and C P, C p n F°[di], N[A l N F°[Bj] are cones. The desired conclusion follows 
from Lamina 2.3. [] 

3. Likelihood ratio tests 

In this section, we consider the LRTs for CLC type hypotheses with polyhedral  
cones. As noted earlier, we may suppose tha t  C1 = N[A] N C[B], C2 = C[A] and 
L = N[A]. We consider the two cases of independent random samples and a 
random sample from a multivariate population. 

Case 1 (Independent random samples). Suppose Y~j for j = 1, 2 , . . . ,  ni and 
i = 1 , 2 , . . . , k  are independent and Y~y ~ N(p~,cr~). Let p = ( # l , # 2 , . . . , # k )  T, 
:Y = (Y1,Y2,...,fzk) T with ~ the mean of the i-th random sample and E = 
diag(G2/nl ,  cry~n2,..., G2 /nk ). 

Case 2 (A multivariate random sample). Suppose Yj = (Ysj ,Y2j, . . . ,Ykj)  T 
for j = 1, 2 , . . . ,  n are independent and identically distr ibuted k-dimensional nor- 
mal random vectors with mean p = ( P s , P 2 , . . . ,  #k) T and covarianee matr ix  V. 
Then IF = (Y1, Y2 , . . . ,  Yk) T, with ~ the mean of Y/j for j = 1, 2 , . . . ,  n, has co- 
variance E = V/n. 

Let M(A) be a collection of A~, submatrices of A, for which F°[A~] parti t ions 
C[A] and let M(B) be defined similarly. Wi th  W = E - I ,  let Piy be the probability, 
under p = 0, tha t  Pw(5 z I Cz) is in N[A 1 N F°[Bj] and Pw(5 z I C2) is in F°[Ail. 

Variances known. In this section, we consider the two sampling plans de- 
scribed above and suppose tha t  E is known. Let X 2 , denote a chi-squared random 
variable with u degrees of freedom and Xg - 0. The test statistic in (3.1) below and 
its null distr ibution are given in Menendez et al. (1992b), but  (3.2) below gives 
a more explicit relationship between the degrees of freedom for the chi-squared 
random variables and the Pij. 
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THEOREM 3.1. Let C1, C2, W and Pij be defined as above and let Ho : # E 
C1 and Ha : p E C2. I f  W is known, then the L R T  of Ho versus H~ - Ho rejects 
Ho for large values of 

(3.1) f = I IPw(?  C2)- Pw( 'lCa)ll ; 

# = 0 is least favorable within Ho, i.e. the supremum of P[T > t] over # E C~ 
occurs at # = 0; and under # = O, 

(3.2) P[T > t] : E 2 PijP()Cdim(N[A~])_dim(N[A]nN[Bj]) ~ t). 
AieM(A),BjeM(B) 

PROOF. Clearly, the LRT rejects H0 for large values of I I~-Pw(7 ~ ] C1)11~- 
11'2 - Pw(f I c2)11  and by conclusion (1) of Lem m a  2.1 this equals T which is 
given in (3.1). Fur thermore ,  it follows from conclusion (4) of Lemma 2.1 tha t  the 
distr ibution of T with # E C1 is stochastically less t han  or equal to the dis tr ibut ion 
of T with # = 0. Thus,  zero is least favorable within the null hypothesis.  Because 
{F°[Ai]: Ai C M(A)}  part i t ions C2 and {N[A] fl F°[Bj]: Bj E M ( B ) }  part i t ions 
C1, (3.2) follows from the law of total  probabil i ty  and Lem m a  2.4. [] 

Variances unknown. For independent  random samples, i.e. Case 1, one com- 
monly assumes tha t  or/2 = a ia  2 with ai known and o 2 unknown. Thus  with 

ui = ni/ai  for i = 1 , 2 , . . . , k  and U = d i a g ( u x , u 2 , . . . , u k ) ,  E = a2U-1  and 
W = U/a  2. In Case 2, it is commonly assumed tha t  V = a2E0 where E0 is 
known and cr 2 is unknown. Then  W = U/a  2 where U = n E o  1. For Cases 1 and 
2 respectively, define 

(3.3) R : ~ _ui E ( y i  i _ ~ ) 2  and R = - E ( Y ~  - ~-)Tu(yi  - Y)  
i=1  n i  j = l  n i=1  

and note  tha t  the degrees of freedom associated with R are ~ = nl-Fn2-t-- • - -Fnk-  k 
and y = nk - k, respectively. 

Since cr 2 is unknown, one cannot  compute  distances with respect  to the metric 
determined by W, however a project ion with respect to W is the same as the 
project ion with respect to U. Thus,  Pij is unchanged if the two project ions in its 
definition are taken with respect to U ra ther  than  W. 

Let F(a, b) denote  a random variable with an F dis tr ibut ion with parameters  
a and b, let z~(A~) = dim(N[Ai])  and let z,,(Bj) = dim(N[A] Cl N[Bj]). 

THEOREM 3.2. Let C1, C2, U, Pii, R and ~ be defined as above and let 
Ho : # E C1 and Ha : # C C2. I f  U is known and ~2 is unknown, then the L R T  of 
Ho versus Ha - Ho rejects Ho for large values of 

IINu( lC2)- Pv(  I C1)11 . 
(3.4) T1 = R +  [ [ Y -  P u ( Y  [ C2)H~ ' 
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# = 0 is least favorable within Ho; and for # = 0 and t > O, 

(3.5) P[Tx h t] = E PijP[F(w(Ai) - , (B j ) ,u  + k ~'(di)) I 

AieM(A) ,B jcM(B)  k 

. + k - u ( A i )  7 

where the summation is taken over Ai and By with ~,(Ai) > L,(Bj). 

PROOF. It follows from s tandard  arguments,  see Rober t son  st al. ((1988), 
p. 63), and conclusion (1) of Lemma 2.1 tha t  the LRT rejects H0 for large values 
of T1 which is given by (3.4). To show tha t  p = 0 is least favorable, let p E C1 
and set 

S(~) = IIPw(X + ~ 1  C2) - P w ( X  + ~ 1  C1)11~ 

Q(~) + IlX + ~ - Pw(X + ~ I c2)11~ 

where Q(~) ~ x~, X ~ N(0,  W -~) and Q(u) and X are independent.  Then, by 
conclusions (3) and (4) of Lemma 2.1, S(#)  is stochastically less than or equal to 
S(0). However, 

IIPw(Y I CN)- r w ( Y  l Cl)ll 2 
(3.6) T1 = n/~2 + I1~ - P w ( ?  I c2)11~ ' 

R/or 2 ~ X2,, Y ~ N ( # ,  W -1) and R/or 2 and !2 are independent.  Hence, # = 0 is 
least favorable within the null hypothesis.  

Let # = 0. Conditioning on Pu(12 ] Ca) E N[A] • F°[Bj] and Pu(12 ] C2) E 
F°[A~], applying Lemma 2.4 to (3.6) and appealing to the law of total  probability, 
(3.5) is established. [] 

Remark. Let B(a, b) denote a random variable with a be ta  dis tr ibut ion and 
B(0, b) - 0. It is s traightforward to show that  the LRT of H0 versus Ha - H0 
rejects H0 for large values of 

(3.7) T2 = 
IIPu(~ I c 2 ) -  Pu(Y I cl)l l~ 

R +  I 1 7 -  rg(YlCdlr~ 
If T2 is used as a test statistic, zero is still least favorable in H0 and its null distri- 
but ion is a mixture of be ta  distr ibutions known as an E-bar-squared  distribution. 
In particular,  for p = 0 and t > 0, 

(3.8) P[T2 _> t] = E P i J P [ B ( ~ ' ( A i ) - l v ( B J )  , 
Ai cM(A),Bj  C M(B) 

2 " + 2  

where M(A), M(B),  Pij, ,(Ai),  , (Bj )  and ~ are defined as in Theorem 3.2. 
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Example. We consider a pesticide problem in which the effectiveness of dif- 
ferent dosage levels of a pesticide is under investigation. A previous study has 
confirmed that  /~1 ~ //,2 ~ /-/'3 where >1, >2 and >3 are the mean percentages of 
pests killed at three increasing dosage levels. It is suspected that  the pests have 
developed an immunity to the pesticide, at least at the dosage levels currently 
being used. If this is the case, then we now believe that >1 = >2 = >a- We 
wish to investigate the response of these pests to the pesticide at the three dosage 
levels studied earlier as well as at two larger dosage levels. If an immunity has 
been developed, we expect the response at the two new levels to be at least as 
good as at the other three, but because we have no information concerning the 
two new levels, it is not clear how they are related to each other. Hence, our null 
hypothesis is / t0  : >1 = >2 = >3 < rain(#4, #5). If the suspected immunity has not 
been developed, then we believe that  >1 G >2 _< >a, but we do not know how #4 
or >5 are related to each other or to the other means. Thus, Ha : >1 _< >2 _< #3. 
The two hypotheses are of the CLC type and the linear space between them is 
L = { p E R  5 : # 1 = # 2 = # 3 } .  

This example illustrates a type of CLC hypotheses which are a combination of 
the type of problems studied by Bartholomew (1961) and Robertson and Wegman 
(1978). The null imposes both equality and inequality constraints and the alter- 
native is obtained by changing the equality constraints to inequality constraints 
in the null hypothesis. 

4. Equivalent sets of hypotheses 

Two sets of null and alternative hypotheses are said to be (likelihood ratio) 
equivalent if the LRTs for these two sets of hypotheses have the same rejection 
regions for each significance level a E (0, 1). The next result is motivated by the 
observation in Menendez et al. (1992b) that  the LRTs for situations (A), (C) and 
(D) below have the same critical regions. 

THEOREM 4.1. I f Y  is a k-dimensional normal random vector with unknown 
mean # and known covariance matrix W -1 and C1 and C2 are two closed, convex 
cones in R ~ which are non-oblique, then the following sets of null and alternative 
hypotheses are equivalent. 

(A) Ho:~C1,  Ha:~EC2, 
(B) H o : # E C P ,  H a : # E C  P, 
(C) H o : p = O , H ~ : g E C 2 N C  P, 
(D) Ho:pE(C2AC~) P,H~:pER k. 

PROOF. By Theorem 5.2 of Zarantonello (1971), C~ and C~ are non-oblique 
because C1 and C2 are. Thus, from the work of Menendez et al. (1992b), we see 
that # = 0 is least favorable within H0 for each of the testing situations; for the 
testing situations (A), (C) and (D) the test statistics are the same; and for the 
hypotheses in (B) the test statistic is [[Pw(Y [ C ~ ) - P w ( Y  I C~)l[~ which clearly 
is the same as for (A). [] 
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I t  is i n s t r u c t i v e  to  no t i ce  t h a t  (C) is of  L C  t y p e ,  (D) is of  C L  t y p e .  B o t h  a re  

spec i a l  cases  of  C L C  t y p e  of  h y p o t h e s e s .  F u r t h e r m o r e ,  if C1 c L C C2, t h e n  (A) ,  
(B),  (C) a n d  (D) a re  al l  of C L C  t y p e .  
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