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Abstract. The concept of rotatability introduced by Box and Hunter (1957,
Ann. Math. Statist., 28, 195-241) is an important design criterion for response
surface design. Recently, a few measures of rotatability that enable us to
assess the degree of rotatability for a given response surface design have been
introduced. In this paper, a new measure of rotatability for second order
response surface designs is suggested, and illustrated for 3* factorial design
and central composite design. Also a short comparison is made between the
proposed measure with the previously suggested measures.
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1. Introduction

Suppose that an experimenter is concerned with a system involving some re-
sponse i which depends on several independent variables &1, ..., &;. In general, the
functional relationship between the independent variables and the mean response
can be written as n = f(&1,...,&), where the explicit form of f is unknown or
expremely complicated. Response Surface Methodology (RSM) often involves the
approximation of f by a low order polynomial in some region of the independent
variables. Usually, the original variables (£’s) are coded to the design variables
(2’s) in order to locate the origin to the center of region, the latter normally being
simple linear functions of the former.

In this paper, we will concentrate on the second order model

k k k
n(e) = Bo + Zﬂﬂ?i + Zﬁzzxf + Zﬁz‘sz’%
i=1 i=1 i<
which may be written in matrix notation as
() n(e) = a8,
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in which

z' = (x1,72,...,Tk),
I 2 .2 2
x, = (1,21,%2,. .., Ty L], X5 .« .y Ty T1L2, - -+, T—1Tk ),
and G is the m x 1 column vector corresponding to the coeflicients, where m =
(k+1)(k+2)/2.
The coefficients in the polynomial are to be estimated, by the method of least
squares, from N observations on the response variable,

Yo =n(Ty) + €4, u=12,... N

where €,’s are assumed to be uncorrelated and have zero means and constant
variance, 2. The 3 is then estimated by the method of least squares as follows

(1.2) b=(X'X)"'X'y

in which X is the N x m matrix of values of the m elements of z,’s taken at the
design points and y is the N x 1 matrix of observations.

The predicted response value at a particular point &’ = (21,29, ..., 2x) in the
region of interest R will be denoted by ¢(x). This value is obtained by substituting
the elements of 3 in the model (1.1) by the corresponding elements of b in (1.2),
ie., ¢(z) = x.b. The variance function of the predicted value ¢ at any point
' = (z1,22,...,21) is well known as

(1.3) Var(§(z)) = z[(X'X) tz,0°.

Var((x)) thus depends on the particular values of the independent variables
through the vector z/, and also depends on the design through the matrix
(X' X)L,

A design D is said to be rotatable if the variance function (1.3) is a function of
only r? = 22 +23+---+2%, i.e., the variance of § is a function of only distance of
from the origin, not of direction. Thus, when a design is rotatable, the prediction
variance is the same at all points x that are equidistant from the design center.
Consequently, in the space of the input variables, surfaces of constant prediction
variance from concentric hyperspheres.

A work which has generated initial interest in the use of RSM is a paper by
Box and Wilson (1951). In recent years, interests in RSM have been increased and
books on this subject have been written by some authors such as Myers (1976),
Box and Draper (1987) and Khuri and Cornell (1987).

The concepts of rotatability was first introduced by Box and Hunter (1957).
Since it was first introduced, it has become an important design criterion. If the
circumstances are such that exact rotatability is unattainable, it is still a good idea
to make the design nearly rotatable. Thus it is important to know if a particular
design is rotatable or, if it is not, to know how rotatable i is. Analogous to
rotatability, the concept of slope-rotatability has been advanced by Hader and Park
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(1978) and Park (1987). In this concept, the variance of dg(x)/dz; (i=1,...,k)
are equal for all x equidistant from the design origin.

Recently, Khuri (1988), Draper and Guttman (1988), and Draper and
Pukelsheim (1990) suggest the measures of rotatability that enable us to assess
the degree of rotatability for a given design. In this paper, another measure of
rotatability, Ry(D), is introduced and illustrated.

2. Proposed measure of rotatability

In this chapter, a general measure of rotatability is proposed. This measure
will enable us to appreciate the degree of rotatability for a given response surface
design. Let

(2.1) Vi) = é\g Var(g(z))

where Var(j(z)) = z/(X'X)~!
In the k-dimensional space (k > 2), V(x) can be expressed in terms of spherical
coordinates of (p, ¢1, P2, ..., Pr—2,0) where

11 = peos gy,

7o = psin ¢; cos 2,
(2.2)

Tk—1 = pSin¢gy sin gy - - - sin P2 cos b,

T = psin ¢y sin ¢ - - - sin ¢g—o sin b

and p > 0,0 < ¢1,02,..., 052 <7, 0 <6 < 27 (See Fleming (1977), p. 218.)
The absolute value of the Jacobian of this transformation is

|J| = p* 7 sin®72 ¢ sin® 3 ¢y - - - sin? Pp_3 sin dr_o.

If we substitute (2.2) into (2.1), then (2.1) will be expressed as a function of
£s lea ¢27 R ¢k—2’9a Le., V(m) = w(P: ¢17 ¢27 R ¢k—270)' Let

1 27 T g
(2.3 =g [ [ [ winbnon oo

where d() = sin®~2 @1 - sin pp_odd1ddg - - - dp_odf, and

27 k/2
omk/
I, = dQ =
£ / / / T(k/2)
w(p) means the averaged value of V() over all the points on the hypersphere of
radius p centered at the origin. To be rotatable,

w(p7 ¢17¢27"‘7¢k—270) :w(p) fOI' all P,¢i19~
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For a given design, the discrepancy from rotatability at p can be expressed as

2w T T
24w = [ [ e 60m06) - ulp)fa0.

If the region of interest is 0 < p < 1, the proposed measure will be

1

(2.5) Py(D) = 1T R(D)
where

_i/l k—lh( )d
% | P e,

and Fy is a positive constant depending only on k. Let us take Ej to be

(2.6) Ri(D)

1
Ep = / PP Ivdp = lfk
0 k

for convinience. By this way, Ry(D) represents the average of (w — w)? over the
region of integration. Pg(D) is 1 if and only if a design is rotatable, and it is
smaller than one for a nonrotatable design. Note that Py (D) is invariant with
respect to the rotation of the coordinate axes, since w(p), h(p) and Ry(D) are
invariant with respect to the rotation of the coordinate axes.

Now, we introduce the following fact which is useful for evaluating our mea-
sure.

(1) [dQ = 2m*/2/T(k/2),

(2) [a2d2 = p2L, [k,

(3) [xia2d = (1/3) [a}dQ = p* I /k(k + 2) (i # j),

(4) [zizia?dQ = (1/3) [zia3dQ = (1/15) [20dQ = p°L/k(k + 2)(k + 4)
(i #5 # 1),

(5) [a2zizial d = (1/3) [aizizidQ = (1/9) [ ziz}dQ = (1/15) [ 23dQ
= (1/105) [23dQ = p®L Jk(k + 2)(k +4)(k +6) (1 £ j # | #m)
where i, j, [, m could be 1,2,...,k, and [ means fo% Jo -+ Jo - The values of
other integrals where at least one x; has an odd exponent are all zeros.

In comparing designs, we have to consider the scaling of designs. The tra-
ditional way of scaling is to set 1/N ZuNzl z?, = 1. This was used by Box and
Hunter (1957), and Khuri (1988). In this paper, as was adapted by Draper and
Pukelsheim (1990), we scale designs so that all of the points lie inside or on the
unit sphere. Therefore, if we have a set of points

m{:(mu,azgi,...,xm) i:l,27...,N,
then the scaled point, gx;, should satisfy
0Sg\/(ﬂfli)Q‘}—(xzi)2+"'+(-%'ki)2Sl i=1,2,...,N.

One advantage of this is that, when we add center points, the remaining points do
not have to be rescaled. For the 32-factorial design, the scaling factor should be
g=1/v/2=0.7071.
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3. llustration of the proposed measure

3.1 3% factorial design
For the 3% factorial design without replications, it can be shown that

2k—|—12
/UO_ gk )
1 2
?}i:WJ (7,21,2,. ,k‘),
1
U“:2><3k~202 (i=1,2,...,k),
1 .
Uiz = W—QUQ (i # 7),
1
€,ii = ——3k_102 (i=1,2,...,k)

where vo, v;, vii, vi; and cg;; denote Var(bg), Var(b;), Var(b;;), Var(b;;) and
Cov(bo,bi;), respectively, and & = (bg,bs,. bk buty o bes brg, o beog)
which is explained in (1.2).

The other values of variances and covariances not mentioned above are all
zeros. Thus, we can obtain the following results,

(3.1) V(i) = %Var(g)(a:))

N
= ;[vo + (v + 200,11)p2 + 01104
+ (v12 — 2'011)(%%1’% R xi—lwi)]a

and,
1
9 il
82) alp) = 1 [ Vo)
N k P4
. 2 2 4 - 7
= [ + (v1 + 2¢0,11)p" + vi1p + (v1g 2v11) <2> k:(k+2)]
Therefore,

[w(pvqﬁlv ¢2, RN ¢k-2,(9) — U—)(IOMZ

N\? k—1)2
= (;) (vi2 — 2v11)? [(I%OC% +otzp_gzr)t + ZL((TJJ)?Ps
(k - 1)( 2. 2

2 9y 4
Tixy + T xy)p

From this, for (2.4) we can obtain

_ N\ 6(v12 — 20 D)*(k — 1)p°1
(3.3) h(p) = (;) (k+2)2(1k+4)(k:+6) X
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Thus, from (2.6)

N>2 6(v1z — 2011)2(k — 1)1
(

k
(3.4) Bi(D) (F k+2)2(k+4)(k+6)(k+8)

"L

If we take the scaling factor g = 1/v/k in the 35-factorial design, the variances vio
and vy, become (1/g*)vio and (1/g*)v11, respectively, after scaling. So

_(NN? 6k (v12 — 2011)*(k — 1)
(3.5) Re(D) = <;> (k+2)2(k+ 4)(k +6)(k + 8)g®

Table 1 gives the values of Py(D) = 1/[1 + Ry (D)] for various k, which indicates
that as k increases 3*-factorial designs deviate more from rotatability.

Table 1. Values of Py (D) for 3*-factorial designs.

k 2 3 4 5 6
P,(D) 0.468 0.115 0.040 0.018 0.010

3.2 Central composition designs

In general, the Central Composition Design (CCD) consists of 2¥ or a fraction
of 2% factorial points (+1,=£1,...,£1), 2k axial points of the form (+a,0,...,0),
etc., and a center point (0,0,...,0). The center point may be replicated ng times.
Thus the total number N of experimental points can be written as

N=F4+2k+ny=F+T

where F' is the number of factorial points (F = 2F if a full factorial is used and
F = 2F=P (p > 1) if a fractional factorial is used), and T' = 2k + ng. For the CCD,
it can be shown that for any fractional factorial configurations,

o — kF +2a* 2
07 924(F + T — 2k) — 402kF + kFT
1 2 .
= =1,2,....k
U'Z/ F+2a20 (Z 7 b K )’
1 L
Vij = ng (¢ # 1),
{22 +40 - k) + (- 1)T}F +22*(T -2k +2) ,
Vit T T 004 (204 + kT — 4ka?)F + 20 (T — 2Kk)}
(i=1,2,....k),
o 4ot + 402F — TF 2 (i£])
w33 = 50A{(20% + kT — Aka?)F + 20°(T — 2k)} I
—(F +207) 2 (i=1,2,....k)

€04 = 30A(F + T — 2k) — 402kF + KET*
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where Ciigj = COV(bii,bjj) and Co,ii = COV(bo,bii). ThHS, we can obtain the
following results:

N
(3.6) Viz) = ;[vo 4 (vy + 2¢0,11)p° + v11p*

+ (v12 + 2¢11,22 — 2011) (7323 + -+ zp_ 73],

N
(3.7) w(p) = -2 |vo + (v + 200711)p2 + v11p?
k-1
+ (U12 + 2011,22 — 2'011>2((T+_21)p4

and

N6 2 —20;1)2(k — 1), p8
(38)  h(p) = <‘5> (v12-+ 2118 = 2000)°(h ~ i

: 4 (k+2)2(k +4)(k +6)

In the CCDs, the scaling factor, g, should be

g_{l/a, if o > vk

1/VE, ifa<k.
Then
. N 2 6k('U12 + 2011’22 — 21}11)2(]{3 — 1)
(3:9) Ry (D) = (Zﬁ) k= 22(k+ ) (k< 6)(E+8)5°"

Table 2 gives the values of Py(D) for various k, p and a.

Figures 1 through 3 give the contour plot ov V() for the CCDs (k=2,p =0,
ng = 1) with & = 1.00, 2.00 and 3.00. Note that when o = 1.00, the CCD is the
32 factorial design.

Table 2. Values of Py (D) for CCDs for various &, p and a (ng = 1).

k=2 k=3 k=4 k=5 k=5 k=6 k=6

@ p=0 p=0 p=0 p=0 p=1 p=1 p=2
1.00 0.4675 0.0333 0.0034 0.0005 0.0013 0.0002 0.0006
1.50 0.9911 0.8339 0.1413 0.0162 0.0595 0.0082 0.0292
2.00 0.4675 0.6814 1.0000 0.3177 1.0000 0.1890 1.0000
2.50 0.0932 0.1242 0.2699 0.8537 0.2576 0.8583 0.2548
3.00 0.0209 0.0250 0.0445 0.1081 0.0419 0.1117 0.0413
3.50 0.0059 0.0067 0.0108 0.0205 0.0102 0.0212 0.0100

Rotatable o 1.41 1.68 2.00 2.38 2.00 2.38 2.00
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Fig. 1. Contour plot of V(z) for CCD (k =2, p =0, ng = 1, a« = 1.00).
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Fig. 2. Contour plot of V(z) for CCD (k =2, p =0, ng = 1, a = 2.00).
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4. Comparison of rotatability measures

It is of interest to compare the proposed measure Pyx(D) with the measures
of Khuri (1988), Draper and Guttman (1988) and Draper and Pukelsheim (1990).
Both Khuri’s measure and Draper and Pukelsheim’s measure compare the form of
X'X matrix from regression model with that of rotatable design, and can be used
with any model of order d (> 1). However, both measures do not provide infor-
mation about variance contour shape. On the other hand, Draper and Guttman
provide an index that characterizes the general overall shape of variance contours.
But it is difficult to apply this index to general nonsymmetric designs.

For the usefulness of our proposed measure, we want to mention the following
facts.
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Fig. 3. Contour plot of V(z) for CCD (k=2,p=0, ng = 1, &« = 3.00).

Table 3. Comparison of the four measures of rotatability.

Criteria Khuri Draper & Draper & Py(D)
Guttman Pukelsheim
Applicability
to asymmetric Yes No Yes Yes
design
Invariance
w.r.t the No No Yes Yes

design rotation

Information
about variance No Yes No No

contour shape
Range 0~100 O~ +oo 0~1 0~1

Order of the
model to which the d>1 2 d>1 2

measure applies

First of all, we can easily obtain the variance contour V(z) like Figs. 1-3
from the equations (3.1) and (3.6), since V(z) is expressed in terms of spherical
coordinates. Next, it is true that the proposed measure is only applied to second
order designs. However, rotatability is mainly discussed for second order response
surface designs, and this limitation does not pose any practical problems for the
usefulness of this measure in response surface methodology. Last of all, we have a
computer program, named SROTA, which computes Py (D) for any second-order
design. This program can be obtained from the authors upon request. For a given
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design, this program obtains V(z), compute @(p) and h(p), and then calculate

Ry (D).
In Table 3, we make a comparison of the four measures of rotatability on the
basis of five criteria.
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