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Abstract. For estimating an unknown parameter , the likelihood principle
yields the maximum likelihood estimator. It is often favoured especially by
the applied statistician, for its good properties in the large sample case. In
this paper, a large deviation expansion for the distribution of the maximum
likelihood estimator is obtained. The asymptotic expansion provides a useful
tool to approximate the tail probability of the maximum likelihood estimator
and to make statistical inference. Theoretical and numerical examples are
given. Numerical results show that the large deviation approximation performs
much better than the classical normal approximation.
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1. Introduction

Let s = (z1,...,%,) be a sample of independently identically distributed
(i.i.d.) observations with a common density function f(z | #), where the param-
eter space © is an open interval of the real line. Let I(z | 8) = log f(z | 0),
ln(s | 8) = 37 l(z; | 0) be the log-likelihood function of the sample s, and
9 (s|6) = (d*/do"),(s | 0) for i = 1,2, 3,... be the corresponding derivatives.

The likelihood principle yields the maximum likelihood estimator (mle) O, Tt
is usually favoured by many statisticians for its large sample optimal properties.
Under certain regularity conditions, the mle 0,, is a consistent and asymptotically
normally distributed estimator whose asymptotic variance achieves the Cramér-
Rao lower bound: i.e., for any estimator T, (s), if

(1.1) Vn(T, —6) — N(0,v(8)) as n— oo,
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then
(12 v(6) > 1/1(0),

where I(6) is the Fisher information, and the equality holds when T),(s) is mle.
Consequently, the mle is an asymptotically efficient estimator in the sense of (1.2).
Its tail probability is traditionally approximated by its limiting distribution; i.e.,

(1.3) 0 (0,0,€) = Py(B,(s) —0 > €) ~ 1 — ®(\/nI(B)e), as n — oo,

where ® stands for the distribution function (df) of a standard normal. The
above normal approximation often performs poorly, especially for estimating the
tail probability. Further, the normal approximation is not found to be satisfac-
tory for statistical inference by many statisticians for various reasons, both in
practice and in theory (Cramér (1937), Weiss and Wolfowitz (1966, 1967, 1970)).
Recently, several different approximations have been developed by, for instance,
Cramér (1937), Daniel (1954), Barndorff-Neilsen and Cox (1979), Field (1982),
and Hougaard (1985).

Typically, for a good consistent estimator 1), the rate of convergence is usually
exponential and its tail probability has the following large deviation expansion: for
€ >0,

1
(14)  on(T,0,¢) = e‘”ﬁ(T"”e)—\/—ﬁ{ao +an "+t amn ™+ 0T}

as n — oo. The positive constant 5(T,0,¢) is called the exponential rate for the
consistent estimator T},. The 8 is an indicator of the performance of the estimator,
the larger the exponential rate, the better the estimator. It has been studied by
many researchers, for example, Bahadur (1971), Chernoff (1952), Fu (1973, 1975),
Kester and Kallenberg (1986), Rubin and Rukhin (1983), and Sievers (1978). For
any consistent estimator T, and ¢ > 0, the exponential rate obeys the following
inequality

(1.5) B(T,0,¢) < B(0,¢),
where
(1.6) B(f,¢) = ig,f{K(@',@) 10— 8] > e}

and the Kullback-Leibler information of f(x | #') with respect to f(z | #) is defined
as

(1.7) K(d,6) /_ b <log ?{; ‘ﬂ;) x| 0)da.

The exponential rate ﬂ(é, 9, ¢€) of the mle 6 achieves the lower bound (1.5) if and
only if the underlying distribution belongs to the exponential family (Kester and
Kallenberg (1986), Cheng and Fu (1986)). Kester and Kallenberg (1986) also
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showed that if the parameter space is not convex, which occurs, for instance, in
curved exponential families, then in general, no estimator achieves the lower bound
(1.5).

The objectives of this manuscript are two-folds, (i} to obtain a large deriva-
tion expansion similar to (1.4) for the mle, which provides a good approximation
of its tail probability, and (ii) to show its applications in large sample statistical
inference. In order to illustrate our results, several examples and numerical com-
parisons are given in Section 3. The numerical results show that the large deviation
approximation performs much better than the usual normal approximation. The
detailed mathematical proof for the large deviation expansion of the mle is given
in Section 4.

2. Large deviation expansion of mle

In order to get the large deviation expansion (1.4) for the mle, we first obtain
a large deviation expansion for the sum of ii.d. random variables. Let {X;} be
a sequence of i.i.d. random variables having distribution function F(z) defined
on the real line and characteristic function ¥(¢). We assume that the following
conditions hold:

ConDITION A. F satisfies Cramér’s Condition (C) (Cramér (1937), p. 81),
ie.

(2.1) limsup |(t)] < 1.

|t]—o0

CONDITION B. Let ¢(t) = Ee'*t be the moment generating function (m.g.f.)
of X;. Assume that

(2.2) sup{0 <t < o0 : ¢(t) < oo} =ty > 0.
Note that g can be finite or infinite.

Assume that FX; < e < limt_,tg ¢'(t)/o(t). Let h(z) = ez — log ¢(z). From

the Cramér-Hoeffding theorem (Petrov (1975), p. 234) there exists 7, 0 < 7 < t,
such that (i) A'(7) = 0, and (ii) A(r) > 0 and A”(7) < 0. The point 7 is called
saddle point. Denote o = y/—h"(7).

THEOREM 2.1. Under Conditions A and B we have

¢ 1
(23) P <Z Xi 2 ”6> =e ™ —(ag+anT 4 Famn ™+ O(n ™),

i v
where the coefficients a;, i = 0,1,...,m are independent of n; in particular
1
ag = 5 and
TOT
(2.4) '

a1 =

1 1 RGNy R® (1) 5(hB3)(r))?
o272 2704 8ot 2406

2roT
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Let {X,} be a sequence of i.i.d. nondegenerate random variables defined on
{ra:r=0,%1,...} which satisfies the following conditions:

ConpITION A’. Let {k,} be a sequence of integers satisfying

k
(2.5) %a — ¢, asn — oo for some € such that EX; < e < lim ¢'(t)/o(t).

t—ty

Let h(e,z) = ez —log¢(z), 1o be a solution of A'(r) = 0, and {7,} be a
sequence of positive numbers such that

9. (kn B
(26) ah (FG,Z) IZ:Tn_ 0,

kn, 0? ko,
2. N d Zp(f ). <o.
(2.7) (na,7'>>0 an 8z2h<naz>| <0
It follows from (2.6) and (2.7) that 75 < tg and

(2.8) T, — 10 >0, as n — oo.

Denote

0 kn,
(29) Op = \/7_52—2}1 (;CMZ) ’z:rn .

THEOREM 2.2. Under Conditions A’ and B, we have

(2.10) P (f: X, > kna>

1
— e—nh((kn/n)a,m)ﬁ[ao -%—CLl’I’Lil et amnfm + O(n—mfl)}’

where a;, j =0,1,...,m are real numbers; in particular

a

N V210, (1 — e"™a)’

(2.11) ag

If kn/n =k, then aj, j =0,...,m are independent of n.

The above two theorems are modified versions of results due to Cramér (1937)
and Bahadur and Rao (1960). Our proofs are based on a modification of Laplace’s
method (Oliver (1974)) applied directly to the inverse formulas, which are new
and quite different from the original proofs given by Cramér (1937) and Bahadur
and Rao (1960). Theoretically speaking, these results are basically equivalent. The
major advantage of our expansion is that the first two coefficients in our expansion
are given explicitly for easier use in statistical applications. On the other hand,
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the coeflicients of third order and above in the Bahadur and Rao method are given
by recurrence formulae but not in our method. The details of our proofs are given
in Section 4.

Let 0,,(s) be the mle, and §, (s) = inf{9 : lg)(s | §) = 0} and 8, (s) = sup{f :
l%l)(s | 6) = 0} be the smallest and the largest roots of the likelihood equation
l%l)(s | 8) = 0, respectively. Since

(2.12) 0,,(s) < 0n(s) <On(s), for every s and n,
the following two inequalities hold:

(2.13)  Py(0,(s) > 0+¢€) < Py(i(s | 0+ €) >0) < Pyp((s) > 0+¢)
and
(214)  Pp(fn(s) <O —¢) < Py(IV(s |6 —€) <0) < Pp(b, (s) <0 —e).

To obtain our main result (1.4), we need the following additional conditions:

ConpiTioN C. For given n and every s, the maximum likelihood estimator
0,(s) is the unique solution of the likelihood equation lg)(s | 0) =0.

ConDITION D. For each 8 € © and ¢ > 0, the moment generating function
(2.15) o(t,0,€) = Bglexp{tiM(z | 8+ €)}] < 00

exists for 0 < [¢| < to, and the characteristic function (¢, 0, ¢€) of the random
variable [V (x| 6 + ¢) satisfies Condition A.

Let, for ¢ > 0, h(z) = —log#(z,0,¢). By Cramér-Hoeflding theorem, there
exists a saddle point 7, 0 < 7. < 79, such that

(2.16) hi(te) =0
and
(2.17) he(te) >0 and  A(r) <O0.

In the following, we assume that the 7. exists, and denote
(2.18) e =/ —h!(7).

THEOREM 2.3. For any € > 0, under Conditions C and D, the e-tail proba-
bility of the mazimum likelihood estimator 8, has an asymptotic expansion given

by

A 5 1
(219)  a,(8,6,¢) = e*nﬁ(f’ﬂﬂﬁ{bo + b+ b ™+ O(n ™))

)

where

(2'20) ﬁ(év 0, 6) - “Iog¢(7—e’97€)
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15 the exponential rate of the maximum likelihood estimator 0., and the coefficients

bi, 1 =0,1,...,m are independent of n; in particular
1
2.21 by = ——
( ) 0 V2TO T,
and
3 4
022) bt |1 ) V) 50
Vo2roer. | 0272 2.0t 8o 2409

Proor. It follows from Condition C and the inequality (2.13) and (2.14)
that we have 0,,(s) = 0,(s) = 0,(s) and Py(0, > 6+ €) = Pg(l%l)(s |8 +¢) >0).
For given § and € > 0, {M(X; | 84+ ¢), i = 1,2,...,n are i.i.d. random variables.
Hence, the result follows immediately from Theorem 2.1. O

Similarly, the large deviation expansion for the left hand e-tail probability can
be obtained by replacing all the ¢ in the Theorem 2.3 with the value —e. For
small €, the saddle point 7. defined by equation (2.16) has a Taylor expansion (Fu
(1982)) given by

(2.23) Te = € + Ae* + Be® + o(€?),
where

A=—EIW® o1,
1

1 1 3
B=_—1|—EW_ Z(E1Wi2n2 L g10;3) L 2 g(1h2(2)
713 ! I( 1) + B+ 5 ()%

1 1
1 @ gy o L gy
+ap BIVIPBUWY + S B,

and F and [ stand for Ey and 1) (X | 6) respectively.

Usually, the saddle point 7. cannot be obtained explicitly from the equation
h.(t) = 0. We suggest to replace 7. in the Theorem 2.3 with € + Ae? + Be®. For n
large and € small, (2.19) yields the well-known result

~ 1 2
2.24 n(0,0,€) ~ ———e= (/27
( ) ( ) v2rnle

3. Large sample point estimation

The large deviation expansion (2.19) of the mle § contains two parts: (a) the
exponential rate 8(,0,€) and (b) the non-exponential term (1/4/7){by +bin~* +
co o F bypnT™ 4+ O(nm™ Y}, The predominate exponential term exp{—nﬁ(é, f.¢)}
is directly associated with the asymptotic exact distribution of the mle which
plays an important role in large sample point estimation. For approximating the
exact tail probability of the mle, both exponential and non-exponential terms are
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vital. Four examples, involving the normal, Poisson, exponential and binomial
distributions which satisfy the regularity conditions, are given to illustrate our
results. They are of interest in both statistical theory and practice.

Traditionally, the distribution of the mle is approximated by a normal distri-
bution (central limiting theorem). To our knowledge, at present, there has been
no direct theoretical comparison between the large deviation approximation and
the normal approximation. Numerical comparisons are very much needed; there-
fore, we provided numerical comparisons between the normal approximation and
the large deviation approximation in two of our examples (exponential and bino-
mial distributions). Since most statistical inferences and decisions such as 95%
(or 99%) confidence intervals and 5% (or 1%) critical regions are often involved
in computing the tail probabilities, our numerical comparisons will concentrate
around tail probabilities of .025 or less.

Ezample 1. Let {X;} be a sequence of i.i.d. normal random variables with
unknown mean 6 and known variance ¢?. The mle for § is the sample mean X,,.
Taking m = 1, it follows from Theorem 2.3 that the e-tail probability of the mle
0,, has an asymptotic expansion given by

~ a 2 2 02 1
3.1 n(0,0,6) = ——e /27 1 Z_1L0(=]]|.
(3.1) on(0,0,¢€) G { net T+ (n2>:|

Ezample 2. Let {X;} be a sequence of i.i.d. Poisson random variables with
mean A. The maximum likelihood estimator for A is A\, = X,, the sample mean.
By Theorem 2.2, for an integer sequence {k,} satisfying k,/n — € > X, we have

Py (Xn > k_”> — o~ (kn log(kn/n)\)flcn%—nA)L <1 40 (l)) -
T nA V2m(kn, — n)) n

Ezample 3. Let {X;} be a sequence of i.i.d. random variables with common
density function

(3.2) flz]A) =X Az >0.

The sample mean X, is the mle for 1 /A. Since the sum S, has a Gamma
distribution with parameters n and A, it follows that the exact e-tail probability
of X, is

_ 1 1 .
_r _ —(nex+n) /
(3.3) P <Xn 5> e> = E (neX +n)le V51,

Jj=0

The normal approximation for the e-tail probability of X, is

(3.4) P <Xn - % > 6> =P {(\/ﬁ)_l)\ (in - n//\) > \/ﬁAe}
i=1
~1—=®(/nie).
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Applying Theorem 2.3, we obtain a two-term large deviation approximation
for the e-tail probability of X,

(3.5) p <)_(n — % > e) ~ e "M (/)" ag +ntay],

where

h(T) = Xe —log(L 4+ Xe),  ap = (V2mhe) 71,
a1 = —(VBA) A2 + (A + (12)7].

The numerical comparisons among the exact e-tail probability Pg given by
(3.3), the normal approximation Py given by (3.4), and the large deviation ap-
proximation P, given by (3.5) are provided by the following table for various values
of A and e.

The numerical results in Table 1 show that the large deviation approximation
performs well against the normal approximation in almost all cases, especially for
the extreme tail probabilities.

Table 1. The exact and approximate e-tail probabilities of mle X,, with n = 11 and 51.

n A € Pg Py Py,

11 0.5 1.320 .0267 .0143 .0218
0.5 2.100 .0026 .0002 .0024
1.0 0.660 .0267 .0143 .0218
1.0 0.800 .0120 .0040 .0107
2.0 0.325 .0282 .0155 .0228
2.0 0.400 .0120 .0040 .0107
3.0 0.230 .0226 .0111 .0190
3.0 0.320 .0046 .0007 .0043
4.0 0.170 .0239 .0121 .0199
4.0 0.230 .0058 .0011 .0054

51 0.5 0.575 .0268 .0200 .0228
0.5 0.650 .0156 .0101 .0140
1.0 0.300 .0225 .0161 .0195
1.0 0.420 .0034 .0014 .0033
2.0 0.150 .0225 .0161 .0195
2.0 0.180 .0091 .0051 .0084
3.0 0.096 .0266 .0199 .0227
3.0 0.150 .0020 .0007 .0020
4.0 0.072 .0266 .0199 .0227
4.0 0.084 .0132 .0082 .0120

Ezample 4. Let {X;} be a sequence of i.i.d. Bernoulli random variables with

PX=z)=p"(1-p" 7% z=0,1
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The maximum likelihood estimator for the parameter p is p = X,,. In this
example we give only the numerical comparison.

The numerical results in Table 2 also show that the large deviation approxi-
mation is far superior to the classical normal approximation. Even at the sample
size n = 11, the large deviation approximation performs reasonably well while the
normal approximation performs poorly. Furthermore, an important phenomenon
(which can be seen especially from Table 2) is that the normal approximation
becomes worse as the underlying distribution becomes more skewed. The accu-
racy of the large deviation approximation is much less sensitive to the skewness of
underlying distribution. This is because that the normal approximation involves
only the variance of the underlying distribution where as the large deviation ap-
proximation involves not only the variance but also the skewness of the underlying
distribution. For instance, the dominant term of the expansion, the exponential
rate, has a strong connection with the skewness (Fu (1982), p. 764). Based on
our limited numerical experience, a two-terms large deviation expansion of (1.4)
is sufficiently accurate for statistical applications.

Table 2. The exact and approximate e-tail probabilities for binomial random variables.

n P € Pg Py Py,
10 0.5 0.300 0.0107 0.0057 0.0125
10 0.7 0.250 0.0282 0.0192 0.0308
25 0.6 0.175 0.0294 0.0207 0.0269
25 0.8 0.150 0.0274 0.0228 0.0270
50 0.7 0.120 0.0183 0.0154 0.0178
50 0.9 0.080 0.0053 0.0091 0.0057
100 0.6 0.100 0.0148 0.0123 0.0138
100 0.8 0.100 0.0023 0.0030 0.0023
200 0.6 0.070 0.0173 0.0152 0.0160
200 0.8 0.050 0.0283 0.0262 0.0267

All the conditions, except Condition C, are very mild and easy to verify. Condi-
tion C, which states that the mle f,(s) is an unique root of the likelihood equation
l%l)(s | ) = 0, is somewhat strong, but is vital to the proof of our results. This
condition is required by almost all other types of expansions (see, for instance,
Field ((1982), p. 673) and Hougaard ((1985), p. 162)). The following two remarks
pertain to those cases where the condition of uniqueness fails.

Remark 1. For the Cauchy distribution with location parameter, the log-
likelihood function is very smooth and all derivatives exist. The likelihood equation

(3.6) Wslo)=-> T 20 _x’ - =0
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is a polynomial of degree 2n — 1. It has (2n — 1) roots (real and complex), and
the number of roots increases with the sample size. Hence it does not satisfy
our conditions. Reeds (1985) shows that all the real roots but one (the global

maximum: mle) of the likelihood equations lq(ll)(s | §) = 0 tend to +00 or —o0
almost surely as n — co. Bai and Fu (1986) have proved that the mle 6,,(s) still
converges to 6 exponentially; i.e., for e small,

(3.7) Py(0,, > 0 + ¢) = eI HO(VE/4}

as n — 0o. The same results also have been stated by Kester and Kallenberg
((1986), Remark 3.2). Although the likelihood equation has multiple roots we do
believe that the asymptotic expansion exists in this case. Mathematically, we have
not been able to obtain its asymptotic expansion.

Remark 2. If there is more than one mle, they all usually converge to the
unknown parameter 6 (i.e., they are all consistent estimators). It is tradition-
ally believed that the statistician can use any one of them. Contrary to the
above notion, they very often have different exponential rates, and hence, dif-
ferent asymptotic expansions. For example, consider the uniform distribution
Ul —1/2,0 + 1/2] with location parameter 6. Any point between the points
X(ny = 1/2 and X1y +1/2 is a maximum likelihood estimator. They are all con-
sistent, have different rates of convergence to 6. For example, for p € [0, 1], the

mle 6, = p(Xay +1/2) + (1 = p)(X(n) — 1/2) has an exponential rate given by

B(0p,0,€) = — nh_{%o % log P(|ép — 0] > €) = —log(1 — aye),

where a, = 1/ max(p,1 — p). Consequently, the mle’s X1y + 1/2 and X,y — 1/2
have same exponential rate —log(l — ¢), the mle (X(,)/8 + 7X(1)/8 — 3/8) has
an exponential rate —log(1 — 8¢/7), and the mle (X(,) + X(1))/2 has an expo-
nential rate, —log(1 — 2¢), which is the fastest among all the mazimum likelihood
estimators. Clearly, one should only use the optimal mle (Xy 4+ X(,))/2. Note
that neither the mle X,y —1/2 nor the mle X1y —1/2 is asymptotically normally
distributed. The asymptotic normality criterion of selecting an optimal consis-
tent estimator collapses completely, at least in this simple example. On the other
hand, the large deviation approach is applicable and provides a good solution to
this problem.

Remark 3. Even in the case where there is a unique mle, Kraft and LeCam
(1956) gave a very disturbing example that the mle satisfies the likelihood equation,
but it is not consistent. Note that the large deviation approach remains applicable
and has an exponential rate of zero.

Under smooth conditions, it is well known that the mle has all the classical
optimal properties. For example, it is a first and second-order efficient estimator
(see Efron (1975)). However, in a large deviation context, the picture is rather
different. If the underlying distribution belongs to an exponential family of dis-
tributions, then its exponential rate §(6,6,¢) achieves the Bahadur bound (1.5)
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(Kester and Kallenberg (1986), Cheng and Fu (1986)). Outside the exponential

family of distributions, the exponential rate 3 (é f,¢) given by mle is not always
optimal. Let us give the following example.

Ezample 5. Let {X;}"; be a sequence of i.i.d. logistic random variables hav-
ing common density function

Fflz]0)=e /(1 +e "2 z€(—00,00).

For given ¢, let 0, be the likelihood ratio estimator for § (which is the best trans-
lation invariant estimator), the unique solution of the following equation:

2 n
n(5,0,€) =26+ = log[(L+ e ™F7) /(1 + ") = 0.
An(s,0,€) e+n; og[(1+e )/(L+e =0

It has an exponential rate given by
5(0,0.€) = e + {log[L — exp(—2¢)]/2¢}

which reaches the Chernoff bound (see Fu (1985) and Kester and Kallenberg
(1986)).
The mle 8, is the solution of the following equation:

n

;[Hexp(xi —o -5 =o.

It has an exponential rate given by

o0

5 _ e —t)2
B(6,0,¢) log {g%e /

— 00

fexp(t/(1 + expla — 6)))}f(x)dx} |

As ¢ tending to zero, we have

i ; {0, i=1,2,3,4,5
iy =800, 6.¢) = 56,8, )} = {0.000079, i=6.

The exponential rates differ only at the coefficient of ¢8. This shows that for € small,
the likelihood ratio estiHAlator 8,, is superior to mle én Our results substantiates
that, in general the mle 8 is second order efficient estimator. Both Efron and Rao
(Efron (1975)) seemed to suggest that if a theory of third-order efficiency were
to be developed, mle would still emerge as the “optimal” estimator. The above
counterexample shows this claim to be false.

Remark 4. Note that the above mentioned likelihood ratio estimator 8,, is an
M -estimator. If the underlying density and the ¢ function are sufficiently smooth,
then the large deviation expansion of M-estimator derived from the ¢ function can
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perhaps be obtained by a simple modification of the method developed in Section
2.

Remark 5. We would like to point out an important fact that the large devia-
tion approximation (2.20) for the tail probability of maximum likelihood estimator
has a pole at 7. = 0 (e = 0). Hence, if the large deviation approximation (2.20)
is misused, for instance fixed n and as € — 0, then the approximation could be
inaccurate. There are several approaches, for example, Lugannani and Rice (1980)
and Daniels (1987) to overcome this problem. The conditions in their paper (see
Lugannani and Rice (1980) Condition (ii) on p. 481) are much stronger than that
used in our paper. Their approximation performs very well numerically in the
region as € nears the zero and uniformly up to a factor O(1/4y/n). The approxi-
mation becomes less accurate in the region when the deviation of S, is of order
O(n). This region is one of the most important region especially for the statisti-
cal inferences. For example, the statistical inferences such as confidence interval
and critical region of testing hypothesis, based on mle’s are always involved in
computing the tail probabilities of S,, at the order O(n).

In view of all the above examples, numerical results, and remarks it suggests
that the large deviation theoretical approach is more applicable than the central
limit theory as a method of selecting the optimal estimator. It is also superior for
approximating the tail probabilities than the normal approximation.

4. Proofs
To prove Theorem 2.1 and Theorem 2.2, we need the following lemmas.

LEMMA 4.1. If Fy satisfies Condition A, and if Fy is absolutely continuous
with respect to Iy, then Fy also satisfies Condition A.

PROOF. See Lemma 4 of Bahadur and Rao (1960). O

LEMMA 4.2. Suppose that G is o distribution function and its m.g.f. exists
o0
b(t) = / MAG() < 00, for  0< |t < to.
—x0
If € > 0 is a continuity point of G, then for any 0 < a < 1p

atico
(4.1) PY >¢) = L/ %e_szqﬁ(z)dz

27TZ — 0o

PRrOOF. Denote the right hand side of (4.1) by £(¢). We have

1 a+ilN 1

(4.2) Ble) = lim — —e /oo e”*dG(u)dz

N—oco 271 a—iN <

a+iN 1
= lim / e dzdG(w).
27‘2 e

N—oo iN %
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For u > €, let

Lo L oy ane yyy e
=1- _elumaag(u—e)Ne™ Njeit ge.
I (w) 2 2 o+ Neit® ¢ te™de

For u < ¢, let

1 /2 1 e .
J = — e — (U*E)a —(e—u)Ne N zéd )
N(u) 211 /71-/2 a4 Nelfe & e 5

From the residue theorem, we have

1 a+iN 1
(4.3) JIn(u) —/ L A TR

211 Join 2

Now, when u < ¢, note that |a + Ne®| > |[Ne%| for & € [-7/2,7/2], we have

w/2 72 .
‘JN(U)' < e(u—e)ai/ 6—(5—u)Ncos§d€ _ e(ufe)al/ e—(e—u)Nsmgd&
0

27 ) /2 T

Further, since sin& > (2/m)¢ (€ € [0,7/2]), it follows

1 w/2
‘JJV(U)I < _e(u—e)a/ e—N(e—u)Zﬁ/ﬂdg
0

T

1
T 2N(e—uw) evm (1 — Ny 0, as N — oo

Similarly, for u > ¢, we have
1 7T/2
[Jn(u) — 1| < —e(“_s)“/ e~ NemwWZ/mge  and lim Jy(u)=1.
™ 0 N—cc

Then we obtain that

. 1, if u>e
(4.4) J\;Enoo In(u) = {0, ifu<e

and

1
(45) [w() <1+ 59 wich /

— 00

o0

(1 + %e(“‘ﬁ)“> dG(u) < .

It follows from (4.2), (4.3), (4.4) and (4.5), and the dominated convergence theorem
that

o) o0

Ble) = lim In(uw)dGlu) = / ]\}1"1}100 In(w)dG(u) = P(Y > €). O

o o] — 00
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LEMMA 4.3. Form =1,2,... and any complex number z

12 2T

(R 6 .
1! (m—-1!H~ m!

PrROOF. Let &,(2)=€e*—1—---—2™"1/(m —1)!. Then

1 1
&(z) = z/ e*tdt  and  £,(2) = 2/ Em_1(zt)dt for m>1
0 0
The desired result follows from induction. O

PROOF OF THEOREM 2.1. Let {Y,} be independent of {X,,} where Y;, has
the density function

~fnmtl e, u € [—e/(2n™T1), ¢/ (2n™Th)],
énlu) = {0, otherwise.

Let

Bule)=P(X1+Xo+ -+ Xn+Y, >ne) and
(4.6)

ane) = P(X1 + -+ Xp > ne).
Then
(4.7) Bale+¢/(2n™7%)) < anle) < Bule—¢/(2n™F2)).

It is easily seen that

m+1
(4.8) EeZ(X1+<.-+Xn+Yn) — ¢”(z)n—(eze/(2nm+1) B e—ze/(an“))’
€z

exists for |z| < tp. Since X7 +--- + X,, +Y,, has an absolutely continuous d.f., by
Lemma 4.2 we have

1 [T mt1
(49) ﬁn(f + 6/(2nm+2)) — _2_2/ ;e*(ne+€/(2n + ))Z¢n(z)E€2Y"dZ
T Jr—ioco
—nh(T 0
- 62_() / ﬁe”dy emclrriy)/ (2T
71' oo (T 4y
(¢(T + zy))n nmtl
o(7) €

. [ee(T+iy)/2nm+l _ e*e(r+iy)/2nm+1]dy'

Define F(u) = JX. (1/(7))e™dF(v). Then F is absolutely continuous with re-
spect to F, and the c.f. of F is ¢(7 + iy)/¢(7). By Lemma 4.1, ¢(r + iy)/é(7)
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satisfies Condition A. Thus, for any § > 0, there exists a constant ¢’ > 0 which
depends on ¢ such that

(4.10) |o(7 +iy)/o(r)| < e for |y > .

Denote the integrand of (4.9) by I,(y). It follows from (4.9) and (4.10), we have

nm—l—l e—nh(‘r)—nc/ze‘re/ dy
2 2
2me T4 4y

L - h(-)/
——e Y I.(y)dy
2 ly|>6 "

(4.11)

IA

— e—nh(T)O(efnc)

for some constant ¢ such that 0 < ¢ < c.
Let § > 0 be sufficiently small such that § < min(tg — 7, 7). It is easily seen
that

(e(r+iy)e/2nm+1 — e (T+iy)e/2n™F1

(4.12) (7 + dy)e/nm+1]
6—6(7+iy)/2nm+1 — 1 O(’I’L_m_l)

) =14+0mn"™1 and

uniformly for |y| < é. It follows from (4.9), (4.11) and (4.12) that
(4.13)  Bule +¢/2n™%)
= ie*nh(r) /(S Lew[h(fﬂy)»h(f)ldy(l +O0(n~™" 1Y)
2n s T+ 1y
+ e—nh(T)O(e—nc)‘
Similarly, we have
(4.14)  Bn(e —€/2n™ %)
_ _1‘ —nh(r) /6 1 —n[h(T+iy)—h(T)] —m—1
=5 _5T—|—iye dy(1+0(n )
+ e—nh(T)O(e—nc).

By (4.7), (4.13) and (4.14),

1 [f 1 ‘
(4.15)  an(e) = enhm%/& Oy 1 4 O )

-+ e~nh(r)0(6nc).

For |y| < 6, we have the Taylor expansion

(4.16)  — {h(T +iy) — h(r) — %a%ﬁ}

= C3(iy)® + Ca(iy)* + -+ - + Cames(iy)>™ > + 0y,
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where 02 = —h"(7), |6:| < M, C; = —hU)(1)/4!, |C;| < M for j = 3,4,...,2m+3,

and M represents a positive constant. Let

(4.17) O, (iy) = Ca(iy)® + - - + Copraliy)*™+?
and
(418)  nm(iy) =1+ n¥n(iy)

1 ) 1
+ EanIan(zy) + (

2m+l\I/2m—i—1(
2m+1)! m

Inserting equations (4.16) and (4.17) into (4.15), it yields

101
(4.19) an(€) = e”hm—/

2r s§T -+ Zy
cexp(—no?y?/2 + n¥,, (iy) + nby?™ ) dy
. (1 + O(n—m—l)) + e—nh(f)o(e—nc).

Let § < 02/(4M + o). For |y| < 6, we have

(4.20) [T (iy)| + MyP™* < My]*/(1 - 8) < M&y?/(1 - 6) < o°y*/4.

‘2m+4 |2m+4

By Lemma 4.3, |e®¥ — 1| < Mnly[2mtieMnly . Hence,

14
(4.21) ! / ! exp(—no?y®/2 + n\I!m(iy))(eelw’lzm+4 —1)dy

o _s T+ 1y

é
< % / njy[™+ exp{—no®y? /2 + nM8y*/(1 - 8)}dy
0

2,2
|2m+4€—n0' Y /4dy
mT

M [ ny?mtd
—_ e_

7 Jo nmt?

é
<— [ nly
0
1
< o?u? /4 ) ﬁdu _ O(Tl—(m+3/2)).

Similarly, applying Lemma 4.3 and using (4.18) and (4.20), it yields

(4.22) = O(n~(m+3/2)),

(| 2 2 _
— —noty? /20 nT . (iy) _ N d
2 /‘5 T+ z'ye (e m N (1)) dy

; i\ 2 N 2m+1
&n(zy):%{l—%A—(_sz) ++<_le> }

Then, for |y] <6,

Let

1

=& (i 0 2m—+2
Ty = Sl el
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where |65] < M. Hence

1

(L '>) (=n0®2/2 + mu(iy))d
Z—W/_é(THy—ém(Zy exp(—noy N (1y))dy

(4.23)

— O(nf(m+3/2))'

From equations (4.19), (4.21), (4.22) and (4.23), and the fact that

/ Em (1)1 (iy)e ™7 Y 2 dy
ly|>6

o0
—(n—1)c25§2 i ) 5242
< (1)o7 /2/ | (i) 0 (i) e 7Y 2dy

= O(n~(m+3/2)),

we obtain

1 * 2,2
(4.24) an(e) =705 /_ Emlig)n(iy)e Y Rdy(1 + O )

+ efnh(T) O(n—(m+3/2)).

Integrating term by term, the integrals of the odd power of (iy) in the product
Em(iy)nm(iy) are zero. Since Rel&,(iy)nm(iy)] is a polynomial of power 32 it
follows

1 m o
an(e):eknh(ﬂ—{ao%”%‘k“"}‘z—m—f-()(n m 1)}7

vn
where ag > 0 and a;, j =0, 1,..., are real numbers independent of n.
Taking m = 1 and after integrating term by term, the equation (4.24) becomes

an(e) _ e*ﬂh(T)# {1 n l ( 1 i h(3) (’I_)

V2rnor n\ o272 210t
M9 () 53 (r))? 2
T80t T 2408 > +0ln )} '

This completes our proof. O

LemmMA 4.4, Suppose tog >0, G is a d.f. with

o(t) = / e™dG(u) < oo for 0<t<tp,
and {1;,7 > 0} C (0, o) satisfies 7; — 79. Then

o +iy) _ ¢l +iy)
o(75) é(0)
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uniformly for y € (—oo, +00) as j — 0.

ProOOF. Since 19 € (0,%y) and 7, — 79, there exists by and by such that
0< by <7< by <tgand % — e™0%] < eh1% 4 b2¥ for j large. Note f(eblu +
e?2*)dG(u) < oo, by the dominated convergence theorem. Then

9y + i) — b(mo +iy)| < / €7 — €™ dG(u) — 0 as j— 0.

That is, ¢(7; + iy) — ¢(79 + ty) uniformly for y € (—o0,00). Therefore, Lemma
4.4 holds. O

PROOF OF THEOREM 2.2. Let Y be independent of {X;}, with density

| 1/a, ifue(0,a)
Folu) = {O, otherwise.
We have o
Ee?Y = el
za

Let o, = P{X; +---+ X,, > kna}. Then o, = P{X1 4+ -+ X, +Y > kna} and
the d.f. of X1 +--- + X,, +Y is continuous. By Lemma 4.2, we have

1 [ e —1

—knaz 4n
n = 5_- - " d
“ 27 J - _ico P ¢"(z) za ?

ol e /00 e(Tntiy)a _ | ke aiy {cb(m 4 Zy):l” ]
—e — ¢ RAL . 2 Yy
27a o (Tt w)? ¢(Tn)

_ b nh((kn /e
2mwa

| /ﬂ/a oo o(Tntiyt2nlija)a _ le_knai(zwl/a+y)
(T + 27li/a + iy)2

[z o

Note that the d.f. of X is of the lattice type, so
&(Tn + iy + 27lifa) = ¢(1, +1iy), 1==F1,%2,...

~7/a = —o0

Thus,

(4.25)  ap = —— e h((ka/mam)

. /Tr/a = e(fn+iy)a -1 e—knaiy |:¢(Tn + Zy)}n d
/e " (Tn + 27TZ’L/(I + y)2 ¢(Tn)

_ 1 ke /mam) / e
2ma —nja, E (Tn + 27li/a + y)?

+ =B (kn /1) big) (ko )T gy
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For each n, ¢(m, + 1y)/¢(m) is a characteristic function of a lattice distribution.
Then by Theorem 6.4.7 of Chung (1974) and its Corollary, we have

(4.26)

]ngn—l—zy <1 forall 0< |yl <7/a.

Let & > 0 such that ¢ < min(r/a,a). Thus, it follows from (2.8) and Lemma 4.4
that there exists ¢’ which depends on &, such that

(4.27)

t¢Tn+2y ‘ <e®, 6<|y<w/a, forall n.

Thus, we have

1
_6—nh((kn/n)a,‘r”)
2ra

|/ il VY V(m + y>] "
s<lyl<n/a, 2% (Tn + 27lifa + iy)? ¢(7n)

<L nh(ka/m)air) / i i L N PR
S o wl<n/a , S T2+ (27l/a + y)?

— —nh((k /n)a, Tn)O( —nc)

(4.28)

It is easily seen that there is an M > 0, such that

1

}m — (1 +2(=2) +3(=2)2 + -+ 2m + 2)(—=2)*™ )

S M‘2r2m+2

for all |z| < ¢ < 1. Thus, for Jy| <6,

o0

1
4.29
(4.29) l:z;oo (Tn + 27li/a + iy)?

[oe)

s 1 | 1
et (o + 27li/a)? . iy 2
o + 27li/a

>0

_ 1 (—iy)
- ZOO (Tn + 27li/a)? <1 + 2(7'n + 27li/a) +

I=—
. 2m-+1
—iy
2 2)| ——=————
+2m+2) (Tn—l—27rli/a> >

1

2m+20
N l_z_: (Tn + 2mli/a)?mt4
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where || < M. Let

O

430) &)= 3 gt X e
l=—

Nl (1o, + 27li/a)? Tn + 27wli/a

[ee)
1 - \N2m+1
+(2m+2) , Z (T + 27lifa)?m+3 (=) ’

For |y| < é and é < min((to — 70)/2,70/2,7/a), we have

ki , kn 1,
(4.31) — {h ( 7, 0 T —Hy) —h <;a,rn> ~ 5nY }
= C3(iy)® + Ci(iy)* + -+ + O3, (i)™ 4 01y 77T,

where Bh(e. )
«  Lh(ez
Cj = —3—'7 |(kn/n,7’n)7

and o2 is defined as (2.16). Let
U7 (i) = C3(iy)” + CL(iy)* + -+ + O 5 (iy) ™+
and
1

N (1Y) = L+ 0V (iy) + 5!”2‘1’773(@3/) + Tt mnz TR ().

With the same argument which we used in the proof of Theorem 2.1, we obtain

1 [ (iya)? (iya)™
= ¢ hl(kn/n)a;m) _~ o (] 4 ORI CCL7 S
an =e 5 /_OO (e (1 +dya + TR 1

- €2, (i) (iy)e Y 2y (1 + O(n ™ 1)) + (¢ (= (mt3/2))

1 a a
= —nh{(kn/n)a,Ts) { 1 .. m 0 —m—1 }
’ \/'ﬁao+n+ t o T (n )t

where ag > 0, and a4, j = 0,1,..., are real numbers depending on 7, and &,
which are determined by k,. If k,/n = k, then 7, = 19 and o, = 09, hence a;,
j=0,1,..., are independent of n. Applying Formula 1.422.4 of Gradshteyn and
Ryzhik (1965), gives

oo

1 ar 1 a
ag = E e =1 = .
’ (Tn + 27rlz/a)2( ) 2ropa  V2won(l — e ne)

—co

O

Remark 6. Our Theorem 2.2 is clearly the case 6,, = 0 of Bahadur and Rao
(1960). It also covers case 0 < 6, < 1 of Bahadur and Rao. This is immediately
consequence of that, let k,, = [ne] (k,/n — €, asn — ¢)

i

P (i X; > ne) =P (iXZ > [ne])

for all n and ¢ > 0.
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