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A b s t r a c t .  Order statistics has an important role in statistical inference. The 
main purpose of this paper is to investigate order statistics, and also explore its 
applications in the analysis of nonstationary time series. Our results show that 
linear functions of order statistics for a large class of time series are asymptot- 
ically normal. The methods of proof involve approximations of serially depen- 
dent random variables by independent ones. The problems of testing for the 
existence of a linear trend and the problem of testing randomness versus serial 
dependence are considered as applications. 
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1. Introduction 

Order  statistics has an impor tan t  role in statist ical  inference. Not much work 
on order statistics has been done in the case where the observations are serially 
dependent .  Our main objective is to investigate order statistics for nons ta t ionary  
t ime series. The  principal mot ivat ion for this research is tha t  order statistics 
has many  applications in t ime series analysis. Later  on in Section 4, we will 
discuss two impor tan t  examples. The  first example deals with test ing for the 
existence of a linear trend.  The  second example concerns test ing white noises 
versus serial dependence.  This problem has been drawing increasing at tent ion.  
See, for example, Hallin et al. (1985, 1987) and Chan and Tran (1992). 

Order statistics often exhibit  desirable robustness when the popula t ion  distri- 
but ion  is heavy-tailed,  for example,  Cauchy distr ibution or contaminated  normal.  
Our methods  depend heavily on certain propert ies  of serially dependent  r andom 
variables. Results involving the limiting behavior of the empirical distr ibutions of 
dependent  r.v. 's normally require assumptions about  their  types of dependence.  
Throughou t  the paper,  we assume tha t  Xt  satisfies the absolute regular i ty  condi- 
tion, the definition of which will now be given. 

Let  { X i , - o c  < i < oc} be a t ime series defined on a probabi l i ty  space 
( f~ ,A,P) .  For integers a, b with a _< b, let M b denote the a-algebra of events 
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generated by Xa,  . . . ,  Xb. Then {Xi} is absolutely regular if 

(1.1) /3(n) = sup E{sup I P ( A I  Mk_~o) - P(A)] : A ¢ M~°~,~} .L 0 
k 

aS 7t ----+ OO. 

We assume that /3(n) decays to zero exponentially fast. This assumption is 
relatively weak. In fact, many time series are absolutely regular with/3(n) decay- 
ing to zero at an exponential rate. These include a large class of autoregressive 
moving average time series models and bilinear models as shown, respectively, by 
Pham and Tran (1985) and Pham (1986). For some statistical applications involv- 
ing absolutely regular time series when an exponential rate of decay for /3(n) is 
assumed, see Chan and Tran (1992). 

The absolute regularity condition is weaker than many other dependence con- 
ditions, e.g. m-dependence, C-mixing, ~-mixing, but is stronger than the strong 
mixing condition. Under more restrictive assumptions, the results can be extended 
to the strong mixing case with mixing coefficients decaying to zero at polynomial 
rates. However, the proofs are more technically involved and harder to follow. 
In fact, Volkonskii and Rozanov (1959) have pointed out that the condition of 
absolute regularity is more suitable for research than the strong mixing condition. 
The absolutely regular case with exponential rate is thus chosen as a compromise 
between generality and simplicity. 

In the independent case, the literature on order statistics is extensive. See, for 
example, Wellner (1977a, 1977b) and the references therein. Order statistics for 
stationary mixing processes have been investigated by Mehra and Rao (1975) and 
Purl and reran (1980). The technique in Purl and Tran is based on approximations 
of dependent r.v.'s by supermartingales, whereas more tractable approximations 
by independent r.v.'s are employed in the present paper. Approximations by su- 
permartingales are too complicated for the nonstationary setting considered here. 

Assume X i  has a continuous distribution function Fi. Denote F~ = (El + F2 ÷ 
• . . + F n ) / n .  Let Xi:n be the i-th order statistic of X 1 , . . . , X ~ .  Let c l~ , . . . , c~n  be 
arbitrary given constants and let gn : 1~ --+ • be a measurable function. Consider 
the statistic 

n 

(1.2) - -  Z 
i=1  

Our main results show that T~ is asymptotically normal under the four Assump- 
tions A1-A4 stated in Section 2. Assumptions A1-A3 are standard in the study 
of order statistics. A4 is needed to handle the nonstationary aspects of the time 
series. This assumption is satisfied by a large class of time series as shown by the 
examples in Section 4. An interesting open question is whether this assumption 
can be omitted. The derivation of the asymptotic distribution of T~ employs a 
decomposition of (1.2) into a leading term and a remainder term. The asymptotic 
normality of the leading term is shown in Section 2. The remainder term is shown 
to be asymptotically negligible in Section 3. The main argument relies on some 
important properties of empirical distributions, which are also of independent in- 
terest. For background material on empirical distributions, the reader is referred to 
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Zuijlen (1978) and Alexander (1984). Our results extend those of Zuijlen (1976), 
Ruymgaart  and Zuijlen (1977) for non-i.i.d r.v.'s to nonstationary time series. 
Applications to time series analysis are considered in Section 4. Nonparametric 
procedures for time series have been the subject of much recent attention. They 
are popular when there is evidence of nonnormality of distributions. Evidence 
of nonnormality appears in certain exchange rates and stock market prices. See 
Fama (1965), Mandelbrot (1967) and Dufour (1982). For a bibliography on non- 
parametric methods in time series, see, for example, Dufour (1982), Hallin et al. 
(1985, 1987), or Tran (1988). Throughout the paper, the letter C will be used to 
denote constants whose values are unimportant and may vary. 

2. Asymptotic normality of the leading term 

Let F~ denote the empirical distribution function of X 1 , . . . ,  X~, that is, 

(2.1) rn(t)  = ( 1 / ~ ) ~ ( t  - x d ,  
i = 1  

where u, the indicator function, is defined later in (2.11). Then T~ can be written 
as the following functional of empirical distribution function: 

(2.2) T~ = f &(r~(t))gn(t)dr~(t), 

where the range of integration is ( -oc ,  oc), and 

(2.3) & ( i / ~ )  = ~c~., for 1 < i < ~. 

Following Ruymgaart  and Zuijlen (1977), we will restrict our attention to T~ of 
type (2.2) with Jn( i /n)  = J ( i / ( n  + 1)), 9~ = 9 for some functions J,  9. Then 

where, 

(2.4) ~ : [~ / (~  + 1)]r~. 

Define 

(2.5/ h~(s) = g (Fn l ( s ) ) ,  

where T n 1 is the left continuous version of F~. We will occasionally use one or 
more of the following assumptions: 

A1. The function J may have discontinuities of the first kind at sj for j = 
1 , 2 , . . . , k  (where we take So = 0 and S~+l = 1), and has a continuous first 
derivative on (sj-1,  sj) for each 1 _< j < k + 1. 
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A2. The function 9 is left continuous and is continuous in a neighborhood of 

each tj. Here ~j = F~ l(sj), and sj is a discontinuity point of J as s ta ted in A1. 
A3. There exist positive constants C and a, b with a + b < 1/2 such that  

IJ(s)l _< C_~%s), lJ ' (s)l  _< Clr~a+l(s), and Ih~(s)[ _< c_~b(s) for all large n, where 
R(s) = [s(1 - s)] -1. 

A4. There exists an interval [a, b I and some positive constants C1, C2 such 
that  for a l l l < i < o c ,  l < n < o c ,  a n d f o r a l l x < a o r x > b ,  

F~(x)(1 - a(x)) < 02. 

c~ _< ~(~)(1 ~ (~ ) )  - 

Let 

(2.6) 

Decompose Tn as follows: 

(2.7) ~ /~(T~ - ~ )  

where 

(2.8) 

(2.9) 

(2.10) 

Let 

#~ = f J(F~(t))g(t)dT,(t) .  

= A~ + B~ + C~ + R~ w.p.1, 

A~ = n 1/2 / J(- f  ~(t))g(t)d(r~(t) - F~(t)), 

.o  = f i r . ( t )  - Tn(t)]J'(-F~(t))g(t)dT~(t), 

k 

C~ = n 1/2 ~ ~jg(tj)[r~(tj) - Y~(tj)]. 
j = l  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Then 

(2.~6) 

(2.17) 

uix ) "  " = 0 o r  1 as x < 0 o r x _ >  ~u, 

A ~  = J(F~(XO)g(Xi  ) - #~,  

B ~  = f b(Y~ (t) - Y~ (x~)) - y~  (0] J' (Yn (t))g (~)dY~ (t), 

k 

c ~  = ~ ~jg(tj)[~(Y~(tj) - Y~(xd) - Y~(tj)]. 
j = l  

n 

A~ + B~ + C,~ = n -1/2 E ( A i ~  + Bi~ + Ci~), 
i= 1  

n 

~/2(T~ - ~n) = ~-~/2 Z ( A ~  ~ + B ~  + C~) + R~. 
i=1  
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LEMMA 2.1. For some (5 > O, EIAi~I ~+~ <_ C(~)EIt~(~+b)(~+~)(F.(Xi))I. 

PROOF. 

(2.1~) 

Note that 

EI&~I  ~+e _< EIJ(~(X{))g(X{) -m~l ~+~ 
<_ C(6)(EiJ(-~,,(X{))g(X{)I ~+~ + [m,~,l 2+~) 

_< C(~).~l J(-~,~(x~))~(xd I ~+~ 
_< c(6)~:l~('~+v/(~+~> (~,~(xd)l .  

[] 

LEMMA 2.2. For some 6 > O, EIB{~I 2+~ <_ CEIR((x/2)-6)(2+a)(F~(Xd)t. 

PROOF. For any s, t  ~ (0, 1), 

( Z l ~ )  b ( t  - s )  - ~1 -< c~/~l-~(~)~(-~/~l+~(t), 

where C is a positive constant independent of ~ (see Lemma 2.2.1 of Ruymgaart 
(1973)). Employing (2.19), 

(2.20) EIB~I 2+~ 

C E  f ~(1/2)-~(~n(Xi) )R(-~/2)+~(~n( t ) )  <_ 
J 

J ' ( F ~ ( t ) ) 9 ( t ) d ~ ( t )  ~+~ 

~ OZll~<l/2)-~(~(X{))I~+ ~ 

t~+~ 
" ./-~(-I/2)+~(~,~(~))J'(F,,(t))g(~)~Y,,(~) 

<_ C~ln(~/z)-~(P,~(x~))l=+ ~ 

" f n(-~/~)+~(~)J'(s)~(P~(~)) ~s'~+~ 
2+6 

~ CEIRU/z)-e(~(Xd)~ z+e fR-(1/2)+6+e+l+b(s) d$ 

~ CEI~O/~)-e(F~(X{))[z+6, 

since ~f ~-(a/~)+6+~+l+°(s)dsl z+6 is bounded by a constant for 6 < (1 /2 ) -  (a+b). 

oz .g(~ .~ 2+6 LEMMA 2.3. For some (5 > O, ElCinl 2+5 <_ C ~ = l  ~ k ]J • 

PROOF. Note that 

(2.21) EIC~I 2+~ <_ E ~g(tj)[~(Y~(~)-Y~(xd)-Y~(tj)] ~+~ 
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h 2+6 

_< c E  g(tj)[ (Yn(tj) - Y n ( x d )  - Y (ts)] 

k 

< C E  c ~ g t  2+6, [ J  (5}1 
j 1 

hence the proof  of Lemma 2.3 is complete. [] 

2 Var(A~ + B~ + Cn). Define (7 n = 

THEOREM 2.1. Let { X { , - o c  < i < ~ }  be a sequence of absolutely regular 
random variables with ~(n)  = O(e -¢n) for some ¢ > O. Suppose l iminfcr~ > 0 as 
n ~ ~ ,  and A1 A4 hold. Then 

(2.22) nl/2(Tn - pn) /o-nL N(o, 1). 

and 

PROOF. Let 

n 

Sn : E ( A i ~  + B i .  + C~n) 
i=1  

Vi~ = Aim + Bin + Cin - E(Ain + Bin + Ci~). 

We will occasionally drop the subscript n in V~n for simplicity when there  is no 
fear of confusion. It  is not hard  to show tha t  

(2.23) E(s ) = 0. 

Thus 

nl/2(Tn - #~) = n -1/2 ~ ¼n + R~. 
i=1 

Let p and q be positive integers with p = [nU(2(2+5))/logn] and q : [clogn] 
(with c to be prescribed later on). We now set the random variables Vin into 
a l ternate  blocks of size p and q. Let  m be the number  of blocks of size p. Note 
tha t  m = [n/(p + q)]. The  sum of the Vin is decomposed into three sums, the 
sum in m blocks of size p, the sum in m - 1 blocks of size q and the sum of the 
remaining random variables. The  sum for the large blocks of size p is 

m p 

( 2 . 2 4 }  Sln = E E V(i-1)(p4-q)+s" 
i:I s=l 

The  sum for the small blocks of size q is 

(2.25) 
m--1 q 

i=1  t = l  
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and the sum of the remaining V/~'s is 

(2.26) 
s:(rn-1)(p÷q)+p+ l 

Hence 

(2.27) n-U2 E Vi~ 
i=1 

½~. 

= n - 1 / 2 ( S l n  + S2n + S 3 n ) .  

Then, 
sufficiently large, it is not hard to have the following inequalities 

(2.28) P[n-U2(S~n/(Tn) < z - e] - Pi t t  1/2($27 ~ + San)/cr n > c] - 2raft(q) 

<_ P[n-~/2S~/a~ <_ x] 
<_ P[~- l /~(s~ /~ . )  _< • + ~] + P[~ - t /~ ( s~  + s ~ ) / ~  > ~] 

+ 2~9(q), 

following the argument  in Theorem 2 of Yoshihara (1978), for e > 0 and n 

PROOF OF (i). Let (~.)2 be the variance of n-1 /2S~ .  

Assume for the moment  that  Claim 1 is true. By the Lyapounov central limit 
theorem, 

if 

77~ 

(2.30) l i n a  n - l - (5 /2 ) ( a* )  -(2+~) E EIZi]2+~ = 0. 
i I 

2 By  Claim 1 and the assumption that  liminf~_~o~ ~ > 0, to prove (2.30), it is 
sufficient to show 

~TZ 

(2.31) lim n -1-(~/2> ~ EIZ~I 2+~ = 0. 
i=1 

By Theorem 3.2 to be proved later in Section 3, R~ tends to zero in probabil i ty  
as n ~ oc. We next show the following: 

(i) P[n-1/2(S~n/cr~) _< x - e] ~ (I)(z - e), 
(ii) P[n-I/2(S~Uo-~) < x + e] --~ ~(x  + e), 

(iii) P[rt-1/2(S2n + Sa~)/cr~ > e] --~ 0. 
The proof  of Theorem 2.1 will then follow by letting e + 0 and using the fact that  
n3(q) = ne-<Eclog~] ~ 0 (for sufficiently large c). The proof of (i) and (ii) are 
similar. We will jus t  prove (i) and (iii). 

P 

(2.29) a ~ Z Y/~ 1)(p+q)+s. 
s = l  

where S ~  is a sum of rn independent  random variables Z 1 , . . . ,  Z,~ with 



672 LANH TAT TRAN AND BERLIN WU 

(2.32) 

where 

Note that Zi L~ p ~ s : z  V({_~)(p+q)+.~. Thus we need to show 
2+6 

~ s=l  V(i-1)(p+q)+s nli~rn~n-l-(U~) E ~ = 0, 
i=1 

V{ : V{~ = A{,~ + B{~ + Ci~ - E(A{~ + B{~ + C{~). 

Clearly, by ~he C~-inequality 
m p 2+6 

<~.~3) ~s ~v<~_~)~+~+~ 
i:1 s=l 

~ ~ ~ 
~ ~p2+~  ~ EIV(~_~D(~+N)+~I~+~ ~ p2+~ ~1~12+< 

/=1 s : l  / : 1  

Now 

(2.34) EIv~I ~+6 = EIA,:~ + Bi~ + ci~ - f ( A ~  + B~ + c~)l  ~+6 
< C(6)(EIA{,~ - EAi~I ~+~ + EIB{n - EB{~I ~+~ 

+ ZlC~ - EC~I~+~). 
Again by the Cr-inequa]ity, for any random variable X with finite (2 + 6) moment, 

(2.35) E]X - EXI ~+~ ~ C(6)(E{X{ ~+~ + Isx~ ~+~) ~ C(6)E{X{ ~+~. 

Thus br (~.3~) ~,a (~.3~), 

(~.36) EIE~I ~+~ ~ C(~)(ZlA{,? +~ + mS{~l ~+~ + BlC{~,I~+~). 

It fo]]ows from (2.35), (9.36), Lemmas 9.i, 2.9 and 2.3 that 
" 

(2.37) p 2 + ~ 1 ~ 2 + ~  ~ C(fi)p 2+~ [J(~(f))~(t)12+~d~(t) 
i=1 i=1 

+ c(~)p 2+6 ~ BIR<I/~)-6(F~(<))? +6 
i=I 

~ ~lj:~ ) ~+6 
+ c(~)p ~+6~ ~(~ 

i=I 

c(~)~ ~+~ f ~J(~(~))~(~)~+~(~) 

c(~)p ~+~ f ]~(~/~)-~(P~(t))?+~dF~(t) + 

+ C(6)p~+~n 

~ C(6)p2+~n IJ(s)9(F~l(s)){~+6ds 

+ C(6)p~+~n + C(6)p~+~n 

~ C(6)p2+~n. 
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We finally have 

m 

lira n-1-(~/2) E E 
i=1 

p 

V(i-1)(p+q)÷ s 
s:l 

2+~ 

< C(6) lim n-(~/2)p 2+~, 

which tends to zero since p = [n~/(2(2+~))/logn]. 
completed. 

We now turn to the proof of Claim 1. Note that 

The proof of (2.32) is now 

(2.38) n(cT 2 - (or*) 2) : Var(Sl~) - Var(S;n ) + Var(S2~) + Var(S3~) 
+ Coy(&, s~) + Cov(S~, &~) + Cov(&, &) .  

We will show 
(a) n- l (Var(Sln)  - Var(S;n)) --4 0, 
( b )  f t - l V a r ( S 2 n )  ---+ 0, 

(c) ~ - ~ C o v ( & ,  & )  -~ 0, 
(d) ~-~(Var(S3~) + C o v ( & ,  & )  + C o y ( & ,  s3~)) -~ 0. 
Claim 1 will then follow. The proof of (d) is similar to the proofs of (a), (b), 

(c) and is omitted. Consider first the proof of (a). Note that by A4 and Lemmas 
2.1, 2.2 and 2.3, 

sup IIv~l12+~ _< c .  
l < i < n  

By the Davydov inequality (e.g. see Lemma 3.2 in Yoshihara (1984)), for i ¢ j, 

I Cov(V~, vj)l _< 10llv{II2+~IIE 112+~{/~(li - Jl)} ~/(2+~) < C{~(Ii - j l ) }  ~ / ( 2 ÷ ~ ) .  

Also for 1 < t, s <_ p, I(k - i)(p + q) + (t - s)l _> (}k - i[ - 1)(p ÷ q) ÷ q. Hence, 
for any two distinct blocks i and k of size p, 

(2.39) 
p p 

Z Cov(V(i_1)(p+q)+8, 
s : l  t--1 

P P 
< ~ ~ C(6){3(([k- iI- 1)(p + q) + q)}~/(2+5) 

s--I t:l 

_< c(~)p~{9(q)} ~/(~+~). 

Let h -- ¢6/(2 + 6). Employing (2.39), 

(2.40) 1(Var(Sl )- Var(&)) < i 
i : 1  k : l  

i#k  

_< ~-lc(~)p2.~{Z(q)}~/(2+~)  

<_ n - lC(6 )p2rn2e -hq  
< C(6)n-lp2rn2e-h[cl°s~],  
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which goes to zero for sufficiently large c. 
We next prove (b). By the same argument  used in the proof of (2.39), clearly 

for any two distinct q blocks i and k, 

q q 

(2.41) E E Cov(V(i_x)(p+q)+p+~, V(~-X)(p+q)+p+t) 
s:l t:l 

_< c(~)q~{9((Ik - il - X)(p + q) + ;)}~/(~+~). 

Also for the i-th short block of size q, 

From (2.41) and (2.42), we have 

n -1 Var (S2n) 

< c(~)q 2. 

< n -I C(6)q2{/~((Ik- i[ - 1)(p + q) +p)}U(2+~) + E C(6)q2 " 

~ i : 1  k=l i :1  
\ i¢k 

Following a similar computa t ion  as in (2.40), the proof of (b) follows. Note 
that  n - x ( m  - 1)q 2 < q2/(p + q), which converges to zero as n --+ oc since p = 
[n6/(2(2+5))/lognl and q = [clogn]. Turning now to the proof of (c), for a long 
block (of size p) i and a short block (of size q) k, we have 

p q 

(2.43) E E Cov(V(i-1)(p+q)+s, V(k-1)(p+q)+p+t) 
s : l  t : l  

P q P q 

s : l  t : l  s=l  t : l  

if k = i or k = i + 1; otherwise 

p q 

(2.44) E E C°v(V(i-a)(p+q)+s' V(k-l)(p+q)+p+t) 
s=l t : l  

P q 
<- ~ Z c(~){9((lk - i[ + 1)(p+ q))}~/(~+~) _< pqC(~)e -~(~+~). 

Finally 

s=l t=l  

({=~1 ~ m-1 ) ~-~ Cov(Sx~, s ~ )  < ~-1 2c(~) + ~ pqc(~)~ -~(~+~> 
i 1 k : l  
~#k i¢k+1 

_< ~-~(~c(~) + .~pqC(6)~ -~(~+~)) 
_< c ( ~ ) ( 1 / ( ;  + q) + ~pq~-~(~+~)), 
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which converges to zero as n -~ ~ .  

PROOF OF (iii). Observe tha t  

(2.45) P[n-1/2(S2n -F S3n)/Gn > e] 
~ PEn-1/2S2n/G n > @/2)]-F P[n-1/2S3n/Gn > @/2)]. 

We will only show tha t  the first term on the right hand side of (2.45) goes to zero, 
since the proof of the second term is similar. Using an argument  similar to tha t  
of (2.28) and (2.29), we have 

(2.46) P[n-1/2S2n/Gn > ((~/2)] ~ P[n -1/2 
L 

] E Yi/o-~ > @/2) + 2m/3(p), 
i=1 

where the Yz, Y2, • • • , Ym-1 are independent random variables and Yi has the same q 
distribution as }-~4=1 V(i-1)(p+q) -t" 

Finally, by Markov's inequality and an argument  similar to (2.33), (2.37), we 
have 

(2.47) P 
rn-1 ] 

n--l/2 E Yi/°-n > (g/2) -Jr 27n~(p) 
i=1 

_< c(~)n-~E + 2m~(p) 
i:i 

m--1 

C((~)n-lq E EIV~l = + 2rag(p) _< c(~)n-bmn ~/~ + 2rag(p), 
i=1 

which converges to zero as n--- ,ec.  [] 

3. Asymptotic negligibility of the remainder term 

The following result will be needed in the sequel. 

LEMMA 3.1. (Yoshihara (1978)) Let {~i} be an (not necessarily stationary) 
absolutely regular sequence of random variables. Let S~ = ~1 + "'" + in, So = O. 
For any z > 0 and any positive integer r (<_ n), 

(3.1) P[ISnP >z] <~-~P IG +~+~+-"+~+kj~l > 7 +4nil(r). 
j=l 

Here, for each j (1 <_ j <_ r), kj is the largest integer for which j + kjr <_ n and 
{Yj} are independent random variables defined on the probability space ( f~, A, P) 
such that each Yj has the same d.f. as that of ~j. 

Assume Xi has a continuous distribution function Fi. For i = 1 , . . . ,  n, define 
X [  = F~(Xi) .  Denote by F~* the distribution function of X~ and by F n the 
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empirical distr ibution function based on X { , . . . , X # .  Note that  Fi~, . . . ,F~ are 
_ _  

continuous distr ibution functions on (0, 1). Define the inverse function of F,~ by 

F ~ ( s )  : inf{t : s _< ~ ( t ) } ,  0 < s _< 1. 

Then, 

(3.2) z~,/(8) = ~b~i(y~l(8))  for  i = 1 , 2 , . . .  ,Yr. 

Let ~ ; ( s )  = ( l / n )  ~-~.{=~ F;(s) .  It is easy to see that  

T t  

(3.3) ~;(s) = l ~ Fi(~<l(8))= Fn(Fn I (8))= 8.  

i=1 

Take r = [clogn], the integer part  of c logn,  where c is a large constant  to be 
specified later on. 

The following result due to van Zuijlen (1978) is needed: 

LEMMA 3.2. Let Zx, Z~, . . . , Z~ be independent random variables with P[Z~ = 
~ %  

1] = 1 - P [ Z {  = O] =p{.  Le t~  = (1/n)  E{=Lp{. Then, for any a > 1/2, there 
exists a constant C independent of n and ~ such that for all n 

(3.4) 
n -- n~ 2a  

s ~ z~ _< c{(n~(1 - ~))~ + n~(1 - ~)}. 

THEOREM 3.1. Let { X { , - o o  < i < oo} be an absolutely regular sequence of 
random variables. Let ~ > O. Assume/~(n) = O(e -¢~) for some ¢ > O. Then, 

(i) for every ~ ~ (1, 3/2),  there exists a 0 ~ (0, 1) such that .for all n, 

( 3 . 5 )  P [ 1  - ( (1  - 

( i i)  for every 

y~(x))/o) ' /"  _< r~(x) _< (~(x)/O) ~/", ~ e ( - ~ ,  ~)] >_ 1 - ~; 

(3.6) 

~ ~ (1, 2), there exists a 0 ~ (0, 1) such that for all n, 

_ _  _ _  

P[1 - 0(1 - F~(x))" >_ Fn(x) >_ O(F~(x))", x ~ [Xl:n, Xn:n]] ~ 1 - -  ~. 

(3.7) 

P R O O F .  

(i) Note that 

~[r~(x) _< (~(~) /o)~/<  x ~ ( - ~ ,  ~)] 
= P [ r ~ ( x ~ : , O  _< (~(x~:~)/o) 1/~, 1 < i < ~] 

~ ~ - ~ ~[x~:~ ~ ~ ( o ( i / ~ ) ~ ) ]  
i~1 

~ ~ - ~ [ x ~  ~ ~ ( ~ ( ~ / ~ ) - ) ]  = ~ - P z ~  ~ 
~=1 ~=1 j = l  
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where for each i, Z~j (j  = 1 , . . . , n )  are Bernoulli random variables with Pij = 

F j ( F n l ( O ( i / n ) ~ ) ) .  The subscripts i of Z~j and p~j will be dropped fox" simplicity. 
By  Lemma 3.1, for r = [clogn], where c is a positive number  to be specified later, 

(3 . s )  P z t  >_ i = P z t  >_ oi + (i - o)i 

j---1 L j=l  

[ 1 -< Z P st _> ~t + + 4~a(~), 
j= l  

where sj = Pt q-PJ+~ q-" " " q-Pj+k~r (kj is the largest integer such that  j + k j r  <_ n),  
Sj  = Yj + ~+7` + . - -  + YJ+ks and ~ ,  Yj+7`,. . . ,  Yj+k~7` are independent  random 
variables with the same distr ibutions as tha t  of Zj ,  Zt+7`, . . .  , Zj+~jT`. To just i fy 

7" (3.8) we need to show ~ j = l  sj _< Oi. But,  it is easy to see that  

sj <_ pl  + . . . + p~ = nO <_ Oi. 
j= l  

By Lemma 3.1 (for o~ = 2), and (3.8) 

(3.9) P [~ Zj ~ ~ ~C((1-O)i/v)-4(82 

j = l  

+ 4~9(r) 
< COrSnl-"{ -4+2" q- 4?~fl(r). 

Note that  s t _< p~ + p2 + "  + P~ = nO(i /n)" .  Finally, since 1 < ~, < 3/2, 

(3.10) ~ P  [~ZJ ~ i] ~ CO(lOg)~)ST~l-w j : l  

which tends to zero as n --+ oc. 
The proof  of (3.5) then follows from (3.8), (3.10) and the symmetr ic  result 

tha t  comes from replacing Xi:~ by -X{:~. 
(ii) Obviously, 

(3.11) P[C~(x) > O(F~(x))~ ' ,x  ~ [Xi:., X.:~)] 

= P [ r ~ ( x ~ : n )  _> 0 ( F ~ ( X ~ : ~ ) ) " ,  1 < ~ < ~ - 1] 

1 > 1 - E P  Xi:n>-Fnl(~ 1/~ 
4=1 k 0/7"/ ] 

< _ 1 -  P > n - i  , 
4=1 
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where for each i, Zj (1 _< j < n) are Bernoulli r.v.'s with pj = 1 - F j ( F n l ( ( i /  
On)UV)). Note that  ~ = (Pl + " "  +pe) /n  = 1 - (i/On) 1/" and that  n(i/n)  1/~" > i. 

Clearly, 

( 3 . 1 2 )  - i - n ~  = n ( i / e n )  ~/" - i : [ ( 1 / 0 )  ~/" - 1 ] n ( i / n ) ~ / " .  

Employing (3.12) and the same argument in the proof of (i), 

(3.13) P zj>_n-i <_P ( & + . . - + & + k j - ~ j ) > _ ~ - i - n  
j= l  

< ~ P[s ;  - st >_ (n - i - n ~ ) / r ]  + 4 n ~ ( r )  

j= l  

_< ~ c{r~(~ - i - n~)-~ [n~(~ - ~)~ + n(1 - ~)]} 
j:l 

+ 4rig(r) 

~ C[n(i/n)1/~]-4 [?%2 ( i / (?~))2/ .  ÷ n(i/(n~))l/~] 

<_ C02/'rSn-2+(2/')i-2/" + 4n/~(r). 

From (3.12) 

(3.14) > n - i  < 
i=l j=l  

CO 2/" (log n)Sn -2+(2/') + 4n2/~(r) 

for 1 < ~ < 2 and large C. The proof of (3.6) is completed by (3.11), (3.13), (3.14) 
and symmetry. 

We will need the following result of Yoshihara (1978). [] 

LEMMA 3.3. Let {~i} be an absolutely regular sequence of random variables 
with/3(n). Let g ( x l , . . . , x k )  be a Borel function such that Ig(xl , . . . ,xk)]  <_ C for 
some constant C, where (xs , . . .  ,xk) is a point of R k. Let F (1) and F (2) be distri- 
bution functions of random vectors (~h , - . . ,  r]ij) and (~ij+l , . - . ,  rhk), respectively, 
and i~ <i2 < ".. < ik. Then 

Eg(~il,...,mk)- /'£i /g(xl,...,xj,xj+l,...,xk) 

d F ( 1 ) ( X l , . . . , x j ) d F ( 2 ) ( x j + l , . . . , x k )  <_ 2C~(ij+l - ij). 

COROLLARY 3.1. Let { X i , - c e  < i < cxD} be an absolutely regular sequence 
of random variables satisfying the conditions of Theorem 3.1. Assume in addition 
that Assumption A4 is satisfied. Given e > O, 
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(i) for every u • (1, 3/2) there exists 0 • (0, 1) such that for all n 

(3.!.5) [1- -- ((1 - - ' Y n ( X ) ) / 0 )  lip ~ ~n(X) ~ (Fn(x)/O) 1/', x • ( -oc ,  oo)] ~ 1 - g, 

(ii) for e v e r y .  • (1-, 2) there exists 0 • (0, 1) such that fo~ all n >_ 1/0, 

(3.16) P[1 - 0(1 - F~(x ) )  ~ > F~(x) > O(Y~(x) ) ' ,  x • [Xl:n, X~:~]] 2 1 - e. 

PROOF. The proof of (3.15) is immediate  from the definition of ] ~  and (3.1). 
Prom (3.6) of Theorem 3.1, we know that  (3.15) holds if the interval [XI:,~, X~:~] 
is replaced by [Xl:n,  Xn:n). It remains to show that  

P[ l-O(1-r~(X~:~))~ >- n4-1~ > >- l-e. 

n 4- 1 n 4- 1 (Yn(X~:~))~' : 1. 

But,  for 0 < 0 ~ n / ( n  4- 1), 

On the other hand, we have 

i - o(i - Y~(xn:,d) ~ > ~ ] 
- n + l  

: P ~(x,~:~) _> i (,~ + i)o 

=l-P 1- l)0j ]] 

1- ;+l)0j ]] 

(3.17) P 

Denote  sn = 1 - (1 / (n  + 1)0) 1/~. By  Lemma 3.3, 

- 1  1 
<_ P[X~ < F~(sn),X~+~. < F~ (s~),... ,Xa+~ < Y~ (s~d] 

----1 --i 
P[Xa < F n (8n)]~[Xl--r < F n (8n),... ,If-Fleer < Fnl(sn)] 

+ 29(r) 
kl 

-1 
~ "'" <-- I I P [ X l q - i r  < ]gn (8n)] _L 2]gl/~(r) 

/ : 1  

-i  - - - 1  -- F I+~F~  (s~) + 2klg(r) .  
i=1 
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Let x0 be such that P~(Xo) = s~. Then (1/(~ + 1)0)1/~ = 1 - Pn(xo).  
sn ~ 1 as n ---+ oc, for sui~ciently large n, 

by A4. Hence 

1 ~ i / .  
1-Fl+ir(ZO) > C (n--1)OJ ' 

1 )1/~' 
F i + w ( X o ) = l - ( 1 - F l + i r ( x o ) ) _ < l - C  ( n + 1 ) 0  ' 

implying 

(3.19) 

By (3.18) and (3.19), 

Recall t ha t  r = [c log n]. Thus  

(3.21) 

Hence, 

1 1 ~ )  1/u Fl+irFnl(sn) ~ 1 - C  (n4- 

( ( 1 )lj ) l 
< 1 - C (n + 1)0 + 2~1/~(r)" 

kl > Cn/ log  n. 

(3.22) 

Since 

( ( (  log 1 - c  ( ~ _ ~  = k l o g  1 - c  ( ~ - F ~ ) o /  / 

<_ - c ( ~ / l o g ~ ) ( ( .  + 1)o) 1/~ 

which tends  to - o c  since u > 1. Again, note tha t  2k1/3(r) ---+ 0 as n ---+ oo. By 
(3.18), (3.20), (3.22), the corollary follows. [] 

COROLLARY 3.2. Assume the conditions of Corollary 3.1 is satisfied. Then, 
for every e > 0 and u E (1, 2) there exists a constant C = C(0) > O, such that for 
all n 

(3.23) 

and 

(3.24) p [j~(Fn(x)) ~ C_~l/(Fn(x)),x ~ [.X-I:,¢, Xn:,,]] ~ 1 -  e, 

where R(s) is defined in Assumption A3. 
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PaOOF. Given e > 0, (3.6) of Theorem 3.1 ensures tha t  for p E (1, 2) there 
exists 0 E (0, 1) such that  for all n, the event 

gt,, = {w E f t :  O(F,~(x)) ~" <_ F~tx)  _< 1 - 0(1 - F,~(x)) ' ,x  E [Xs:n,Xn:n)} 

has a probabil i ty P[ft,] _> 1 - e. Then, for each w in f~,, 

1 
(3.25) R(F~)  - Pn(1 - P~) -< 0 u(Fn(1 - F~) )  - "  = C R ' ( F , d .  

Hence, the proof of (3.23) is completed. [] 

Finally, by using (3.15) of Corollary 3.1, the proof of (3.24) follows along the 
line of proof of (3.23). 

Lemma 3.4 below is a generalization of Lemma 1.1.1 of Zuijlen ((1977), p. 12). 

LEMMA 3.4. Let {Z,i} be an absolutely regular sequence of random variables 
w~th P(Z~ = 1) = 1 - P(Z~ = 0) = > .  Assume 9(~) = O ( ~ - %  for some ~ > O. 
For every c~ > 1/2, there exists C = C(a) E (0, oc) such that for every n and for 
1/n <_ ~ <_ 1 - 1 / n ,  

i=~ nF 2~ (3.26) E Zi - <_ C(logn)2~+l(np(1 - p))~. 

PROOF. Let G(t) be the distr ibution function of 

i=~1 gi - n~ (n~( -~) )  1/2 

For each j (1 _< j _< r), denote pj = (P3 + " "  +PJ+~sr)/(kJ + 1). Applying Lemma 
3.1, 

(3.27) 1 - G ( t ) = P  ~ z ~ -  > t ( ~ > 1 - ~ ) ) 1 / ~  
i=1 

-< ~ P  I~  + + ~ + ~  - (k~ + 1)pjl _> t(~p(1 _ ~))1/~ 

j = l  r 

+ 4~9(r) 

= ~ P [ I ~  + ' "  + ~+kj~ - (kj + 1)pjl _> (kj + 1)~1 
j = l  

+ 4~;~(r), 

where Y~'s are independent  random variables such that  each Yi has the same 
distr ibution function as that  of Z~ and s = t(np(1 - ~))l/2/(kj + 1)r. 
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Lemma 3.2 ensures that  it is sut~cient to prove Lemma 3.4 when pj . . . . .  
Pj+kj~ = Pj and 1 <_ j _< r. By Bernstein's inequality (see Serfling ((1980), p. 95)), 
we have 

(3.28) 1 - G(~) 

-< E 2 e x p  (kj + 1)s 2 + 4~9(~)  
J=~ 2~(1 - ~j) + s 

_ _  2 exp 2~2(kj + 1)pj(1 - p s ) ( n ~ ( ; - - p ) )  -1  + ~ ( ~ p ( 1  - ~ ) ) - ~ / 2  
j = l  

+ 4~9(~), 

which, by Lemma 3.1, is bounded by 2r exp( - t2 / r (4r  + t ) ) +  4n/3(r). 
Now, since 1/n <_ ~ <_ 1 - 1/n, we have 

E Z i -  (n~(1 - p ) ) - U 2  < i n _  11 1 - 
i=1  

2c~ 

_<n. 

~0 n : 2OZ ~ 2 a - - l [ 1  - -  G ( ~ ) ] d ~  

< 4 a t  d t + 4 a r  t 2 ~ - l . e x p  r ( 4 r + t )  dt 

r(4r + t) dt <_ t 2~-l exp(- t2 /9r2)dt  << 

Then 

(3.29) 

Since 

r ~2~--i exp ( 

and 

r ( ~ ) ( 3 ~ )  2~ 

~2a-1 exp r ( g ~  fs) d]J ~ t 2a-1 exp ( - t / 4 r )d t  < F(2a)(5r) 2a, 

we obtain from (3.29), 

< 4a t  + 4a t  r(a)(3r)2~ + 4ar r (2a) (5r )  2~ + 4n2~+lg(r) 
- 2 

< Cr 2~+1 + Cn2~+l/~(r) = C[clogn] 2~+1 + Cn2~+le-<[ c1°gn] 

< C(log n) 2~+1. [] 
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THEOREM 3.2. A s s u m e  the conditions of Theorem 3.1 are satisfied. Then 
R~ --+ 0 in probability as n --* oc. 

With  the results of Section 3 presented in the present paper,  the proof  of 
Theorem 3.2 can then  be obta ined by a long but  s traightforward generalization of 
the results of Section 4 of Ruymgaar t  and Zuijlen (1977). The  details are therefore  
omitted.  

4. Applications to time series analysis 

Example  1. (Testing for a linear t rend.)  Let  m be an a rb i t ra ry  number.  
Consider the general t ime series model  

(4.1) Y t = Z t ÷ r n t + e t ,  - o o  < t  < oc, 

where Zt is a s tr ict ly s ta t ionary  t ime series, mt  is a linear t rend term; and {et} is 
a sequence of white noises independent  of {Zt} .  We assume tha t  Zt is a s tr ict ly 
s ta t ionary  t imes series satisfying the absolute regulari ty condit ion with /3(n) = 
O(e -¢~) for some ~ > 0. Thus  Zt might be a bilinear t ime series model  or an 
autoregressive moving average t ime series model. Here Zt +rnt  is the actual  process 
we are interested in. The  observed process is Yr. The  white noises {et} account for 
errors which may occur as a result of recording the da ta  due to, for example,  key 
punching or errors in measurement .  Assume tha t  {et} is a sequence of independent  
bu t  nonidentical ly dis t r ibuted r.v.'s. This assumption is more realistic and general 
t han  the assumption tha t  {et}  is stationary, since, the dis tr ibut ion of the errors 
caused by, for example, key punching, may  vary with the days of the week. Model  
(4.1) is referred to as the additive effects outliers model. See Denby and Mart in  
(1979). We assume tha t  et+p/,  has the same dis tr ibut ion as et, for each integer i. 
Here P ,  the period, is a positive integer. We are interested in testing: 

Ho : r n = 0  v.s. HA : rn  > 0. 

for definiteness, let us assume Zt = OZt_l + et, where 0 < 0 < 1; and where the 
et's are i . i .d . r .v . ' s  with Cauchy density f ( x )  = (a/rc)(a 2 + x2) -1 for some a > 0. 
For simplicity, assume a = 1/2 so tha t  the dis tr ibut ion of Zt - Z t -1  has a s tandard  
Cauchy dis tr ibut ion as shown below. 

Note tha t  Zt - Zt-1  has the same dis tr ibut ion as Z2 - Z1 = (0 - 1)Z1 + e2. 
The  characterist ic  function of Z1 and e2 are respectively 

q~(zt) = e x p ( - a l ~ ] / ( 1  - 0)) and $(u) = exp( -a ]u ] ) .  

The  characterist ic function of (0 - 1)Z1 is 

e x p ( - a l u ( 0  - 1 )1 / (1  - 0))  = e x p ( - ~ l u l ) .  

Since Z1 and e2 are independent ,  the characterist ic function of Z2 - Z1 is 
exp( -2a ]u ] ) .  Therefore  the dis tr ibut ion of Z2 - Z1 is s tandard  Cauchy since 
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a = 1/2. Assume tha t  ei, 1 < i < P ,  has a Cauchy distr ibution with density 
f ( z )  = (ai/rr)(ai + z2) -1,  where ai is a positive number.  Let  Xt = Yt+l - Yr. 
If m = 0, then  Xt has a symmetr ic  distr ibution about  zero. Assume tha t  we 
take n + 1 consecutive observations of Yt, so we have n observations of Xt  after  
differencing as done above. The  statistic Tn is sensitive to a change in the values 
of m. Thus Tn can be used to test  H0 versus HA. Assumptions A1, A2, A3 are 
s tandard  assumptions which are satisfied by suitable choices of the functions J ,  9- 
We now verify A4. Claim tha t  there exists a constant  C > 0 such tha t  

(1 - Ft(x))Ft(x) 
(4.2) C1 < < C2, 

(1 - F, (z ) )F~(z )  

for all t, s, and x. Note tha t  

Ft(x) = P[Xt < x] = P[Zt+I  - Zt 4- et+l - -  et 4- feb < X] .  

Hence Xt can take on at most P distinct distributions. We only need to check 
(4.2) for pairs (t, s) with 1 _< t, s _< P.  Wi thou t  loss of generality, consider s = 1, 
t = 2. Clearly, 

and 

FI(z)=P [ Z2-Z14-e2-ela-lg~gl -< a14-a24-1x-m ] 
= 1 [(7r/2) + Arc tan ( (z  - m ) / ( a l  + a2 + 1))], 

7C 

F2(x) = 1 [ @ / 2 )  + Arc tan( (x  - m)/(a2 + a3 + 1))]. 

Using L'H6pital's rule, 

(4.3) lim (l- Fi(x))Fi(x) __ lim Fl(X)/F2(x) 
z--.-oo (1 - F2(x))F2(x) x--.-oo 

(al + a2 + 1)[(a2 + a3 + 1) 2 + (x - m) 2] 

(a2 4- a3 -- 1)[(al + a2 + 1) 2 4- (x -- ~)2]  

= (a l  + a2 + 1) / (a2  + a3 + 1). 

Similarly 

(4.4) lira (1 - F I ( x ) ) F I ( a  / = (al + a2 + 1)/(a2 + a3 + 1). 
x-~oo (1 - F2(x))F2(x I 

Relations similar to (4.3) and (4.4) hold for all (t, s) with 1 _< t, s < P .  It is now 
clear tha t  (4.2) holds for some constants  C1 and C2. Assumption A4 can be easily 
verified using (4.2). 

Example 2. Let Yt = Zt + et, - o o  < t < oo, be the nons ta t ionary  t ime series 
of example 1. The  only difference is tha t  we assume tha t  the model has been 
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"detrended". We are interested in testing the null hypothesis that Yt is a series of 
white noises versus the alternatives that Yt is positively serially dependent at lag 
1. One possibility is to reduce the hypothesis to the problem of testing whether 
the location parameter of a nonstationary time series is zero. Let Xt = Yt+lYt and 
assume that we have n observations X I , . . . ,  Xn. Under the null hypothesis, Xt is 
symmetrically distributed about zero. A test can be constructed by rejecting the 
null hypothesis for high values of T~. If Zt is absolutely regular under alternatives, 
then T~ is asymptotically normal under A1-A4. 
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