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A b s t r a c t .  The kernel estimate of regression function in likelihood based 
models has been studied in Staniswalis (1989, J. Arner. Statist. Assoc., 84, 
276-283). The notion of optimal estimation for the nonparametric kernel esti- 
mation of semimartingale intensity c~(t) is proposed. The goal is to arrive at 
a nonparametric estimate 0o of 0o = c~(to) for a fixed point to E [0, 1]. We 
consider the estimator that is a solution of the smoothed optimal estimating 
equationStoOo f 2 w i ( t o - s ) / b ) d G  ° 0 where G ° fo t ° , = = = as,oodM~,oo is the op- 
timal estimating function as in Thavaneswaran and Thompson (1986, J. Appl. 
Probab., 23, 409-417). 
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1. Introduction 

In a recent paper,  Staniswalis (1989) discussed the problem of obtaining a ker- 
nel est imate of a regression function in likelihood based models with independent  
observations. In this article we are concerned with opt imal  est imation approach to 
nonparamet r ic  est imation of semimart ingale intensity c~(t). Our  approach is anal- 
ogous to the nonparametr ic  regression approach tha t  was pioneered by Priest ley 
and Chao (1972), and applied to likelihood based models in Staniswalis (1989). 

A semimart ingale is a stochastic process which can be represented as the 
sum of a process of bounded  variat ion and a local martingale.  In the case of 
continuous time, a typical  example of semimart ingale in such a process ( X ( t ) ,  t >_ 
0) with independent  increments for which EIx(t) l is finite and a function of locally 
bounded  variation. The  class of semimartingales includes point  processes, Ito 
processes, diffusion processes, etc. Consider a continuous t ime stochastic process 
( X ( t ) , t  _> 0) defined on (ft, A, P )  a complete probabil i ty  space for each P in a 
family {P} of probabil i ty  measures, and a family F = [Ft, t >_ 0] of cr algebras 
satisfying the s tandard  conditions F~ C_ Ft C_ A for s _< t,/7o augmented  by sets 
of measure zero of A, and Ft = Ft+, where Ft+ = n~>t  Fs. We denote  by D 
the space of r ight-continuous functions z = (z t ,  ~ _> 0) having limits on the left. 
We use X = ( X ( t ) ,  Ft )  to  deno t e  an F t -adap ted  random processes ( X ( t ) )  with 
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trajectories in the space D. For simplicity we assume that  X(O) = O. We shall 
denote by M~o~(F , P) a class of locally square integrable martingales (H(t), Ft). 
Assume that  the process (X(t), Ft) is a semimartingale for each P, that  is for each 
P it can be represented in the form 

(1.1) X(t) = V(t) +H(t)  

where V(t) is a locally bounded variation process and H(t) E M~oc(F, P). When 
we allow V(t) and H(t) to depend on P E {P} only through 0, the model (1.1) 
can be written as 

(1.2) x ( t ,  0) = v( t ,  0) + 0). 

When 0 E R, optimal as well as recursive estimates have been studied in 
Thavaneswaran and Thompson (1986). We consider the following semimartingale 
model of the form 

(1.3) d x ( t )  = + riM(t), 

where g(t) is an unobservable deterministic part of the intensity of the process 
X(s), IX(s), Y(s), R(s), q <_ s < t] are observable processes, M(t) E M~oc(F, P) 
with predictable variance process (M}t = f~ C(s)dR(s) and C(s) is a known func- 
tion of the observations and c~(s). For a similar restriction that the conditional 
mean and the conditional variance of X(t) are absolutely continuous with respect 
to R(t) see Hutton and Nelson (1986). 

Example 1.1. Poisson process: When X(t) is a right continuous process hav- 

ing jumps of size 1 and A(t) = f~ c~(s)Y(s)ds with Y(s) = 1 is a deterministic func- 
tion, the semimartingale model (1.3) becomes a nonhomogeneous Poisson process 
model with cumulative intensity A(t). 

Example 1.2. Multiplicative intensity model: When X(t) denotes the num- 
ber of deaths up to time t, a(t) is the hazard rate, Y(t) is the number of individuals 
at risk just before time t, the semimartingale model (1.3) takes the form 

~0 t (1.4) X(t) = a(s)Y(s)ds + M(t) 

where M(t) is a zero mean square integrable martingale with variance process 

{M) t = foc~(s)Y(s)ds provided there are no simultaneous deaths. The model 
(1.4) introduced by Aalen (1978) has been widely applied to such phenomena as 
the life history data or arrivals at an intensive care unit of a hospital. 
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2. Proposed smoother for c~(t0) 

1 

(2.3) St°'° = f o w  

and is given by 

For a regression model Yi = 9(x i )+ ei with identically distributed independent 
errors ei Staniswalis (1989) proposed an estimator ~0 of ~0 = g(xo) as the one 
which maximizes the weighted likelihood function 

± (x0 
(2.1) w(A) = w ~ log f(yi  - A), 

where f is the density of ei, w is a symmetric kernel with compact support and 
the bandwidth b that controls the degree of smoothing. If the ei's are normal 
random variables, then ~0 becomes the kernel estimator of Priestley and Chao 
(1972). ~ere  in analogy with (2.1) we propose a smoothed estimator for ~(t0)  as 
a solution of the smoothed optimal estimating equation 

/0 (2.2) ~ d a  ° = 0 

where 
(i) G o = .f~ a°,od~I~,o, as in Thavaneswaran and Thompson (1986) is an opti- 

mal estimating function defined through an optimal function a°,o = ( Y ( s ) / C ( s ) ) .  
J(s)  where J(s) = I (Y ( s )  > O, C(s) > 0). 

(ii) w is a non-negative integrable kernel function, and b is a positive band- 
width. 

Then the estimate of 00 is solution of 

( ~ f f - )  J ( s ) Y ( s ) C - l ( s ) ( d X ( s )  - OY(s))dR(s)  = O, 

J01w (~2)c  l(s)J(s)Y(s)~x(s) 
0 0 =  

The proposed smoother t~0 for a counting process model (1.4) (where R(t) = t, 
C(t) = OY(t) > 0 all t), becomes 

00=  

This turns out to be the maximum likelihood estimator for ct if a(t) were constant 
= c~ and w(-) _= 1. This cannot be said for the estimator for c@0) given in 
Thavaneswaran (1988) which is 

1/ol 
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That is, when Of(t) is constant, the optimal smoother corresponds to the maximum 
likelihood estimator in a sense in which the Thavaneswaran (1988) estimator does 
not. 

Moreover, the proposed smoother for a homogeneous Poisson process model 
indexed by n can be written as 

(t°- s) dM~(s) 
j f o W \  b~ ) 

O~(to) = = Oo + , n = 1, 2 , . . .  
ft) w \  b~ j ds . f l w  ds \ b , , j  

Hence, EO~(t) = 00 and the optimal smoother is unbiased for any sample size n. 
We note that  the Ramlau-Hansen (1983) estimate which was introduced for 

nonparametric purposes, is 

1 folW ( t  0 -- S'~ dNn(8) ' 

and 

<an(t0)]=< ~\  b~ J 

; ? of(t0) __ (2(1)(to)bn uw(u)du q- 1/2of  (11) ( t )b  2 
1 1 

u2w(u)& 

i.e. E[&~(t0)] ~ Of(t0) as n + oc. This implies that  in general the kernel estimator 
&~(t) is not an unbiased estimator of a(t), but the bias tends to zero as n --+ oc. 

Note. Ramlau-Hansen (1983) estimator is not finite-sample unbiased but is 
optimal for a large class of multiplicative intensity models. 

Example 2.1. The relationship with maximum likelihood estimator: Non- 
parametric estimation of the drift function for stochastic differential equations 
has been studied by Nguyen and Pham (1982) and Leskow and Rozanski (1989). 
Recently, Leskow and Rozanski (1989) have studied the maximum likelihood esti- 
mate of Of(t) using the method of sieves. They have considered a sequence of point 
processes 

(2.4) Nk(t) = a(s)Yk(s)ds  + Mk(t)  

and the sieve S(n) defined by discretizing the parameter space 

S(n) = Of E I Iof(s ) = XlIA,,,~ (s) , 
1 1 
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where A l , ~  = [ l -  1 /mn,  I/m~] for fixed s, let l(n, 5) = {1, 2 , . . . ,  rn~} be such 
tha t  s E Az(~,~),,~ = B~ (say). They showed tha t  

(2.5) 

It is of interest to note tha t  the smoother obtained by solving (2.3) for a sequence of 
counting processes in (2.4) reduces to &~(s) as in (2.5) if we set w((t-s) /b~) = [u~ 
the indicator function of B~. 

Tha t  is, the maximum likelihood est imate of the discretized locally constant  
(piecewise constant) parameter,  obtained using sieves is a special case of the 
smoother with particular weight. 

Example 2.2. Diffusion process model: For the diffusion model considered in 
Thompson and Thavaneswaran (1990) 

where (X(t) , t  _> 0) is the one-dimensional observation process, (W(t), t > 0) is 
the s tandard  Wiener process, ~(.) is a known function of X(t),  and c~(.) is an 
unknown function to be estimated. 

The est imate of 00 = a(t0) is a solution of 

and is given by 

Example 2.3. Discrete t ime stochastic processes: Let Z1, Z 2 , . . .  , Zt,  Z t÷ l ,  
. . . ,  Z~ be a series having the conditional moments with respect to FtZl ,  the ~- 
field generated by Z1, . . . ,  Zt-1. 

E[Zt  I F ;  1] = g ( ~ ) h ( F : - l ) ;  Var[Zt  I F : - I ]  = °-2(F:  1) - 

Then, Zt can be writ ten as 

Zt = E[Z t  I F;-1]  -~- Zt - E [Z t  I IF; 1] = g(t)h(F~ 1) -~- (~t 

where et = Zt - E[Zt [ Ft~_l]. 

Note. (i) When h(.) = 1, the above model corresponds to a t ime series model 
with a t ime varying parameter  g@). 
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(ii) Furthermore, if et's are independent h(.) = 1 and ¢r2(.) = constant then 
the above model corresponds to a regression model considered in Staniswalis 
(1989). 

The smoothed version of least squares estimating function for estimating O0 = 
g(to) can be written as 

LS & (to) h(F?_l)(Zt - 0 h ( F ;  1 ) )  
t = l  

While the corresponding smoother is the solution of 

t = l  

where at° 1 = (cq~t/ogO)/cr2(Edl) is the optimal value as in Godambe (1985). 

Note. If et's are independent and having density f(-) then it follows from 
Godambe (1960) that the optimal estimating function for 00 in Yi = 00 + ei is the 
score function 

log f(y~ - O) = 0 
i=1 

and the corresponding smoothed optimal estimating function is 

~ ( x o - x i )  O 
~ w  log f ( y i - 0 )  
i=l b 

= 0  

which is the same as the one considered in Staniswalis (1989). 

3. Asymptotics 

The optimal smoother for a(0) = 00 for fixed to from a sequence of semi- 
martingales indexed by n, (i.e.) dX~(t) = a(t)Y~(t)dRt + dM.(t), 0 < t < 1, can 

be written as 

& ( t )  = 

= 0o+ 

= 0 o +  - -  

~ r 8  

t - s )  
f~ ~ -gj- Y~(~)J(~)C~(~)dR(~) 

M~ 
A n  ' 
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where 

/o 1 ( t -  s )  y~(s)J(s)C~Ts(s)dM,~(s) 

o I t-s A n =  w ( - - ~ - )  Y~(s)J(s)c~l(s)d~(s).  

and 

Strong Consistency. 

THEOREM 3.1. Let mn = Y~,~=~(A~Ii/Ai) and under the assumption that (i) 
the predictable variance process of mn, {m}oo < co a.s. and (ii) the corresponding 
predictable variance process of Mn, Aoo = c~ a.s. The optimal smoother O~(to) ---+ 
0o a.s. i.e. ~ ( t )  --+ ~( t )  a.s. for  ~lI fi~ed t as n - ~  ~ .  

Note. The assumptions (i) and (ii) are somewhat restrictive for a general 
semimartingale model. However these can be easily verified for an autoregressive 
model of order one as in Shiryayev ((1984), p. 489). 

PROOF. Let M~ = f~ Hn(s)dM~(s) where Hn(s) : w ( ( t -  s)/b,z)Yn(s)J(s). 
Cn l(s) is a predictable process and Mn(S) is a zero mean square integrable mar- 

tingale and hence, the stochastic integral f~ Hn(s)dM~(s) is a zero mean square 

integrable martingale. Furthermore,  An(t) = ]~ w ( ( t -  s)/bn)Y,2(s)C.£l(s)dR(s) 
is a Lebseque-Stieltjes integral of a predictable process with respect to a bounded 
variation function R(s) and is predictable. Therefore, f/In~An is a mart ingale se- 
quence. The proof now follows by applying the strong law of large numbers for 
the martingale sequence Mn/A,~, as in Shiryayev ((1984), p. 487). 

Asymptotic Normality. 
We have shown tha t  O~,o(t) - 0 = f4~/An. 

THEOREM 3.2. Assume that 
(i) z ( s ) v ( s ) / c ~ ( s )  ~ 1 / ~ ( s ) ,  as ~ --+ ~ ,  in probabili ty,  

(ii) the functions a and cr are continuous at the point t, 
(iii) R(t) = t, % = lim~ J(s)Y~(s)/nCn(s), in probability uniformly in a neigh- 

bourhood of t. 
Then, 4 - ~ [ ~ ( t )  - 01 converges in dis t r ibut ion  to a norma~ d is t r ibut ion  with mean 
0 and variance 

</: ) /<  
PROOF. Recall tha t  

£ ( t o )  - o - ~ - 
An An[nbn 
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where H~(s) and An are as defined earlier, {2~L~} is a sequence of martingales and 

(a) i fol i foi 

--~ ~/t W2(U) du  = 21 t ,  
1 

(b) 

as n -~ oc, bn ~ O, Y~(s)/Cn(s) ~ 1/~(s) uniformly in a neighbourhood of t and 
l/or(t) is bounded in this neighbourhood, thus 

I[IHn(t)l > e] -~ 0 in probability. 

Then, applying the martingale central limit theorem (Shiryayev (1984), Theo- 
rem 4, p. 511), as n ~ oc, 2f/n(t) ~ N(0, Elt) in distribution. Moreover, 

A~/nbn ~ ~/t ~+1 w(u)du = E2t in probability. Hence, n~/~(0  ° - 0 ) - - *  N(O, Et) 

in distribution where Et = (f+_~ w2(u)du)/(~+_~ w(u)du)2(lff/t). [] 
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