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Abstract. In this paper we address the problem of testing the equality of &
intraclass correlation coefficients based on samples from independent p-variate
normal populations, and explore various aspects of optimality through invari-
ance. A UMPIU test is derived for k = 2, and LMMPIU test of SenGupta and
Vermeire (1986) is indicated for k > 2. Several approximately optimum invari-
ant tests are also proposed. The tests are compared with the approximate LR
tests and Fisher’s Z-tests derived in Konishi and Gupta (1987, 1989). As ex-
pected, the performance of the proposed tests turns out to be quite satisfactory
and superior to the LR tests and Z-tests.

Key words and phrases: Intraclass correlation, invariance, locally most pow-
erful invariant unbiased test, uniformly most powerful invariant unbiased test.

1. lIntroduction

The intraclass correlation coefficient p is frequently used to measure the degree
of intrafamily resemblence with respect to characteristics such as blood pressure,
weight, height, stature, lung capacity, etc. Statistical inference concerning p for
a single sample problem based on a normal distribution has been studied by sev-
eral authors (Scheffe (1959), Rao (1973), Rosner et al. (1977, 1979), Donner and
Bull (1983), Srivastava (1984), Konishi (1985), Gokhale and SenGupta (1986),
SenGupta (1988)). Surprisingly, however, its extension to multisample problems
based on several multivariate normal distributions has received very little atten-
tion. While simultaneous estimation of several intraclass correlation coefficients
can be handled without much difficulty, the problem of testing their equality can
indeed be challenging. Below we review the literature on this latter problem.

For testing the equality of two intraclass correlation coefficients based on two
independent multinormal samples, Donner and Bull (1983) discussed the likelihood
ratio test. This, however, involves an iterative maximization of the likelihood
function. Konishi and Gupta (1987) proposed a modified likelihood ratio test
and derived its asymptotic null distribution. They also discussed another test
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procedure based on a modification of Fisher’s Z-transformation, following Konishi
(1985).

Most recently, Konishi and Gupta (1989) treated the problem of testing the
equality of more than two intraclass correlation coefficients based on independent
samples from several multinormal distributions. Noting that the implementation
of the true likelihood ratio test can be very difficult, these authors proposed an
approximate likelihood ratio (ALR) test, derived its asymptotic null and nonnull
distributions, and also considered another test procedure based on a modification
of Fisher’s Z-transformation.

The existence of an “optimum” test, however, for the problem of testing the
equality of k (two or more) intraclass correlation coeflicients based on multinormal
samples has not been attempted so far. This is precisely the objective of the present
investigation., By employing the powerful tool of invariance, we investigate the
existence of either a uniformly most powerful invariant unbiased (UMPIU) test or
a locally best invariant unbiased (LBIU) test for the above problem. It turns out
that, for £ = 2, a UMPIU test exists quite generally. For k& > 2, although a LBIU,
more specifically locally most mean power unbiased (LMMPU) test of SenGupta
and Vermeire (1986) can be easily described, its implementation seems to be quite
difficult. Various approximately optimum invariant tests are suggested for k > 2,
and compared with the ALR and Z-tests of Konishi and Gupta (1989). It turns
out that the performance of our proposed tests is far superior to those of Konishi
and Gupta (1989).

To describe the invariance approach, suppose that a random sample of size n;
is available from the p-variate normal population Ny [u;1,02{(1 — p;)I, + p;11'}],
i = 1,2,...,k, where p;, 02 and p; are the common mean, common variance
and common intraclass correlation in the i-th population. By using a standard
canonical reduction (Rao (1973)), the underlying statistical model can be described
as involving the variables {X;,Y;, Z;,i = 1,...,k} distributed independently as

XlNN[:U“l(pnz)l/QaUE(l-l_(p_l)pl)]7 izlv"'ak7
ZlNUz2<1"pZ)X72nﬂ 7/:1,,16'

where v; =n; — 1, m; =n;(p—1),i=1,2,..., k.

A natural group of transformations keeping the testing problem Hy : p; =
<o = pp versus Hy: not all p;’s are equal invariant is easily seen to be G whose
typical element g can be expressed as g = (6;,&;,¢ = 1,...,k) where §;’s are reals
and & > 0,7 = 1,..., k. The group operation (action of g on [(X;,Y;, Z;),i =
1,...,k]) can be described as

(12) g[(XZ,Y;,ZZ),Z =1,.. ,]‘G] = [SzXz =+ 57;,£Z'Yi,£izi,i =1,... ,k‘]

A maximal invariant statistic under the above action is the vector of ratios
(YV;/Z;,i = 1,...,k) and a maximal invariant parameter is given by ((1 + (p —
Dp:)/(1=pi),i=1,...,k). Writing F; =Y;/Z; and 0; = (1+(p—1)/ps)/ (1 — ps),
1 = 1,...,k it then follows that an invariant test of Hy versus H; under G must
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depend on the F;’s. In terms of the maximal invariant parameters 6,’s, the null
hypotheses Hy corresponds to their equality. By using the fact that the random
variables F;’s are independently distributed as scaled F-variables with #;’s as scale
parameters, and employing yet another group of scale multiplication we derive be-
low an optimum test of Hy versus Hy. In Section 2, we consider the case k = 2
and derive a UMPIU test. Some asymptotic approximations are also suggested for
large n;’s. Section 3 deals with the case k > 2. A LBIU, more specifically LMMPU
test of SenGupta and Vermeire (1986) test is discussed and several asymptotically
optimum invariant tests are proposed. It may be noted that Cohen et al. (1985)
and most recently Kariya and Sinha (1991) discussed the LBI tests for homogeneity
in multiparameter exponential families. However, this is not directly applicable
in our problem since a scaled F-distribution does not belong to an exponential
family.

It should also be noted that when the constants v;’s and m,’s are equal (this
happens when the sample sizes n;’s from the & populations are the same), there
exists a permutation group P whose action keeps the underlying testing problem
invariant. In both the cases of k = 2 and k& > 2, we have used P to discuss relevant
optimum invariant tests when the equality of n;’s holds.

We conclude this section with the important observation that, unlike the tests
known so far which are valid only for large samples, our proposed optimum tests are
valid invariant tests irrespective of the nature of sample sizes. This is a significant
improvement for all k£, and particularly for k£ = 2. Of course, as a referee pointed
out, our invariant tests have the demerit that neither equal differences nor equal
ratios of the intraclass correlations are detected with the same probability.

2. Test of Hy: py = pg versus Hy : p1 # pa

For k = 2, the relevant invariant statistics are F; ~ Oixl%i/ Xfm, 0, = {1+
(p—1)pi}/(1 — pi), i = 1,2. Clearly the problem of testing Hy : ; = 5 versus
Hy : 0, # 05 remains invariant under a scalar multiplication by ¢ > 0. A maximal
invariant statistic is U = F;/F, whose pdf depends only on § = 65/6; and is given
by

Q1 fal) = e
) s(u) =
5(3:3)8(55)

27 2

> 33(1/1-1—1/2)/2—165‘r
. l:/(; (1 + :L‘)(V2+m2)/2(1 + uwﬁ)(h—i—mﬂ/?

For testing Hy : 0 = 1 versus Hj : § # 1 based on the ultimate invariant statistic
U, we proceed in the usual fashion (see Lehmann (1986), Chapter 4). Tt is argued
below that the UMPU test ¢(u) based on U is given by

1 fu<doru>d
2.2 — 1 2
(2.2) (u) { 0 otherwise
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where d; and dy are obtained from the size and (local) unbiasedness conditions
given respectively by

ds
(2.3) l—a= ; fs=1(u)du
and 1
(2.4) 0= [ 6 i)

or, equivalently,

41 1 d u1/?
w0 L s e )

oo -73(V1+U2)/2d$ ;
/0 (1 + ) +ma)/2(1 4 ug)(arma/z+1 | 4

That the above test is globally unbiased follows from a comparison with the trivial
test ¢*(u) = a (see Lehmann (1986), pp. 136-137). For the original model (1.1),
this test is therefere UMPIU. Following Lehmann (1986), for any fixed § # 1, the
rejection region R of a UMPIU test can be written as

+ ch(s:l(u)} .

6=1

Using (2.1) and (2.4), R is equivalent to

o0 x(z/1+m1)/2—1
(2.6) R= {“ ' /0 (1 F z)vatma)/3(1 1 ux6)<”1+m1)/2dm
oo u:lj(y1+m1)/2dl'
> 01/
0 (1 + x)(u2+mz)/2(1 + ux)(”1+m1)/2+1
) I(V1+m1)/2_1d$
+Cz/ :
0 (1+x)(”2+m2)/2(1—|—u;1;')(1/1+m1)/2}

Making the transformation v = ux, R can be expressed as

o0 (V1+m1)/2—1d
v v
(2.7) R= 1/ N (ratms)/2
O (1 vg)etmz (14 °)
U
o0 pritmi)/2 g,
ch/ T
0 (1 + E)( 2tm2)/2 (1 +,U>(u1+m1)/2+1
U
[eS] 7}(1/1~f—ml)/2—1d,v
+62/ 1% T
0 (1 N %)( 2 tm2)/2 (1 4 v)@r+m)/2
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Define

(2.8) b(u) / Oo e
2.8 u) =
(va+tma)/2
0 (1+ U)(ul+m1)/2 (1 + 3)
U

1+v (vi+m1)/2 v J
: - —c
14vé Cll—l—v 20

so that R = {u : ¥(u) > 0}. It is proved in the Appendix that ¥(u) is convex in
u so that R is outside an interval, i.e., B = {u: u < d1(6) or u > d2(6)}. Since
d1(6) and do(6) are obtained from (2.3) and (2.4), it follows that d; and dy are
absolute constants, independent of §, which justifies (2.2). The power of the test
¢(u) for any 6 # 1 is obtained as

ds 2§
(2.9) Power; (6) =1 — fs(u)du=1— fo=1(u)du.

d di6

Computations to evaluate di, do and hence power can be somewhat simplified
using the following series expansion of the underlying integrands. Since, quite
generally, it holds that

&0 " ldz
(2'10)/0 (04200 +u)

[ele] t ._1 '
Z(ﬂ )(1—u)JB<r+j-/s+t—r>, 0<u<l

_ ) =0 J
t+5—-1 — 1)
Z( +‘7, (u )B(r.,s%—t—l—j—r), u>1
— 7 i+t
]:

where r = (11 + 10)/2, s = (1o + ma) /2, t = (11 +m1)/2, we get
UU1/2_15V1/2
(2.11) fé(“):B vy T o (T2 T
(57)2(53%)

it —1 ,
z< +]. >(1—u6)]B(r+j,s+t—r), D<us <1

=0 J
(P (w1 |
Jz:%< J >WB(T’3“+J—T)7 ué > 1,
so that
ur1/2—1

(2.12) fs=1(u) = UL Vg g
6 B(3.5)B(3 %)

[o.e] ¢ ._1 )
E(“ )(1-u>JB<r+j,s+t~r), 0<u<l

=0 J

o0 . :
t+5—1\ (u—1)7 .
g < i ) T B(r,s+t+j—r), u>1,

=0
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and the integrand fi_,(u) in the RHS of the equation following (2.4) as

) uvt/2
(2.13) fo_y(u) = B (%00 5 (2, 12)
2’2 27 2
° .
. A
Z(—ljj>(1—u)JB(r—|—1+j,S+t~7“), 0<u<l
o\ j
o
o0 ; ]
t+7) (1—u) '
Zo< J ) i tt+l Blr+lLs+t+j—r), u>l
P

We now proceed to provide two approximations of ¢(u). Our one-step approx-
imation of ¢(u) is based upon replacing Z;/m; by its a.s. limit 02(1 — p;), i = 1, 2.
This is easily justified even for moderate sample size. Working with the statistics
Fr =Ym;/Z; ~ Hz-x,%i, 1 = 1,2, derivation of an optimum invariant test based
upon U* = Fy/F¥, which is a maximal invariant under scale multiplication of Fy'
and FY, is now straightforward. Since the pdf fs(u*) of U*, namely,

u*v1/2—15V1/2

B (%%) (1 + 6u”)

D<u*<oo, 0<d< 0

2.14)  fs(u') =

e
2

admits an MLR property, arguing as before, the UMPU test based on U* is readily
obtained as

% 1 ifu* <eporu*>e
2.15 — {
( ) o) 0 otherwise

where e; and es satisfy the conditions:

e2/(1+e2) ml/1/2~1(1 . l‘)l'?/z_ldx
(2.16) 1_a:/ —or
e1/(14e) B (? 5)
and
ez/(1+e2) x”1/2(1 _ I)u2/2—1d$

/(ter) B (% T, %)

The power is then obtained as
€2
(2.18) Powery(6) =1 — / fs{u™)du™

625
=1 —/ So=1(u®)du”
615

e26/(1+eab) xy1/2—1<1 _ 33)1/2/2—1031'
_1 / .
e

[ 2}
15 1+€ 5 B (—-——7 —)
/(1+en6) 579
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The parameter consistency of the above test is obvious because for § — 0 and
§ — oo, the power approaches 1.

Our two-step approximation of ¢(u) is based upon the normal approximation
of X?}Z_ for large n;’s. It immediately follows from Lehmann ((1986), p. 376) that the
optimum invariant test rejects Hy whenever 1/11/2(1/1+V2){1n(U*1/2/V1)}2/8 > X%;a»
and that the power of this test can be computed as

(2.19) Powers(6) = P{x1(\) > xT.a}

where the noncentrality parameter A = (In§)?vyv9/2(vy + 15). It is clear that the
above power tends to 1 as min(vq,v») tends to oo, thus guaranteeing the (sample
size) consistency of this test. Moreover, since A = (In6™1)2115/2(11 + 1), it is
obvious that Powers(§) = Powers(§1).

Remark 2.1. When n; = no, one obtains v; = 15 and m; = my, implying
that I} and Fb are exchangeable statistics. The action of the multiplication group
coupled with the permutation group P boils down to the consideration of a maxi-
mal invariant statistic V = max(U, 1/U) where U = F/F; as defined earlier, and
the UMPI test rejects Hy for large values of V i.e., for V > ¢. The constant ¢
(obviously > 1) is obtained from the size condition (see (2.3) for a comparison),

oo 1/¢
(2.20) o= / fo=1(u)du + fs—1(u)du.
c 0
The power of this test is given by
00 1/c
(2.21) Power4(6) = / fs(u)du + fs(u)du
c 0

o0 (5/6
:/5 fo=1(u)du + fo=1(u)du.
C 0

The series expansions given in (2.11) and (2.12) can be used to determine ¢ and
power rather easily. Obviously, as expected, Powery(§) = Powers(61).

One-step approximation of the above test, which is analogous to (2.15), corre-
sponds to the rejection of Hy for V* = max(U*,1/U*) > e where e(> 1) satisfies:

1 v/2—1(1 _ Av/2-1 1/(1+e) wv/2—177 _ \v/2—1
(2.22) a:/ p () de +/ 2 Uom
e Q

v v v v ’
) (5
8 2°2 2°2

with its power given by

1 v/2=1(1 _ \w/2-1
(2.23) Power5(6):/ z (1 Vx?/ do
o B (55)

1/(1+e/6) mu/271(1 _ x)V/Q—ld:L,
o/ .
0

5(33)
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Table 1(a). Exact cut-off points (¢) of UMPIU test for k& = 2, a = 0.05.

ny na p/3 4 5 6

5 5 13.513 12.013 11.345 10.968
10 10  5.236  4.804 4.600 4.480
15 15 3.709  3.456  3.333 3.261

Table 1(a). continued. Powers of UMPIU test for k = 2, a = 0.05.

ny=>5mny=>5
p1p2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

p=4 p==56
0.1 0.050 0.076 0.154 0.333 0.735 0.050 0.084 0.204 0.432 0.828
0.3 0.067 0.050 0.074 0.172 0.542 0.083 0.050 0.074 0.204 0.616
0.5 0.125 0.069 0.050 0.084 0.344 0.181 0.080 0.050 0.084 0.386
0.7 0.262 0.149 0.079 0.050 0.160 0.388 0.191 0.088 0.050 0.173
0.9 0.636 0.469 0.303 0.149 0.050 0.792 0.586 0.369 0.168 0.050

p=3 p=5

n1 = 10, no = 10
o1 p2 01 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

p=4 p==6
0.1  0.050 0.120 0.338 0.694 0.981 0.050 0.165 0.465 0.824 0.995
0.3 0.096 0.050 0.116 0.384 0.906 0.144 0.050 0.138 0.465 0.948
0.5 0.252 0.100 0.050 0.145 0.709 0.408 0.129 0.050 0.165 0.774
0.7 0.565 0.314 0.127 0.050 0.354 0.773 0.431 0.156 0.050 0.394
0.9 0951 0.846 0.637 0.314 0.050 0.990 0.933 0.749 0.378 0.050

p= p=2>5

ny =15, ng =15

p1p2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

p=4 p=
0.1 0.050 0.167 0.501 0.877 0.999 0.050 0.241 0.665 0.955 1.000
0.3 0126 0.050 0.160 0.562 0.985 0.206 0.050 0.197 0.665 0.995
0.5 0.374 0.132 0.050 0.207 0.888 0.595 0.181 0.050 0.241 0.929
0.7 0.766 0.465 0.177 0.050 0.523 0.928 0.623 0.227 0.050 0.578
0.9 0995 0.963 0.831 0.465 0.050 1.000 0.992 0.914 0.556 0.050

p=3 p=35

Again, as expected, Powers(§) = Powers(67!). In the case of the two-step ap-
proximation described earlier, the noncentrality parameter A in (2.19) simplifies
to v(In§)?/4.

In Table 1(a) we have presented the exact cut-off points (c¢) and power of
our UMPIU test (see (2.20) and (2.21)) for ny = ny = 5,10,15, p = 3,4,5,6
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Table 1(b). Simulated two-sided cut-off points (di,dz) and powers of UMPIU test, k = 2,
a = 0.05.

n1:5,n2=10 n1:10,n2:15
pp2 01 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
p=23,d1 =0.088, dy = 6.656 p=3,d; =0.232, dy = 4.298

0.1 0.050 0.076 0.152 0.340 0.785 0.050 0.125 0.346 0.693 0.986
0.3 0.08¢ 0.050 0.078 0.189 0.604 0.104 0.050 0.131 0.422 0.931
0.5 0.171 0.081 0.050 0.094 0.396 0.297 0.109 0.050 0.173 0.761
0.7 0.386 0.209 0.100 0.050 0.189 0.643 0.367 0.143 0.050 0.422
0.9 0804 0.650 0.438 0.209 0.050 0.978 0913 0.715 0.367 0.050

p=4,dy =0.103, d» = 6.123 p=4,d1 =0.224, dp = 3.825

0.1 0.050 0.093 0.212 0.463 0.887 0.050 0.137 0.388 0.781 0.996
0.3 0.089 0.050 0.090 0.242 0.706 0.137 0.050 0.131 0.440 0.953
0.5 0.218 0.087 0.050 0.104 0.474 0.409 0.131 0.0560 0.167 0.794
0.7 0481 0.251 0.103 0.050 0.225 0.788 0.465 0.167 0.050 0.406
0.9 0.881 0.719 0.492 0.230 0.050 0.993 0.952 0.802 0.427 0.050

p=5,d; =0.097, dy = 5.399 p=5,d =0.216, dy = 3.552

0.1  0.050 0.092 0.223 0.486 0.906 0.050 0.143 0.425 0.818 0.997
0.3 0.117 0.050 0.085 0.237 0.717 0.184 0.050 0.1256 0.451 0.962
0.5 0.292 0.108 0.050 0.096 0.462 0.519 0.164 0.050 0.157 0.796
0.7 0.5386 0.308 0.125 0.050 0.205 0.859 0.543 0.200 0.050 0.396
0.9 0920 0.783 0.563 0.270 0.050 0.997 0.966 0.838 0.483 0.050

and a = 0.05. In view of the symmetry of the power function with respect to
p1 and ps, we have provided values of power for p; > pa when p = 3,5, and for
p1 < p2 when p = 4,6. In Table 1(b) exact cut-off points (dy,ds) and power of
the UMPIU test (see (2.2)) are shown for (ny,n2) = (5,10),(10,15), p = 3,4,5
and a = 0.05. Finally, in Table 1(c), powers of our proposed large sample tests
(see (2.23) and (2.19)) and those of ALR and ZT of Konishi and Gupta (1989)
are given for ny = ny = 25, p = 3,5 and o = 0.05. In Table 1(c), we have also
included a negative value of py. The impressive superiority of our proposed tests
and their simplicity are obvious.

3. Testof Hy:p; =--- = pg versus Hy : p;'s unequal, k > 2

For k > 2, the relevant invariant statistics under the action of the group G are
(Fi,...,Fy), where Fy ~ 0;x2 /x2,.,and 0; = {1+ (p—V)p;}/(1—ps), i =1,... k.
As observed in Section 2, the equivalent problem of testing Hy : 61 = -+ = 0,
versus Hj : 6;’s unequal remains invariant under a scalar multiplication of each F;
by ¢ > 0. A maximal invariant statistic is easily seen to be U = (Uy,...,Ux-1),
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where U; = F;/Fy, i =1,...,k — 1, with its pdf fs(u) given by

Hk} 11<u1/¢/2 151/1/2):|
Hz lB(VZz’ 2)

31 fs(uw) = {

/oo :L‘El vi/2 1d:13
0 (1 +{E)(Vk+mk)/2{l—[f:_11(1 +xui5i)(ui+mi)/2}

where 6 = (61,...,6k-1), 6; = 0x/0;,i=1,...,k—1. In terms of the final maximal
invariant parameter 8, the problem reduces to testing the simple null hypothesis

o :6 =1 versus H; : 6§ # 1. This is a genuine multiparameter problem for
which usually no uniformly optimum unbiased test exists. It is also well known
that even a locally most powerful unbiased test of type D (see Isaacson (1951)) is
usually hard to construct. Below, following the ideas in SenGupta and Vermeire
(1986), we describe a LMMPU test which maximizes ‘average’ local power among
unbiased tests. The following expressions follow directly from (3.1).

oo u; T
(2) 2ol v _wamd Togt@®)
9 5—1 2 2 I tu(z)ds =1Eh
i=1,2,...,k—1,
O fo(u)
(3.3) 552
5=1
v —2) vy +my) fooo 1 + wu(x)dx
REE 2 e
jele] Uj
+(Vi+mi)<Vi+m2+2) fo <1+UZ ) wu( ) B (u)
4 fo wu =1 ’
t= 17 L) kE—1
where

k—1
B wade) =i {<1 a2 T uix><”*"“>/2} |
1
The size and unbiasedness conditions of a test function ¢(u) can be expressed as

(3.5) / b(w) 5oy (w)dy =

¢ l/-L/2 1 50 .
(3.6) - Ys {/ ;wu(aj)dm}du
Yoo 14+ ux
I B( 5)
- Y =1, k-1
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and following SenGupta and Vermeire (1986), the test function ¢g(u) of a LMMPU
test is given by

k—1 0o 2
U T
1 if i " i 4 2 ¢ d
i ;(V +m;) (v +m; + )/0 <1+uix> Py (x)dx
(3.7)  do(u) = o
¢ (z)dz + Co/ Yu(z)dz
0
0 othervvlse
where the constants cg,cy,...,cx_1 are chosen so that ¢g(u) satisfies (3.5) and

(3.6). Unfortunately, although a formal description of a LMMPU test is available,
its implementation turns out to be quite difficult. For & = 3, the integrals involved
in (3.7) above can be simplified as indicated below. The simplification is essentially
based on (2.10).

Write r = Zlf vi/2, s = (v +mg)/2, t; = (v; +m;)/2, i = 1,2. Then,

i i <t1 +]1*1) <t2+j2—1>
J1=072=0 J2
(T —w) (1 = ug)?2B(r +j1 + ja, s +t1 +ta — 1),
for 0 < uq,ug <1

i Z (t1+31~1> <t2+j'22—1>

j1=072=0
. (UQ — 1)32
(=)= —
2

B(r+ji,s+t1+ta+j2— 1),

for0<u <1l<us <00

(3.8) / Yy (z)dr = (tl +jl—l> (t2 +j2A1>
° >y .
J1=03j2=0 J2
u; — 1)t ) _ .
(11‘—1+751)v(1_“2)323(7"+]2,8+t1+t2 +41—1),
U7

for O <us <1l <up <o

him;) <t1 +91 — 1) <t2 +j; - 1>
(ur —1)7 (up — 1)72

Jitity, jatta
u Uy

B(r,s+ti1+ta+j1+ 42— 1),

for 1 < uy,us < 0.

The other integrals

© wr o wr \’
1y - w(2)d
/0 1+uﬁu (x)dz  and /0 <1+uix> Yy (z)dz

can be analogously evaluated.
As in the case of k = 2, our one-step approximation of ¢g(u) is based upon
replacing Z;/m; by its a.s. limit o2(1 — p;), for ¢ = 1,...,k, which is equivalent
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to working with the statistics F;* = Y;m;/Z; ~ Gix,%i, 1 =1,2,...,k. For testing
the hypothesis of homogeneity Hy : 01 = .-+ = 6 versus H;y : 0;’s unequal,
we observe that under the action of a multiplicative group of transformations,
the vector U* = (Ut,...,U{_y), U = F;/F;, i =1,...,k — 1, is a maximal
invariant statistic with its pdf (depending only on a maximal invariant parameter

8=(61,...,6k-1),6,=0,/0;,;i=1,...,k—1) given by

I (Z_’f%> i
9 =1 #vi/2-1 v [2
(39) f&(U*) = k V; <H1 ]:jzl %k ->2.
r(2) [ susat

To derive the LMMPU test based on u*, we compute the following

ofs(u*)| v v . .
(310) 8—61 —|:5—m:|f5:1(u ), Z—l,7k—1
0 fs(u*)
=1

s (Zlf Vi)uf
o 2 + k=1 x\2
204+ >°7 "uf)

1

2 2+

1

n [ﬁ_ (o1 va)vg )} fszr(uw®), i=1,...,k—1

The size and unbiasedness conditions of a test function ¢(u*) can be expressed as

(3.12) / B(u") foo (u”)du” = o,

s o) (ﬁ) o (u)du' = <z> o

T
i=1,2,... k—1.

Since

k-1 82 *
(3.14) 2}4%#1
i=1

i
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we conclude from SenGupta and Vermeire (1986) that the LMMPU test function
é1(u*) can be written as

(3.15) pr(u) =41 1fz<1+z » Ci) 2 o

0 otherwise

where the constants cg, ¢y, ..., cg—1 are chosen so that ¢, (u*) satisfies (3.12) and
(3.13). Making the transformation v; = u} /(1 + Z’ffl uf),i=1,...,k — 1, the
above can be simplified as

(3.16) fr(v) = | ﬁEI =

0 otherw1se

where the constants ¢;’s satisfy the conditions

[o:wfotwyio =,

(3.17)
/¢1 Yo fo(v )dv—zllcyia, i=1,....k—1,
and
Zk » k » k—1
(3.18) fo(v) = {I‘ (%) /Hr (é)} (H U;’i/Z—l)
1 1
(l=v — - — vk_l)Vk/Q

represents a Dirichlet density. Choosing ¢; = E(v; | Hp) = v;/ Z'f vi,i=1,...,k—
1, reduces ¢ (v) to

k—1 2
(3.19) le(v) _J 1 if Z (Ui — ZZ:V) > ¢
1 v

0 otherwise

where the sole constant ¢g satisfies the size condition. In general, the test based on
é1(v) need not be unbiased. However, when vy = - -+ = vy, in view of the symmetry
of fo(v), this test is expected to be unbiased. We have computed the power of
this test through simulation in Table 2(a), denoted as Py, when v =--- = vg.

Our two-step approximation of ¢g(u) depends on the normal approximation
of chi-square, and follows directly from Lehmann ((1986), p. 376). We define

. 1 ( 21 Z; /a >
(3.20) Q= — | Zi —
12::1 & 21 l/a
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Table 2(a). Powers of Proposed Tests (P1, P2)* and ALR, ZT tests**, k = 3, « = 0.05, n1 =
ng = nz = 25.

pP1L P2 p3 P Py ALR ZT P Py ALR 7T
p=3 p=>5

0 0.5 01 0945 0.905 0.761 0.729 0.992 0.989 0.957 0.957
0.2 0924 0874 0.721 0.685 0.988 0.982 0.948 0.941
0.3 0.898 0.874 0.709 0.685 0.985 0.984 0.956 (.946
0.4 0.888 0.905 0.734 0.729 0.988 0.991 0.970 0.965
0.5 0.906 0.949 0.823 0.808 0.994 0.997 0.989 0.984
0.6 0.949 0.984 0914 0.899 0.998 1.000 0.996 0.996
0.7 0.987 0.998 0.974 0.968 0.999 1.000 1.000 0.999
0.8 0.999 1.000 0.997 0.997 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

*exact (numerical integration).
**simulated (Monote Carlo simulation) (see Konishi and Gupta (1989)).

Table 2(b). Powers of Proposed Tests (P3)* and ALR, ZT tests**, k =3, a = 0.05, n1 = ng =
ng =25, 61 + 82 =2, (61,62) # (1,1).

p1 P2 p3 P;  ALR ZT p2 P3 P;  ALR 7T
p=3 p=2>5

0 0.069 0.032 0.079 0.066 0.062 0.043 0.020 0.079 0.072 0.064
0.143 0.063 0.182 0.120 0.101 0.091 0.038 0.182 0.119 0.112
0.222 0.091 0.342 0.211 0.177 0.146 0.057 0.342 0.232 0.204
0.308 0.118 0.572 0.331 0.301 0.211 0.074 0.572 0.378 0.355
0.400 0.143 0.783 0.512 0.481 0.286 0.091 0.783 0.595 0.559
0.500 0.167 0.935 0.731 0.695 0.375 0.107 0.935 0.799 0.778
0.609 0.189 0.990 0.902 0.886 0.483 0.123 0.990 0.946 0.937
0.727 0.211 1.000 0.989 0.985 0.615 0.138 1.000 0.995 0.995
0.857 0.231 1.000 1.000 1.000 0.783 0.153 1.000 1.000 1.000

*exact (numerical integration).
**simulated (Monote Carlo simulation) (see Konishi and Gupta (1989)).

where
(3.21) Zi=W(F/v;), =2y, i=1,...k,

and reject the null hypothesis when Q* > X%ﬂ;a- It should be noted that this
test is UMPI in the limiting normal distribution under actions of appropriate
orthogonal transformations. The power of this test is given by

(3.22) Powers(6) = P{x;_1(\) > Xi—1,0}



594 WEN-TAO HUANG AND BIMAL K. SINHA

where the noncentrality parameter A is computed as

kg AILAS
23 A=S" 2 g - =25
&2 ; (5 z?wg)

klnéj 2
" (Iné;)? Yoad
:Z e
=1 ?

e L
1%2

since §; =1Iné;, i =1,..., k. Obviously, §; = 1. The values of the above power for
some selected combinations of design parameters appear in Table 2(a) (denoted
as P;). It may be noted that when the n;’s are equal, A above reduces to A =
(v/2) Zle{ln 6 — (1/k)(zlf Iné;)}2. As before, the (sample size) consistency of
this test is immediate.

Remark 3.1. When n; = --- = ng, one obtains 1y = -+ = v, = v and
m1 = --- = myp = m, implying thereby that the invariant statistics Fy,..., Fy
under the action of the group G are exchangeable. Applying the multiplicative
group on F1,..., F), this amounts to the exchangeability of Uy, ..., Ux_1 with the
joint pdf given by (see (3.1))

k=1 yu/2-1(TTh=1 5. \v/2
(3.24) fs(u) = (I ’)k . (771_1[1 )
B (33)

/OO m”k/Q_lda:
o (1+2)erm 2T N1 + pugs)|etm)/2

We denote by P the permutation group of (k — 1)! elements and use v = (v, ..,
~vk—1) to denote its typical element. It is then clear that the testing problem
Hy : 6 =1 versus Hy : 6 # 1 remains invariant under the action of P, and the
ratio of the nonnull to null distributions of a maximal invariant statistic T(U) is
given by (see Wijsman (1967))

apf ey (5 N\
(3.25) dp§1§t§:<ﬂéi>
1 o wk/2-1

k—1 —(v+m)/2
: {H(l + azu%&)} dx
1

/OO xuk/2~1d:r
0 (1+z)erm 2T N1 + au)rmrz [
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Unfortunately, however, unlike in Cohen et al. (1985) and Kariya and Sinha (1991),
inspite of the action of the group P (in addition to G and the multiplicative group),
in general an LBIU test does not exist (see Kariya and Sinha ((1989), p. 29) for
a definition of LBI test). This is solely due to the nonexponential nature of the
underlying joint pdf.

On the other hand, derivation of an unbiased test function to maximize the
local power in a specific direction is quite possible. For example, it can be shown
that a test function in the direction of 77 = 0 essentially coincides with the LMMPU
test ¢o(u) displayed in (3.7) where the v;’s and m;’s have to be taken equal to
v and m respectively, and ¢; = -+ = ¢;,_1 = ¢* and ¢y are obtained such that
the size condition (3.5) and the appropriate unbiasedness condition are satisfied.
Again, for k = 3, (3.8) can be used to simplify some computations.

A similar analysis based on the permutation group P can be easily done for
our one-step approximate statistics Uf,...,U;_;, and it follows that, as in the
previous case, in general a LBIU test does not exist. However, in the direction of
7 = 0, which makes sense owing to the nature of the alternative Hy : n # 0, a
restricted LBIU test ¢"(v) has the structure

E—-1
(3.26) ¢ (v) = 1 if Z(Ui — 17)2 > ¢
1
0 otherwise

where ¢j is chosen to satisfy the size condition. It should be noted that this test
is different from the LMMPU test of SenGupta and Vermeire (1986) derived in
(3.16) and also from its approximation ¢;(v) derived in (3.19). Of course, when
the n;’s are all equal, the test function ¢;(v) in (3.16) reduces to

k-1
(3.27) dr(v) =11 if > (v — 1)’ > co
1
0 otherwise

where ¢y and c¢; are chosen to satisfy the size condition and the appropriate unbi-
asedness condition.

In Table 2(a), we have presented the power of our proposed large sample tests
(see (3.19) and (3.22)) as well as those of ALR and ZT tests of Konishi and Gupta
(1989). Table 2(b) contains the power P; of our another test ¢"(v) (see (3.26))
and also those of ALR and ZT tests. As expected, in all the cases our proposed
tests perform much better than the ALR and ZT tests.
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Appendix

Here we provide a proof of the convexity of ¥(u) defined in (2.8). Making the
transformation: w = v/(1 + v), ¥(u) is written as

B 1 wr—s—l(l _ w)s~1
(A1) v = [ ( i 1>s Flw)du
where
1
(A.2) flw) = W —Ccw — ¢

and r = (v1 + m1)/2, s = (v2 + m2)/2, § =6 — 1. We now use a powerful result
of Karlin ((1968), p. 31, essentially Proposition 3.2). It is easy to verify that f(w)
is convex in w whenever § # 1, and hence that convexity of ¢ (u) follows once we
establish that the function

wr—s—l(l __w)s—l
1 1 °
U w

is TP; (totally positive of order 3). Obviously it is enough to prove the T'Ps
property of K*(w,u) = (1/u+1/w—1)7°. Now note the following representation
of K*(w,u):

(A.3) K(w,u) =

1 o
(A4) K*(’UJ,U) — m/o 6_I/u€_$/w€m$s_1dx.

Since e~%/% and e~*/" are both T'Ps in the respective variables, applying the Basic
Composition Formula of Karlin ((1968), p. 31), we conclude that K*(w,u) is T'Ps.
This implies the T P; property for K(w,u) and hence establishes the convexity of

P(u).
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