ON RATES OF CONVERGENCE OF INFORMATION THEORETIC CRITERION IN RANK DETERMINATION OF ONE-WAY RANDOM EFFECTS MODELS*

Y. Wu

Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

(Received February 28, 1992; revised September 2, 1992)

Abstract. In this paper, upper bounds on the probabilities of wrong determination of the rank of covariance matrix of random effects in one-way random effects models are given, based on the information theoretic criterion. Under weak conditions, the bounds are shown of exponential-type.

Key words and phrases: Rate of convergence, information theoretic criterion, one-way random effects model, rank determination.

1. Introduction

Consider a one-way multivariate random effects model:

\[x_{ij} = \mu + \alpha_i + e_{ij} \]

for \(i = 1, \ldots, k; \ j = 1, \ldots, m \), where \(\mu \in \mathbb{R}^p \) is the general mean vector, \(\alpha_i \) is the vector of random effects of \(i \)-th column and \(x_{ij} \) denotes the \(j \)-th observation on \(i \)-th column and \(e_{ij} \) is distributed as multivariate normal with mean vector \(0 \) and covariance matrix \(\Sigma_1 \). Also, \(\alpha_i \) is distributed independent of \(e_{ij} \) as multivariate normal with mean vector \(0 \) and covariance matrix \(\psi \). Let \(\Sigma_2 \) denote the covariance matrix of \(x_{ij} \), then \(\Sigma_2 = \psi + \Sigma_1 \). It is of interest to test whether the rank of \(\psi \) is \(r \). If \(\psi \) is not of full rank, then we can take advantage of this knowledge in estimating \(\psi \). Specially, that \(r = 0 \) is equivalent to that there are no column effects. Anderson (1984, 1985) and Schott and Saw (1984) have independently derived the likelihood ratio test statistic for testing the hypothesis on the rank of \(\psi \). Zhao et al. (1986) suggests to use information theoretic criterion (ITC) to determine the rank of \(\psi \). They have showed that the criterion is strongly consistent.

The main contribution of our paper is to give exponential-type bounds on the probabilities of error determination under certain conditions, based on the ITC.

* The work was partially supported by Natural Sciences and Engineering Research Council of Canada and Faculty Research Grant, Faculty of Arts, York University.
proposed in Zhao et al. (1986). The bounds tend to zero rapidly as the sample size increases. The paper is organized as follows.

In Section 2, the preceding problem is generalized and some preliminaries are given. In Section 3, several theorems about the rates of convergence of the ITC are given and proved.

2. Preliminaries

In Model (1.1), let S_b and S_w denote the between groups and within group sums of squares and cross products matrices respectively. Then S_b and S_w are distributed independently as central Wishart matrices with $k-1$ and $k(m-1)$ degrees of freedom respectively, $E(S_b) = (k-1)(\Sigma_1 + m\psi)$ and $E(S_w) = k(m-1)\Sigma_1$. Hence, we can generalize the problem as follows.

Suppose that y and u are $p \times 1$ complex random vectors which are distributed with mean vector 0, $E uu^* = \Sigma_1 > 0$, $E yy^* = \Sigma_2 > 0$, where $(\cdot)^*$ is the conjugate transpose of (\cdot). Also, $\Sigma_2 = \Gamma + \sigma^2 \Sigma_1$, where σ^2 is known and Γ is a $p \times p$ nonnegative definite matrix of rank q with $q < p$. Assume that two independent sets of observations $\{u_1, \ldots, u_{n_1}\}$ and $\{y_1, \ldots, y_{n_2}\}$ of u and y are available. Let $n_1 S_1 = \sum_{i=1}^{n_1} u_i u_i^*$ and $n_2 S_2 = \sum_{i=1}^{n_2} y_i y_i^*$. Then $E(S_1) = \Sigma_1$ and $E(S_2) = \Sigma_2$, respectively. We need to estimate q.

Denote the eigenvalues of $\Sigma_2 S_1^{-1}$ by $\delta_1 \geq \cdots \geq \delta_p$ and denote the eigenvalues of $\Sigma_2 \Sigma_1^{-1}$ by $\lambda_1 \geq \cdots \geq \lambda_p$. Let H_k denote the hypothesis that

$$H_k : \lambda_1 \geq \cdots \geq \lambda_k > \lambda_{k+1} = \cdots = \lambda_p = \sigma^2,$$

and let M_k denote the model for which H_k is true. Without loss of generality, we may assume that $\sigma^2 = 1$. Then, let

$$I(k, C(n)) = \frac{n}{2} \sum_{j=1+\min(k, \tau)}^{p} [\log(\alpha_n + \beta_n \delta_j) - \beta_n \log \delta_j] + C(n)\nu(k, p),$$

where $\alpha_n = n_1/n$, $\beta_n = n_2/n$, $n = n_1 + n_2$, $\tau = \#\{i \leq p : \delta_i > 1\}$, $\nu(k, p) = k(2p - k + 1)$, the number of free parameters in H_k, and $C(n)$ is chosen to satisfy the following conditions:

$$\lim_{n \to \infty} \frac{C(n)}{n} = 0; \quad \lim_{n \to \infty} \frac{C(n)}{\log \log n} = \infty.$$

In Zhao et al. (1986), an estimate \hat{q} of q is proposed to satisfy

$$I(\hat{q}, C(n)) = \min\{I(0, C(n)), \ldots, I(p-1, C(n))\}.$$

This criterion was proven to be strongly consistent in Zhao et al. (1986).

Denote matrices Σ_1, Σ_2, S_1 and S_2 as

$$\Sigma_l = (\sigma_{ij}^{(l)}), \quad S_l = (s_{ij}^{(l)}), \quad l = 1, 2$$
and let their respective eigenvalues be $\lambda^{(l)}_1 \geq \cdots \geq \lambda^{(l)}_p$ and $\delta^{(l)}_1 \geq \cdots \geq \delta^{(l)}_p$ for $l = 1, 2$. The following lemma is needed in the proof of the main theorem.

Lemma 2.1. Assume that p eigenvalues of Σ_1 take t different values, say $\mu_1 > \cdots > \mu_t > 0$. For the matrices $\Sigma_l, S_l, l = 1, 2$, if $\max |\sigma^{(l)}_{ij} - s^{(l)}_{ij}| \leq \alpha \leq \lambda^{(1)}_p/p$, then $|\lambda_i - \delta_i| \leq M \alpha$ where $M = p^2[K\lambda^{(2)}_1(1/\sqrt{\lambda^{(1)}_p} + 1/\sqrt{\lambda^{(1)}_p} - p\alpha) + p/(\lambda^{(1)}_p - p\alpha)],$ and $K = (2tp^3/\sqrt{\mu_t})[\mu_t/(\min_{i\neq j}|\mu_i - \mu_j|)](1 + \mu_1/\mu_t) + 1/\mu_t + p^2/(2\mu_t(\mu_t - p\alpha)^2)$.

For the proof, see Tam and Wu (1991).

The following inequality is also needed in the proof of the main theorem:

\[(2.3)\quad x(1-x) \leq \log(1+x) < x\]

for $|x| < 1/2$.

3. Rates of convergence of the ITC

In this section, we study the rates of convergence of the criterion (2.2). Let

\[G(k) = - \sum_{j=1+\min(k,\tau)}^p [\log(\xi + \zeta \delta_j) - \zeta \log \delta_j] \]

where $\xi + \zeta = 1, 0 < \xi < 1$. Define $I(k, \tilde{C}) = -G(k) + \nu(k, p)\tilde{C}$ where $\tilde{C} = 2C(n)/n$. It is easy to see that an estimate \hat{q} of q such that

\[I(\hat{q}, \tilde{C}) = \min\{I(0, \tilde{C}), \ldots, I(p-1, \tilde{C})\} \]

is same as the one given by (2.2). We have the main theorem as follows.

Theorem 3.1. Let $S_l : p \times p$ be an estimate of $\Sigma_l, l = 1, 2$ as before. We assume that the following conditions are true:

(i) $\max |\sigma^{(l)}_{ij} - s^{(l)}_{ij}| \leq \alpha, l = 1, 2$.

(ii) There is a fixed interval $[a, b] \subset (0, 1)$ such that $\xi \in [a, b]$.

(iii) $0 < \alpha < \lambda^{(1)}_p / p$.

(iv)

\[(3.1)\quad \varepsilon < \min \left\{ \frac{\lambda_q - 1}{2}, \frac{1}{2} \right\} \]

where $\varepsilon = M\alpha, M$ is given in Lemma 2.1.

(v) $(p-q)e^2 < \tilde{C}$.

(vi) \[2p\tilde{C} < g(\gamma_0), \text{ where } g(\gamma_0) = \min\{\log((1-\gamma) + \gamma(\lambda_q + 1)/2) - \gamma \log((\lambda_q + 1)/2): \gamma \text{ in an interval } [a, b] \subset (0, 1)\} \]
Then

\[(3.2) \quad P(\hat{q} \neq q \mid H_q) \leq \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{l=1}^{2} P(|s_{ij}^{(l)} - \sigma_{ij}^{(l)}| \geq \alpha).\]

Proof. By (i) and Lemma 2.1, we get that \(|\lambda_i - \delta_i| \leq \varepsilon, i = 1, 2, \ldots, p.

Obviously, \(\delta_q \geq \lambda_q - |\lambda_q - \delta_q| \geq \lambda_q - \varepsilon \geq (\lambda_q + 1)/2 > 1.\) Thus \(\min(q, r) = q\) as \(r \geq q.\)

Let \(k > q,\) then \(\min(k, r) \geq q.\) Thus we obtain:

\[
\tilde{I}(q, \bar{C}) - \tilde{I}(k, \bar{C}) = \left\{ \sum_{i=1+q}^{\min(k, r)} [\log(\xi + \zeta \delta_i) - \zeta \log \delta_i] \right\} + (\nu(q, p) - \nu(k, p)) \bar{C}.
\]

For \(i > q, \lambda_i = 1.\) Since \(|\lambda_i - \delta_i| = |1 - \delta_i| \leq \varepsilon < 1/2,\) by the inequality (2.3), we have

\[
\log(\xi + \zeta \delta_i) - \zeta \log \delta_i \leq \zeta(\delta_i - 1) - \zeta(\delta_i - 1)[1 - (\delta_i - 1)] = \zeta(\delta_i - 1)^2.
\]

Thus,

\[
[I(q, \bar{C}) - I(k, \bar{C})]/\bar{C} \leq \frac{1}{C} \left\{ \sum_{i=1+q}^{\min(k, r)} \zeta(\delta_i - 1)^2 - (k-q)(2p-k-q+1) \right\}
\]

By Condition (v), it follows that \((1/C)\sum_{i=1+q}^{p} \zeta(\delta_i - 1)^2 < 1.\) As \((k-q)(2p-k-q+1) > 1, [I(q, \bar{C}) - I(k, \bar{C})]/\bar{C} < 0 \) or \(I(q, \bar{C}) < I(k, \bar{C}).\)

Let \(k \leq q.\) Then \(\delta_i \geq \cdots \geq \delta_q > 1\) for \(i \leq k.\) By condition (iv), \(\delta_i \geq (\lambda_q + 1)/2 > 1\) for all \(i = k+1, \ldots, q.\) The function \(f(\delta) = \log(\xi + \zeta \delta) - \zeta \log \delta\) is increasing for \(\delta > 1.\) As \(\min(q, r) = q\) and \(\min(k, r) = k,\)

\[
G(q) - G(k) = \sum_{i=k+1}^{q} [\log(\xi + \zeta \delta_i) - \zeta \log \delta_i]
\]

\[
\geq (q-k) \left[\log \left(\xi + \zeta \frac{\lambda_q + 1}{2} \right) - \zeta \log \frac{\lambda_q + 1}{2} \right].
\]

The function \(g(\gamma) = \log((1-\gamma) + \gamma(\lambda_q + 1)/2) - \gamma \log (\lambda_q + 1)/2\) is continuous. For some interval \([a, b] \subset (0, 1),\) there is a \(\gamma_0\) so that \(0 < g(\gamma_0) \leq g(\gamma)\) since \(g(\gamma) > 0\) for \(\gamma \in [a, b] \subset (0, 1).\) Thus

\[
G(q) - G(k) > (q-k) g(\gamma_0)
\]

and

\[
\tilde{I}(q, \bar{C}) - \tilde{I}(k, \bar{C}) = -G(q) + G(k) + 2[\nu(q, p) - \nu(k, p)]\bar{C}
\]

\[
< -(q-k)g(\gamma_0) + (q-k)(2p-k-q+1)\bar{C}
\]

\[
= (q-k)[(2p-k-q+1)\bar{C} - g(\gamma_0)].
\]
By (vi), $I(q, \tilde{C}) < I(k, \tilde{C})$. Hence $\hat{q} = q$ and

$$P(\hat{q} \neq q \mid H_q) \leq \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{l=1}^{2} P(|s^{(l)}_{ij} - \sigma^{(l)}_{ij}| \geq \alpha).$$

Remark 3.1. From the proof, it is easy to see that $\nu(k, p)$ can be chosen as a strictly increasing function of k.

Remark 3.2. The result here is different from the result in Bai et al. (1989). In Bai et al. (1989), Σ_1 is an identity matrix and an independent estimation of Σ_1 is not required.

The proof is existential. When we are interested in the limiting properties, we can choose $\alpha = \alpha(n)$ and $C(n) = n\tilde{C}/2$ satisfying the following properties:

$$\frac{\alpha(n)}{n} \downarrow 0,$$

$$\frac{C(n)}{n} \rightarrow 0,$$

$$\frac{C(n)}{na^2(n)} \rightarrow \infty.$$

Then for large n, conditions in (3.1) hold. If $C(n)$ satisfies (2.1), we can choose $\alpha = \alpha(n)$ so that (3.3) is true. We thus have the following.

COROLLARY 3.1. If $\alpha(n)$ and $C(n)$ are chosen so as to satisfy condition (3.3) and $\nu(k, p)$ is strictly decreasing function, then upper bound (3.2) on the probability of wrong determination holds.

From (3.2) we see that the probability of correct determination increases as the value of α increases. Therefore, from (3.3) we observe that the probability of correct determination increases as the value of $C(n)$ increases, since a larger value of $C(n)$ allows us to take a larger value of $\alpha(n)$.

Up to now, no special assumption is made about S_l, $l = 1, 2$. For the remaining, we impose some moment conditions and obtain results as in Bai et al. (1989). The proofs are similar to those in Bai et al. (1989) and will not be given.

THEOREM 3.2. Suppose that y_1, y_2, \ldots are identically and independently distributed (i.i.d.) vectors of order $p \times 1$ such that $E(y_1) = 0$, $E(y_1 y_1^*) = \Sigma_2$ and $E|y_1|^{2n} < \infty$ for $\eta > 1$ and that u_1, u_2, \ldots are i.i.d. vectors of order $p \times 1$ such that $E(u_1) = 0$, $E(u_1 u_1^*) = \Sigma_1$ and $E|u_1|^{2n} < \infty$. Also, let $C(n)$ and $\alpha(n)$ be chosen so that they satisfy (3.3). Then for any $s > \eta$, we have

$$P(\hat{q} \neq q \mid H_q) = O(n/(na^2))^\eta + O((na^2)^{-s}) \quad \text{as} \quad n \rightarrow \infty.$$

COROLLARY 3.2. In Theorem 3.2, if we take $\alpha = \alpha(n) \downarrow 0$ as a slowly varying function and $C(n) = na$ then

$$P(\hat{q} \neq q \mid H_q) = O(n^{1-\eta}(\alpha)^{-\eta}) \quad \text{as} \quad n \rightarrow \infty.$$
The exponential-type bound on the probability of wrong determination is given as:

Theorem 3.3. Suppose that y_1, y_2, \ldots are i.i.d. with $E(y_1) = 0$, $E(y_1 y_1^*) = \Sigma_2$ and $E\{\exp(\eta |y_1|^2)\} < \infty$ for some $\eta > 0$. Also let u_1, u_2, \ldots be i.i.d. with $E(u_1) = 0$, $E(u_1 u_1^*) = \Sigma_1$ and $E\{\exp(\eta |u_1|^2)\} < \infty$. Then

$$P(\hat{q} \neq q \mid H_q) \leq C \exp\{-b\alpha^2\}$$

as $n \to \infty$ for some constants $b > 0$ and $C > 0$.

Corollary 3.3. If $\alpha(n) \downarrow 0$ is a slowly varying function, $C(n) = n\alpha$ and the conditions of Theorem 3.3 are true, then for any $\delta > 0$

$$P(\hat{q} \neq q \mid H_q) \leq C \exp(-bn^{1-\delta}).$$

Remark 3.3. If $n_i S_i \sim W_p(n_i, \Sigma_i), i = 1, 2$, and S_1 and S_2 are independent, then the results in Theorem 3.2 and Theorem 3.3 hold.

Back to the original problem, the solutions follow from the above remark.

Acknowledgements

The author acknowledges gratefully many helpful suggestions by the referees.

References