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A b s t r a c t .  In a set-up, where both the interest parameter and the nuisance 
parameter are possibly multi-dimensional and global parametric orthogonality 
may not hold, we suggest a test that is superior to the usual likelihood ratio 
test with regard to second-order local maximinity. The test can be motivated 
from the principles of conditional and adjusted likelihood. 
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1. Introduction 

Cox and Reid (1987) pioneered the idea of conditional likelihood as an effec- 
tive means for handling nuisance parameters ,  discussed many interesting features 
of the same and raised several open issues; see also Cox (1988) for a very infor- 
mative fur ther  discussion. One of these open issues related to an extension of 
their  ideas to a general mul t iparameter  set-up where the interest pa ramete r  and 
the nuisance parameter  are bo th  possibly multi-dimensional and global parametr ic  
or thogonal i ty  may- not hold. The  present work aticempts to settle this problem to 
some extent.  

Wi th  one-dimensional interest parameter  and under  global parametr ic  orthog- 
onality, it is known (Mukerjee (1992a)) tha t  the conditional likelihood ratio test  
of Cox and Reid (1987) is superior to the usual likelihood ratio test  in terms of 
(a) second-order local maximinity,  and (b) proximity  to the second-order power 
function a t ta inable  by a likelihood ratio test  with known nuisance parameter .  In a 
general mul t iparameter  set-up, here we suggest a test  which is shown to be superior 
to the likelihood ratio test  in the sense (a) even wi thout  parametr ic  orthogonal-  
ity and in the sense (b) under  parametr ic  orthogonality.  It is seen tha t  the test  
proposed here can be mot ivated  from the principle of conditional likelihood and 
also from tha t  of adjusted likelihood (McCullagh and Tibshirani  (1990)) which 
represents another  impor tan t  technique for handling nuisance parameters .  
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For further significant results in this general area of research, we refer to 
Barndorff-Nielsen (1986), Liang (1987), Conniffe (1990), Godambe (1991) and the 
references therein. 

2. Notation and preliminaries 

Let {Xi}, i >_ 1, be a sequence of independent and identically distr ibuted 
random variables with common density f(x; 0), where 0 = (0(1) , . . . ,  0</) '  belongs 
to T¢ ~ or some open subset thereof and r > 2. Let 01 = (0(1),. . .  ,0(p))' be the 
parameter  of interest and 02 = (0(p+l) , . . . ,  0(~))' be the nuisance parameter,  where 
1 <_ p < r. Both 01 and 02 are possibly multi-dimensional. Consider the null 
hypothesis H0 : 01 = 010, where 010 = (0(10),. . . ,  0(p0)) ~ is a known p × 1 vector, 
against the alternative 01 ¢ 010. For power studies, we shall consider contiguous 
alternatives of the form 01~ = 010 + n-S/2d, where d = ( d l , . . . ,  dp) t and n is the 
sample size. All formal expansions used in this paper are over a set with POl~,e:- 
probability 1 + o(n-1/2); see Chandra  and Ghosh (1979, 1980). We also assume 
s tandard regularity conditions. 

For 1 _< i, j ,  u _< r, let Di denote the operator of partial  differentiation with 
respect to O(i) and define 

I(ij) (0) = Eo [{Di log f (X; O)}{Dj log f (X; 0)}], 

K{j~(O) = Eo{DiDjD,, log f (X; 0)}, 

Ki,j**(O) = Eo[{Di log f (X; O)}{DjD~, log I(X; 0)}], 

Ki,j,~, (0) = Eo [{Di log f (X; 0)}{Dj log f (X; O)}{Du log f (X; O)}1, 
rt 

= Z log f(x ; o), 
s=l 

n 
H(ij)(O) =/z -1/2 E {DiDj log f(X~; O) + I(ij)(O)}. 

8zl 

Among the expectations defined above, only those which have been useful in 
the subsequent derivation are assumed to exist. It is also assumed tha t  these 
are smooth functions of 0. Let I(0) = ((I(~j)(O))) be the r × r per observation 
Fisher's information matr ix  at 0 which is assumed to be positive definite at each 
0. Define the r x 1 vector H(O) = (Hfl)(O),... ,H(~)(O))' and the r × r matr ix  
Q(0) = ((H(~j)(0))). Also, let £(0) be an r × 7 ̀2 matr ix  with its i-th row given by 

1 < i < 
For the subsequent development, we shall require the part i t ioned forms of the 

vectors and matrices defined above. To tha t  effect, let H(O) = (HI(O),H2(O))', 
and 

((~11(0) (~12(0)) /(0) ~- (/11(0) /12(0)~ 
O(0)= Q21(0) Q22(o) ' \ h i ( o )  h 2 ( o ) / '  

where HI(O) is p × I and each of QII(0) and /11(0) is p × p. Let I1>2(0) = 
/11(0) - I12(0)I~1(0)I21(0). Serial numbers p + 1 , . . . ,  r will be used for indexing 
the rows and columns of/r~)l (0) and for p + 1 < i, j _< r, let a ~j (0) represent the 
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( i , j ) - th  element of I221(0).  Also, let LI(0) be a p x p2 submatr ix  of L(O) with its 
i-th row given by (K~11(0),..., Kilp(O),. . . ,  Kipl(O),. . . ,  Kipp(O)), 1 < i < p. 

Let 020 be the maximum likelihood est imator of 02 given 01 = 010. Any 
function evaluated at 01 = 010, 02 = 020 will be distinguished by the addition 
of a circumflex (^). Similarly, any function evaluated at 01 = 010, 02 = 02 or 
at 01 - 01~, 02 = 02 will be distinguished by the addit ion of a horizontal bar 
( ) or a tilde (-) respectively. Thus, for 1 _< i , j , u  < r, r~iju = Kiju(010,020), 
K~j~ = K~j~(O,o, 02), R ~  = K~j~(O,~, 0~), and so on. 

For ease in reference, before concluding this section, we state some basic facts 
about  the usual likelihood ratio statistic for testing the null hypothesis Ho : 01 = 
010. This is given by 

(2.1) S ~- 2{1X(01 ,02)  --IX(010,020)}, 

where lx(O) = lx(Ol,02) = Es~=llogf(Xs;O), and 0 = (01,(}2) is the unre- 
stricted maximum likelihood estimator of 0. Following Hayakawa (1975) (see 
also Hayakawa (1977)), it can be seen tha t  under contiguous alternatives 01~ = 
01o + n-1/2d, 

+ o(n-1/~), 

where ® denotes Kronecker product.  Incidentally, by the definition of/2/, the last 
r - p elements of /2 /are  zeros. If one considers the usual likelihood ratio test  based 
on the critical region 

(2.3) S > z  2 

where z 2 is the upper a-point  of a central chi-square variate with p degrees of 
freedom, then, as shown in Hayakawa (1975) (see also Harris and Peers (1980)), 
its power function, under contiguous alternatives 01~ = 010 + n-1/2d, is given by 

(2.4) P(d, 02) =Po(d, O2)+n-1/2P~(d, O2)+o(n-1/2), 

where 

(2.5) Po(d, 6~) = G,~(z~), 
2 

j=O 

A = d~lll.2d, Gu,),(z 2) is the probability for a non-central chi-square variate, with 
degrees of freedom y and non-centrality parameter  A, to exceed z 2, 

1 
( 2 . 6 a )  n 0  = -~ 

T* 
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EEZ -- (3r~iju + 3Ki,ju)didjd~ , 
1 

 [EEE * * *  
(2.6b) m l  ~- - ~  { ( r~iju -- 2K i , j , u )d  i d j d  u 

+ (3Kij~ + 6Ki,j~)#ijd~} 

EEE( + 3i2ij~ + 3K~,j~)d~djd~ , 
1 

1 

In (2.6a c) and elsewhere in this paper, • E ~'~ denotes summation over i, j ,  u 
in the range 1 _< i , j , u  <_ r and ~ 1  ~ ~ denotes summation over i, j,  u in the 
range 1 < i_<p ,  1 < j , u  <_ r. Furthermore, for 1 _< i , j  <_ r, d) = d*(01o,02), 
/2ij = #ij (010, 02), where d~ (0) is the i-th element and #{j (0) is the (i, j ) - th  element 
of 

d*(0)=  i~(O)i21(O) d and # ( 0 ) =  0 I~1(0) 

respectively, and Gp is the p x p identity matrix. 
Taking d = 0 in (2.4), it is easily seen that the likelihood ratio test given by 

(2.3) has size a + o(n-1/2). In the special case, where 01 and 02 are both one- 
dimensional and global parametric orthogonality holds, a tedious algebra shows 
that (2.4) agrees with the corresponding expression given in Mukerjee (1992a). 

3. A new test 

Let 9"(0) = (9~(0),. . . ,9~(0)) ' ,  where for 1 ( s ( p, 

(3.1) g:(O) = E E E E aiJ(O)a~q(o)I(q~)(O) K~j~(O) + Ki,j.(O) 
i , j ,u ,q=p÷ l 

i , j=p+l  

Define 

(3.2) g(O) = (gl(O),. . . ,  g~(O))' = I~1.~(0)g*(0). 

Observe that (3.1) can be expressed in terms of the second-order biases of max- 
imum likelihood estimators see e.g., Cox and Snell (1968) and Cordeiro and 
McCullagh (1991). Furthermore, by (2.6a-c), the terms in m0 and fr~l that are 
linear in d have coefficient vectors 4-~*, where ~* = 9"(01o, 02). Therefore, 9*(0) 
(and hence 9(0)) can also be interpreted as an entity that accounts for a possi- 
ble second-order local bias in the usual likelihood ratio test given by (2.3). As a 
modified version of the likelihood ratio statistic, we propose the statistic 

(3.3) S* = S -- 2n-1 /2 f i~ ,  
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where S is given by (2.1). We consider a test based on the critical region 

(3.4) S* > z 2. 

The power function, up to the second order and under contiguous alternatives, of 
the test given by (3.4) will be obtained by inverting the approximate characteristic 
function of S*. This approach, different from that  in Mukerjee (1992a) but similar 
to that  considered in Hayakawa (1975), is convenient since one can utilize the 
findings in the latter paper. The formal computations in this section can be 
justified along the line of Chandra and Ghosh (1980). 

By the definition of 0~0, one obtains /2/2 = 0. Hence a Taylor's expansion 
about (01~, 02) and some subsequent simplification yield 

(3.5) = + + h d) + 

Similarly, by (2.1) and (3.5), 

(3.6a) S = (H1 - I12-f~l/~r2 +/ll-2d)'/n~.2(/ql - -fL9122~/72 +/711-2d) ÷ o(1), 

(3.6b) /2/~0 = (H~ - I12/:~l/~r2 ÷ -fsl2d)'0 + o(1). 

Hence writing { = (-1)~/2t, and E~ for Ee~,o2, by (3.3), (3.6a, b), the approxi- 
mate characteristic function of S* under (01~, 02) is given by 

(3.7) En{exp({S*)} = En{exp(~S)} + 2~n-1/2E{(jY) exp(~r'-flll.2v)} 

+ o(n-S/2), 

where Y is p-variate normal with mean vector/=11.2d and dispersion matrix [11.2. 
This step is explained by the fact that  under (01~, 02), up to the first order of 
approximation, /~rl - I12-T2)i/~r2 is p-variate normal with null mean vector and 
dispersion matrix f11.2. As reported in Hayakawa (1975), 

(3.8) 
2 

j=O 

where m0, ml ,  m2 are as in (2.6a-c), ~ = d'.[ll.2d 3S before, and gl(/J, ,\, ~) is the 
characteristic function of a non-central ehi-square variate with degrees of freedom 

and non-centrality parameter A. It can also be seen that  

(3.9) 2~E{(~'Y) exp(~Y'[~l.2Y)} = (O'fn.2d){r/(p + 2, )~, ~) - r/(p, A, ~)}. 

By (3.1), (3.2) and the definitions ofd~, p~j (1 _< i, j < p), after some simplification, 

1K ) -  '* 
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Hence by (2.6a c), (3.7)-(3.9), 

(3.10) 

where 

(3.11@ 

(3.11b) 

2 
J~n{exp(~S*)} = 7](p, ~, ~) -a Tb -1/2 E TFL3~(P @ 2j, /~, ~) -F O(Tt-1/2), 

j=O 

(3.11c) 

* _ , = _ K i j u ) d i d j d  u 

1 

air * = = - -  2 K i , j , u ) d  i d j d u  73~ 1 7Tbl -F g1]=11.2 d --~ E E ( ~ [ i j u  - * * * 

+ Z Z + , 
1 

*  ZZZ rn 2 = rn2 = - ~ Ki,j,~d* d~d*. 

As in Hayakawa (1975), in consideration of (3.10), the power function of the test 
in (3.4), under contiguous alternatives 01~ = 010 + n-1/2d, is given by 

(3.12) P*(d, 02) =P~(d,  O2)+n-U2P~(d, O2)+o(n 1/2), 

where 

(3.13) Po*(d, 02) = 
2 

Z *  2 = mjGp+2La(z ), 
j=0 

rn;,  rn~, m~ being given by (3.113-c). 
Taking d = 0 in (3.12), it can be seen tha t  the test based on S* as given by 

(3.4), like tha t  based on S as given by (2.3), has size c~+o(n- i /2 ) .  Hence it would 
be meaningful to compare these two tests in terms of power up to o(n-1/2). From 
(2.5), (3.13) and (3.113-c), note tha t  Po(d, 02) = P~(d, 02) identically in d and 02 
while Pl(d, 02) and Pf(d, 02) are not identical unless ~ = 0 identically in 02. Thus, 
as one can anticipate, the two tests have identical first-order power while, unless 

= 0 identically in 02, they can be discriminated in terms of second-order power. 
Our next result relates to the superiority of the test based on S* to the usual 

likelihood ratio test based on S with regard to second-order local maximinity. For 
each fixed A (> 0) and each fixed 02, let 

(3.14) Z(A,02) = minPl(d,  02), Z*(A,02) = minP~(d, 02), 

the minimum in either case being over d such tha t  f I l l .2d  = /k. Thus for each 
fixed 02 and A, minimization is done in (3.14) along spheres, centred at d = 0, 
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with [11.2 used as a Riemannian metric (compare, Amari ((1985), Chapter 2)). We 
recall that ~ is a function of 02 and write g = ~(02). Then the following lemma, 
proved in the Appendix, holds. 

LEMMA 3.1. Suppose 9(02) is not identically (in 02) equal to the null vector 
and consider a fixed 02 such that g(02) ¢ O. Then there exists a positive A0 = 
A0(02), depending on 02, such that Z*(A,02) > Z(A,02), whenever 0 < A < 
A0(0~). 

From (2.5), (3.13), note also that for fixed A (> 0) and 02 and for each 
d satisfying d ' f 1 1 ~  = Zx, the relation Po(d,O~) = P0*(d, 0~) = C, ,~(~  ~) holds. 
Hence by (2.4), (3.12), (3.14) and Lemma 3.1, it is clear that, under the criterion 
of local maximinity and up to the second order of comparison, the test based 
on S* is always at least as good as the usual likelihood ratio test and better 
whenever ~ = ~(02) is not identically (in 02) equal to the null vector. This result 
is rather strong and does not require any assumption regarding global parametric 
orthogonality. There are many models of practical importance where 9 is not 
identically equal to the null vector. An illustrative example is presented in the 
next section. 

Remark. In consideration of (3.1)-(3.3), the computation of the statistic S* 
calls for evaluation of expectations like I(g)(0), K.~j~(O), K~,j~ (0). For some mod- 
els, it may be difficult to obtain these expectations analytically. Essentially in the 
spirit of Cox and Reid (1987), in such situations one may consider an alternative 
but equivalent statistic as indicated below. Let J(O) = ((J(ij)(O))) be the r × r 
observed information matrix at 0, where J(~j)(0) = - n  -1 }-~.~=1 DiDj log f(X~; 0), 
1 < i, j s r. Similarly, for 1 < i, j, u _< r, let 

kg~(O) = n -1 ~ DiDjD~ log f ( X , ;  0), 
s : l  

7~ 

ki,j~(O) = n -1 E {Di log f(Xs;  O) }{DjD~ log f (Xs;  0)} 
s = l  

be the 'observed' entities corresponding to Kij~(O), K~,j~(0 ) respectively. Also~ 

let D ~j (p + 1 G i , j  G r) and .]11.2 be defined with reference to .] exactly as 8~J 
(p + 1 G i, j < r) and Ixl.2 are respectively defined with reference to /~. Then, 
in analogy with (3.1)-(3.3)~ one can consider the statistic S** = S + 2n-1/212I~, 
where ~ : 3;i1.~ ~, and ~ * :  (~;,.. . ,~;)',  with 

(1 i ) 
i,j,u,q=p4-1 

- Z Z ~ ~ ~J~ + ~,J~ , 
i , j = p+ l  
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1 < s < p. It is not hard to see that S** = S* +o(rt-1/2). As such, up to o(n-1/2), 
the power function, under contiguous alternatives, of a test based on S** will be 
identical with that of the test based on S*. 

4. Parametric orthogonality and connexion with conditional likelihood 

In this section, we consider the situation where global parametric orthogonality 
holds, that is, I~2(0) = 0, /21(0) = 0, identically in 0. Then for 1 _< i < r, 
p + 1 _< j _< r, 1 _< s _< p, the regularity condition K~j~ (0) + K~,j~ (0) = 0 holds. 
Hence by (3.1), (3.2), 

(4.1) g(0) = zit1(0)g*(0), 

where 9*(0) = (g{(O),..., g~(O))', with 

1 
2_.,2_ 1 <  s < p .  (4.2) g~ (0) = 
i , j = p + l  

Therefore, by (3.3), 

(4.3) s*  = S + 2r -1/2[J i 11 *. 

Under global parametric orthogonality, d~* = -d i  if 1 _< i _< p, and = 0 
otherwise. As a consequence, by (3.11a-c) and standard regularity conditions, 

, 1 P 

(4.4a) rn o = rno - ~'Illd = ~ E E E r~ij~didj d~' 
i , j , u = l  

, 1 P 

(4.4b) rn 1 = rnl + 9 ' / l id  = ~ E E E Ki,j~didjd~, 
i , j , u= l  

. 1 P 

(4.4c) rn2 = m2 = ~ E E E R~,#,~didjd~. 
i , j ,u  1 

Also, now A, as in (2.5) and (3.13), equals d'Illd. Hence by (3.12), (3.13), (4.4a-c) 
and some results in Peers (1971), as corrected in Hayakawa (1975), it follows that 
for each fixed 02, under global parametric orthogonality and up to o(n-U2),  the 
power function, under contiguous alternatives, of the test based on S* is identical 
(in d) with that of a likelihood ratio test with known nuisance parameter. It is 
also evident that this does not hold with the usual likelihood ratio test based on S 
unless .0 = 0 identically in 02. In a sense, this implies that under global parametric 
orthogonality, the use of S* rather than S neutralizes the effect of an unknown 
nuisance parameter. To summarize, under global parametric orthogonality and 
up to the second order of comparison, the test based on S* will be superior to 
that based on S not only in terms of local maximinity but also with regard to 
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proximity to the power function at tainable by a likelihood ratio test with known 
02 whenever ~ is not null identically in 02. 

Ezarnple 1. Let f (z;  0) represent the v-variate normal model with unknown 
mean vector r = (rl,. . . , 'r~)' and an unknown dispersion matr ix W = ((w/j)),  
where r E T¢ ~, W is positive definite, 01 = ( w n , . . . ,  wl~, w22 , . . . ,  w2~ , . . . ,  w ~ ) ' ,  
02 = r .  Consider H 0 : 0 1  =010,  where010 = (Wno, . . . ,wa~0,  w220 , . . . ,w2~0 , . . . ,  
w~o)' and the matr ix W0 = ((w~j0)) is positive definite. It is easily seen that  
here global parametr ic  orthogonali ty holds and that  /221(0) = W. Furthermore,  
for l _< i, j ,  u, s _< v, u < s, 

Eo{O a log f (X;  O)/O'riOrjaw~,} = -OwiJ /Ow,~s, 

V where W -1 = ((w/J)). Since for 1 <_ ~t <_ s < v, ~i , j=lwij(-cgwiJ/cqw~,~)  
equals w ~ for u = s, and 2w ~** for ~ < s, and since the diagonal elements of Wo -1 
are all positive, it follows from (4.1), (4.2) tha t  in this example, 0 ~¢ 0 for every 02. 
Therefore, the test given by S* will be superior to that  given by S in the senses 
described above. 

It will now be seen how, under global parametr ic  orthogonality, the statistic 
S* arises from the principle of conditional likelihood. As defined in Cox and 
Reid (1987), under global parametr ic  orthogonality, the conditional likelihood ratio 
statistic is given by 

Scond = 2{lX,cond(01,cond ) --~X,cond(010)}, 

where 
1 

1X,cond(O1) = 1X(01,02(01)) - ~ log det{nJ22(01, 02(01))}, 

/X,cond(01,cond) = sup/X,cond(01), 
0s 

02(01) is the maximum likelihood est imator of 02 given 01, and J22(0) is the prin- 
cipal submatr ix  of J(O) given by the last r - p  rows and columns of J(O). After a 
considerable algebra (compare, McCullagh ((1987), Chapter  7 ) ) o n e  obtains 

(4.6) 01,cond • 010 -}- n-1/2i~1H1 

-{- ft -1 laf~11g * -r- i111#11i~11fi/1 
1 

@ lfGLLI{(iGI/2IL)@ (i~11/£/1)}] @ O(7~--1), 

where 9* corresponds to (4.2) and (~ii, £1 are as defined in Section 2. In the 
special case p = 1, r = 2, it can be seen that  (4.6) is in agreement with relations 
(2.1@ and (2.3) of Mukerjee and Chandra  (1991). From (4.3), (4.5), (4.6) and a 
reduced version of (2.2) under global parametr ic  orthogonality, it can be seen that  

(4.7) S~o~d=S*+o(n-i/2). 
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Hence, under global parametric orthogonality, the statistic S* can be moti- 
vated by and obtained from the principle of conditional likelihood. In fact, it 
represents an expansion, up to o(n-1/2), for the conditional likelihood ratio statis- 
tic. By the results proved in Section 3 and earlier in this section and (4.T), it also 
follows that, under global parametric orthogonality and up to the second order of 
comparison, the conditional likelihood ratio test will be at least as good as the 
usual likelihood ratio test with regard to (a) local maximinity, and (b) proximity 
to the power attainable by a likelihood ratio test with known nuisance parameter, 
and will, in fact, be better unless ~ = 0 identically in 02. This generalizes the 
earlier results in Mukerjee (1992a) who considered the special case p = 1. It is 
interesting to note that in the absence of global parametric orthogonality, condi- 
tional likelihood, as in Cox and Reid (1987), is not well-defined but the test given 
by S* continues to remain well-defined and possess the desirable property men- 
tioned in (a) above. In consideration of the above, it appears that the test based 
on S* can be regarded as a meaningful extension of the conditional likelihood ra- 
rio test to a general multiparameter set-up where global parametric orthogonality 
may or may not hold. 

Under global parametric orthogonality, starting from the conditional likelihood 
lx,cond(01), it is also possible to define conditional versions of score and Wald's 
statistics. Mukerjee (1992b) studied the power properties of such versions for the 
case p = 1. It should be possible to extend these conditional versions to a general 
multiparameter set-up by considering modifications similar to (3.3) and then to 
study their power properties using the techniques employed here. 

5. Relation with adjusted likelihood 

We now return to the general set-up where no assumption is made regarding 
parametric orthogonality and indicate how the statistic S* can be motivated also 
from a simplified version of the principle of adjusted likelihood considered by 
McCullagh and Tibshirani (1990). This will be done for the case p = 1 since, as 
noted in McCullagh and Tibshirani (1990), the adjusted likelihood (or its present 
simplified version) may not be well-defined for p > 1. Considering one-dimensional 
01 and proceeding along the line of McCullagh and Tibshirani (1990), the adjusted 
likelihood is defined as 

(5.1a) 

where 

(5.1b) 
(5.1c) 

01 
[X,adj(01) = Ul(t)dt 

ul(o ) = u(o ) - c ( o l ) ,  

C(01)  : Eol,O2(ol){U(01)} , U(01)  : D11x(Ol ,02(01) ) .  

Note that, like McCullagh and Tibshirani (1990), we are correcting the mean of the 
score function but, unlike them, we are not adjusting its variance; see also Conniffe 
(1990) in this context. An adjusted likelihood ratio statistic may be defined as 

(5.2)  Sadj = 2{/X,adj (01,adj) -- /X,adj (010)}, 
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where 01,adj satisfies lX,adj (01,adj) -- suPO 1 /X,adj (01). 
For each fixed 0, considering an expansion for U(01) over a set with Po- 

probability 1 + o(n-1/2), it follows from relation (7) in MeCullagh and Tibshirani 
(1990) and standard regularity conditions that 

(5.3) Eo{u(o )} = + 

where g~(O) is given by (3.1). Hence, after some algebra, it can be seen that 

01,adj = 01+o(n-1/2),  where  01 is the (unrestricted) maximum likelihood estimator 
of 01, and that 

Sadj ---- 2{/X,adj (01) -- /X,adj (010)} -~- O(•-1/2) 

---- S -~- 2Tt--1/2f~r(1)i~l.2g~ ~- O(ft--1/2), 

by (5.1a-c), (5.2), (5.3). Comparing with (3.2), (3.3), it follows that Sadj = 
S* +o(n-1/2), for p = 1. Thus for p = 1, even under the absence of parametric or- 
thogonality, the statistic S* can be obtained from and motivated by consideration 
of adjusted likelihood along the line of McCullagh and Tibshirani (1990). 

While concluding, we remark that in view of the discussion in the last section 
and the findings in Mukerjee and Chandra (1991) for the simple case p = 1, 
r = 2, the statistic S* is anticipated to admit a Bartlett-type adjustment. If 
such an adjustment is possible then the resulting statistic will be equivalent to S*, 
up to o(n -U2) and, therefore, will continue to enjoy the desirable second-order 
properties of S* proved earlier. A detailed study on the anticipated Bartlett- 
type adjustment calls for third-order calculations and this will be taken up in 
future. It is believed that a Bayesian route, along the line of Ghosh and Mukerjee 
(1992), will be helpful in this regard. It will also be interesting in future to make 
a small sample comparison of S and S*, by simulation studies with reference to 
some problems of practical interest, to show that the modification proposed in 
(3.3) may be substantial even in small samples; see Mukerjee (1992b) for such a 
numerical study with p = 1. 
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Appendix 

PROOF OF LEMMA 3.1. Recall that Ill.2 is a function of 02 and write f11.2 = 
[11.2(02). For A > 0 and d = ( d l , . . . ,  @)' satisfying d'fll.2(O2)d = A, note that 

(A.1) ]d~] ~ {/~/(~(02)} 1/2, 1 < i < p, 
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where 0(02) (> 0) is the smallest eigenvalue of/=~.2(02). By (2.6a-c), (3.11a-c), 

= = 

- -  } 2  + 

~1 = E E E ~}) ~didjd~ -- {~(02)}tZ11"2(O2)d' 

= E E E 

_ _ ~!{) (*) where for each i, j ,  u (1 < i,j,u < p) and s, --~au = J~iJ u(02) may involve 02 but 
not d. Hence by (2.5), (1.1), for each d satisfying d'[n.u(O~)d = A, 

2 

(A.2) P~(d,O~): E E E E B}; )~did~d~Gp+u~,~(z~) 
s=0 

- {~(02)}'~H.2(O2)d{Gp+2,zx(z 2) - ap,/x (z2)} 

_< B(A, 02)A 3/2 ' - 0 - 
- -  {g(02)} f11.2( 2)d{Gp+2,A(Z2) Gp,~(z2)}, 

where e ( a ,  02) 2 ~  ~ I ~ /~) 2 -~/2 = ~s=o/~ijuGp+2~,/~ (z)1{¢(0~)} . In a similar man- 
ner, for each d satisfying d'~l~.2(O~)d = A, we have P~(d, 0~) >_ -B(A, 02)Aa/~. 
Hence ~ 

(a.3) z*(~,o2) >_-B(~,o2)A ~/2, for ~ > 0. 

Recall that  ~(0~) is non-null. Hence fn.2(02)9(02) is non-null and, without loss 
of generality, suppose its first element, say ~(02), is positive (the proof is similar 
for a negative element). Then d = {A/(*(02)}1/2(1, 0 , . . . ,  0) ~, where (*(02) is the 
(1, 1)-th element of/=1~.2(0~), satisfies d'hl.2(O2)d = A, and by (A.2), 

(X.4) Z( /~ ,02)  _~ B( /~ ,02) /~  3/2 - ¢(02){/~/¢*(02)}1/2{Gp+2,A(z 2) - Gp,A(z2)},  

for A > 0 .  

From (A.3), (A.4), it is straightforward to complete the proof. 
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