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A b s t r a c t .  Nonparametric kernel estimators for hazard functions and their 
derivatives are considered under the random left truncation model. The esti- 
mator is of the form of sum of identically distributed but dependent random 
variables. Exact and asymptotic expressions for the biases and variances of the 
estimators are derived. Mean square consistency and local asymptotic normal- 
ity of the estimators are established. Adaptive local bandwidths are obtained 
by estimating the optimal bandwidths consistently. 
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1. Introduction 

Let X be a random variable (r.v.) of interest, referred to as the lifetime. In 
practice the observation of X may be prevented by another independent random 
variable Y called the truncation variable. Suppose (Xi,Y/), i = 1 , . . . , N  is a 
random sample of (X,Y).  Then, under the random left truncation model, one 
observes only those i.i.d, pairs (Xi, Yi) for which Yi < Xi .  We index those observed 
pairs by i = 1 , . . . , n .  There is a similarity of the left truncation model to the 
left censoring model studied by CsSrg5 and Horv~th (1980), but the number of 
observations n in the former is a random variable. 

Much of the literature has been devoted to the censoring model and the sta- 
tistical interest in the truncation model spurred only more recently, partly due to 
its applicability to AIDS data (Lui et al. (1986), Lagakos et al. (1988), Kalbfleisch 
and Lawless (1989)). More applications of the random left truncation model can 
be found in Allredge and Gates (1985), among others. 

Let F and G be the (right continuous) distr ibution functions (d.f.) of X and Y 
respectively. The nonparametr ic  max imum likelihood est imator  (MLE) of F was 
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first suggested by Lynden-Bell (1971) and studied by Woodroofe (1985), Wang et 
al. (1986), Chao and Lo (1988), Gu and Lai (1990) and Keiding and Gill (1990). 
In this paper, our interest focuses on the hazard function ~ of F defined as 

(1.1) A(z) = f ( z ) / [ 1 - F ( z ) ] ,  for F(z)  < 1, 

where f is the probability density function of F. 
The hazard function is important for the assessment of risks and has been 

studied extensively for randomly censored data, e.g., hazard estimates of the 
type (2.10) were studied by Ramlau-Hansen (1983), Tanner and T o n g  (1983), 
Yandell (1983), Diehl and Stute (1988) and Miiller and Wang (1990) among oth- 
ers. However, little is known about hazard estimation for truncated data although 
this problem is of applied interest. For example, in the Channing House data in 
Hyde (1977), F is the lifetime distribution for males, and ,~(t) is their hazard at 
age t which is of demographic interest. However the lifetime X is subject to left 
truncation since the data consists of only those males who were alive at the time 
the study started; thus the truncation variable Y is the age at entry into the study. 
A detailed analysis of these data can be found in Giirler and Wang (1992). 

Although our main interest is the hazard function itself, we consider the more 
general problem of estimating its r-th derivative, A (r), for r _> 0. One motivation 
being that they are involved in the choice of data-dependent optimal bandwidths. 
We consider the kernel hazard estimator i(~) in (2.10) of A(r) by convolving the 
kernel with a cumulative hazard estimator. Exact and asymptotic expansions for 
the mean and variance of i(~)(z) are given in Theorems 3.1 and 3.2 which then 
imply the mean square consistency of ~(r)(z). The computation of the variance 
term of ~(r)(z) (cf. (3.2) and Appendix A) is much more complicated under the 
present truncation model than the consoring model. Asymptotic normality of 
~(~) (z) is obtained in Theorem 3.3 via the H~jek projection method (H£jek (1968)). 

It is well known that the choice of bandwidths is crucial for the quality of the 
resulting kernel estimate and that the optimal local bandwidth depends on the 
curvature at a point. This was first noticed, for kernel density estimators by Parzen 
((1962), equation (4.15)). This effect is magnified, even for i.i.d, observations, for 
kernel estimated hazard functions since the variance of ~(z) tends to infinity as 
z tends to the right end of the support of F. The left truncation scheme further 
complicates the situation and the variance of ~(~)(z) also blows up as z tends to 
zero (cf. (3.5)). Local bandwidth choice is therefore considered here instead of 
a global one. The optimal local bandwidth b* depends on unknown quantities 
(cf. (3.8)). We show in Theorem 4.1 that any consistent estimator of it will give 
rise to a kernel hazard estimator which possesses the same limiting distribution as 
the kernel hazard estimator employing the optimal bandwidth. Such procedures 
provide efficient methods for hazard estimation and the resulting bandwidths are 
called locally adaptive bandwidths. Some choices of locally adaptive bandwidths 
are given in Section 4. Lengthy proofs are relegated to the Appendices. 
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2. Kernel hazard estimates 

We shall assume without loss of generality that both X and Y are nonneg- 
ative random variables. We adopt Woodroofe's (1985) notation throughout the 
presentation. The cumulative hazard function of F (or X) is: 

J0 x (2.1) A(x) = A(t)dt = - log(1 - F(x)) .  

For any d.f. W, define 

aw = inf{t : W(t )  > 0} and bw = sup{t :  W(t )  < 1}, 

as the left and right endpoints of the support of W. As Woodroofe (1985) points 
out, in random truncation models, F can be estimated completely only if ao <_ aF. 
We shall assume this and put 

(2.2) c~ ~_ ~(F, G) = P ( Y  <_ X )  = G(x )dF(x )  > O. 

Let H* denote the joint distribution of the observed (X, Y) pair, and F* and 
G* denote the corresponding marginal d.f.'s. Then 

(2.3) 

(2.4) 

(2.5) 

H*(x ,y )  = P ( X  < x , Y  < y l Y  < X )  = a -1 G(min(y , t ) )dF( t ) ,  

f * ( x )  = H*(x, oc) = a -1  G(t)dF(t) ,  

/o" G*(y) = H*(oc, y) = a -~ G(min(y , t ) )dF( t ) .  

Theorem 1 of Woodroofe (1985) gives the following representation for the cumu- 
lative hazard A: 

(2.6) 

where 

(2.7) 

~ x 

A(x) = dF*(z ) /C(z ) ,  

C(z)  = P ( Y  < z < X )  = G*(z) - F * ( z - )  = c~-lG(z)[1 - F ( z - ) ] .  

Note that  C is not monotone and C(z)  tends to zero as z tends to either aG or 
bF. The representation (2.6) then suggests estimating A(z) by 

/o (2.8) h ~ ( z )  = [C~(x)]-ldF~(x) = ~ [~C~(Xd] -1, 
i:Xi<_z 

where/7* and C~ are the empirical functions of F* and C, e.g., 

(2.9) c~(z) = # { i :  ~ < z < xd/n. 
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Notice that  Cn(Xi) > 1/n, however, it is not a monotone function• 
We consider the following kernel est imator  for A <) (z) by convolving a kernel 

Kr  with/itn in (2.8): 

(2.10) £( ' )(z)  - b~+l K~ d?t~(x) - Kr,b(Z -- Xi) nCn(Xi) ,  
i=1 

where Kr,b(X ) = b-(~+l)K~(x/b), and b = bn is the bandwidth  sequence. 

To obtain the propert ies of A(~) we need to assume that:  
(A1) for some p >_ r, A is p times continuously differentiable at z. 
As for the bandwidth  sequence we require that:  
(BI) bn --+ O, 
(B2) nb2~ r+l --, oc. 
For the kernel function it is assumed that:  K~ is a function of bounded varia- 

tion with support [ -1 ,  1] and it is a function of order (r,p), i.e., Kr satisfies 

f 
(2.11) Kr e M~,p = ~q e L2[-1 ,  1] : 

{ (-1)>! 
i q(x)xJdx = 0 

# 0 but  finite 

j=r } 
O < _ j < p , j # r  . 
j = p  

Note that  under (2.11) K~ and K~,b(x) implicitly involve p; however, for 
brevity of notat ion this is suppressed. 

3. Mean square consistency and asymptotic normality 

We will derive in this section the properties of ~(r)(z) for a c  < z < bF. The 
notat ions in Sections 1 and 2 are used. All expectat ions hereafter are with respect  
to conditioning on n, the number  of observations. 

THEOREM 3.1. (Mean and variance) 

(3.1) 

and 

(3.2) 

E( i (~)(z))  = f f  K~,b(Z - x)[1 - (1 - C(x))n]dA(x) 

Var(~ (r) (z)) = i K2, b(z - x)£n(C(x))dA(x) 

+ 2 ~t<s Kr, b(Z -- t)Kr,b(Z -- s) 

• { [1 -- C(s ) ]  ~ 1 - F(t) F(s) - F(t) [[1 - C(s)] ~ - Pn(s,t)] 

- [1 - C(t)]n[1 - C(s)]~}dA(t)dA(s),  
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where for 0 <__ y < 1 

1 

k=l 

P(s, t) = P(neither s nor t is in [Y, X] ] Y < X)  

= 1 - a - l [ G ( s ) [ 1  - iV(s ) ]  + a ( t ) [ F ( s )  - f ( t ) ] ] .  

PROOF. The proof is given in Appendix A. [] 

Remark. The In function is also used in Watson and Leadbetter ((1964), 
formula (2.3)). Note that nyIn(y) < 2 and nIn(y) converges uniformly to y - :  on 
any interval [a, b] with a > 0 and b < 1. 

Asymptotic behavior of the bias term and the variance is given in the following 
theorem. The proof is in Appendix B. 

THEOREM 3.2. (a) For p > r and under (A1), 

(3.3) 

where 

(3.4) 

(3.5) 

(b) 

where 

(3.6) 

bias(5,(~)(z)) = ~-~:~(P)(z)B~,~ + o(t~-~), 

B~, v - ( -1)  v p! f K~(Y)Y~'dY 

If  z is a continuity point of G, then 

Var(~(~)(z))- 1 { A(z) } 
nb2r+l C---~Vr,p + o(1) , 

(3.7) MSE(~(~)(z)) _ 1 A(z) nb 2r+1 C(z)  Vr,p q- (bP-r )~(P)(z)Br,p) 2 

(:  ) + o  nb~:r+: + b 2(p-~) . 

COROLLARY 3.1. Under the conditions of Theorem 3.2, 
(a) If  (B1) holds, then ~(r)(z) is asymptotically unbiased for ~(~)(z). 
(b) If  (B1) and (B2) hold, then ~(~)(z) is a mean square consistent and hence 

consistent estimator of ;~ (~) ( z ). 
(c) 

? v~,p = K~(y)dy.  
1 
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The opt imum bandwidth which minimizes the leading term in (3.7) is given 
by 

(3.8) = r t_l / (2p+l)  [. 2r  ~- 1 l (z)  V~,p ] b*(z) [ 2(v - r) C(z) (~(p)(z)Br,p)2] 

- n - 1 / ( 2 ; + z ) ~  * (z ) .  

1/(2p+1) 

Note that  the opt imum rate, n -1/(2p+1) for bandwidth and the opt imum rate, 
n -2 (p-r ) / (2p+I)  for MSE, are analogous to the i.i.d, case (i.e. without truncation). 
The optimal bandwidth b* (z) depends on the unknown quantities A(z), C(z) and 
A(p) (z). Data dependent adaptive bandwidth choices will be addressed in Section 
4. 

Next, we will derive the local limiting distribution of A(~)(z). Notice that  
A(~) (z) is a sum of identically distributed but not independent terms since C~(X~) 
depends on the entire sample. As mentioned earlier, we will utilize the H&jek 
projection method. This method was also used by Tanner and Wong (1983) for 
kernel hazard estimates based on randomly censored data. 

Let W be a function of i.i.d, random variables Z1, Z2 , . . . ,  Z~. Hdjek (1968) 
defines the projection W* of W to the space S of the sum of i.i.d, variables as 
follows: 

(3.9) 

(3 .1o)  

n 

w* - E ( w * )  = ~ [ E ( W  f Z a -  E(W)], 
i=1 

E(W*) ---- E(W),  E(W* - W) 2 : Var(W) -- Var(W*). 

In the truncation setting, Zi = (Xi, Y/), W = i(~)(z), and A*(~)(z)denotes the 
H&jek projection W* of A(~)(z). The following lemma gives the form of A*(~)(z). 
The derivation is in Appendix C. 

LEMMA 3.1. (H&jek projection) (a) 

(3.11) a*(~)(z) - E(A*(~)(z)) 
n 

= n -I Z{I~r,b(Z -- Xi)[C(Xi)]-l[l - [i - C(Xi)] n] 

i:I 

- fz(Y~ < ~ < X ~ ) K r , b ( z  - s) 

• [c(s)]-~[l -(1- C(~)FldA(~)} 
n 

• / < , b ( ~  - ~)[1 - c ( ~ ) p - ~ a a ( ~ )  

- ~-~ ~(z) + ~ ( z ) ,  
i=1 i=1 
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where E ( ~ ( z ) )  : E(v~(z))  = O. 
(b) I f  z is a continuity point of G, then for V~,p defined in (3.6), 

(3.12) 
i r } 

Var(A*( ')(z)) -- nb2r+l l ~(~) Vr'p Jr- 0(1) . 

THEOREM 3.3. (Asymptotic normality) Assume G is continuous at z and 

(B1)-(B2) are satisfied. We then have 

(a) ( ~ b 2 r + l ) l / 2 ( [ / ~ ( z ) / C ( z ) ] V r , p ) - l / 2 [ ~ ( r ) ( z )  - ~(.~(r)(z))]--~£ X(0, 1), 
(b) /f  d = l i m ~ _ ~  nb 2p+1 < oc, then 

(nb2r+l)1/2 [~(r)(5) -- /~{r)(Z)] £ N(dl/2A (p) (z)Br,p, [/~(z)/C(z)]Vr,p). 

PROOF. (a) It follows from (3.5), (3.10) and (3.12) that  

Var(A (r) (z))/Var(), *(r) (z)) -~ 1 and o. 

Therefore, [Var(J,(')(z))]-I/2 [j,(,)(z) - E(),(')(z))] has the same asymptotic dis- 
tr ibution as Z~(z)  = [Var(A*(~)(z))]-l/2[A*(')(z) - E(A*(')(z))] and it suffices to 
show that  Z~ ~ N(0, 1). This is accomplished by verifying Lindeberg's condition 
for a triangular array. 

(b) Follows immediately from (3.3) and (a). [] 

4. Adaptive bandwidth choice 

Consider the estimator (2.10) with local bandwidth b(z) = ?~ t -1 / (2P+l )co(z )  
n-1/(2P+l)co, which attains the optimal rate of convergence by (3.8) and denote it 
a s  

(4.1) ( z _ - X i  ) 1 
~(r)(z, co) = 1 Kr \ n _ l / ( 2 p + l ) c  ° nCn(X i ) "  [n--1/(2p+I)co]r÷I i=l 

Thus A (~) (z, co* (z)) is optimal in terms of minimizing the asymptotic MSE. In this 
section we show that  locally adaptive bandwidth choices are indeed feasible. More 
precisely, it is shown that  the estimator ),(~)(z, &* (z)), where &* (z) is a consistent 
estimator of co* (z), has the same asymptotic distribution as the hypothetical op- 
timal estimator A(~)(z, co*(z)). To obtain this result, it will be convenient to deal 
with a suitably normalized form of (4.1), given as 

(4.2) un(z, co) = co) _ 

For fixed z choose Wa, Wb such that  0 < Wa < w*(z) < co b < 0~. 
Let L i p s ( A )  denote the class of real functions on the set A which satisfy 

Lipschitz continuity of order a > 0. The next lemma provides the key to the main 
result, Theorem 4.1, of this paper. The proof of Lemma 4.1 is in Appendix D. 
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LEMMa 4.1. Assume (B1), (B2), and G is continuous at z. I f  Kr E 
L ip~( -cc ,  oo) where a > 0.5 and p > r, then for O < coa <_ co <_ cob < co, 
and Wb --coa < 1 the process Un(z, co) given by (4.2) converges weakly in C[coa,cob] 
to a Gaussian process U(z, co) with 

(4.3) 
and 

(4.4) 

E(U(z,  CO)) = [CO(z)]P-~A (p) (z)Br,p, 

Cov(U(z, COl), u(z, CO )) 

= (COl ,Cd2) - ( r+l ) [ )~ ( z ) /C(z ) ]  ( )Kr 
where B~,p is given by (3.4). 

THEOREM 4.1. (Locally adaptive bandwidth choice) Under the conditions 

--+CO (z), both U,(z ,  go(z)) of Lemma 4.1 and for any estimator &(z) satisfying go(z) P * 
and Un(z, CO*(z)) converge weakly to a normal distribution N([CO*(z)]P-~A(P)(z) • 
Br,p;CO*(z)-(Z~+l)[A(z)/C(z)]V~,p), where Br,p and Vr,p are given by (3.4) and 
(3.6). 

PROOF. Lemma 4.1 implies that Un(z, go) - Un(z, CO*) --+ 0 in probability. 
The result then follows from Lemma 4.1 and application of Slutsky's Theorem. [] 

Remarks 1. Note that Lemma 4.1 is only a tool to show the adaptive band- 
width choice result in Theorem 4.1. In practice one doesn't need to locate wa and 
CO b . 

2. Theorem 4.1 requires construction of consistent estimators for CO* (z) which 
reduces to estimating the quantity A(z)/[C(z)A(P)(z)] consistently. By Corollary 

3.1(b), consistent estimators for k(z) and k(P)(z), denoted by A0(z) and A(oP)(z) 
respectively, can be obtained via selecting proper Ko, Kp and initial bandwidths 

b0 and bp. The initial bandwidth for A(oP)(z) should be larger than the initial 
bandwidth for A0(z) (nbo -+ e~ but nb2p p+l -+ oc). As for estimating C(z), the 
C,~(z) given by (2.9) is not appropriate for the present purpose since it may assume 
zero value. Let C~ be any modified version of C ,  which is nonzero and consistent 
for C, e.g., let C~(z) = 1/(n + 1), whenever C~(z) = 0. Then, a candidate for 
adaptive bandwidth choice can be given as: 

(4 .5 )  b * ( z )  = f~ - 1 / ( 2 p + 1 )  
2r + 1 Ao(Z) Vr,p 

2(;-  r) 0n(z) [ (0p)(z)Sr,p]2 

1/(2p+l) 

3. Another choice of adaptive bandwidth can be obtained using the fact that 
A = d F * / C  which follows from (2.6), and that dF* -- f* can be estimated using 
the ordinary kernel estimate 

n 

f*(z)  = KO,b(Z -- x)dF*(x) = ~ i=1 \ bn J" 



ESTIMATION OF HAZARD F U N C T I O N S  F O R  T R U N C A T E D  DATA 257 

An alternative candidate for adaptive bandwidth choice is then: 

(4.6) l)*(z) = n -1/(2p+1) 2~ + 1 f;(z)V~,~ 
1/(2p+1) 
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Appendix A 

PROOF OF THEOREM 3.1. The mean of ~(~)(x) follows directly from Lemma 
2 of Woodroofe (1985). To find the variance, consider 

(a.1) E(t(~)(z))2 = E (i=< K~,b(Z- Xi)[nC~(Xi)]-2 ) 

+ 2E(~<TKr,b(z -Xi )Kr ,b(Z-Xj)  

• b~c~(xdc~(xj)]- 0 
= I + I I .  

Now, observe that  given Xi, nC~(X~)- 1 ~ B i n o m i a l ( n -  1,C(X~)), and 
E([n2C~(Xi)] -1 I Xi) = I~(C(Xi))/[nC(X{)]. Hence by (2.6) 

(a.2) I : f{K2b(Z -- Xl)In(C(Xl))/C(X1)}, 

which is the first term in (3.2). To evaluate II, first consider the following condi- 
tional expectation: 

2E I ~ ~ K~,b(~- X~)Kr,b(~- Xj) II 
i<j 

• E([n2Cn(Xi)Cn(Xj)] -1 ]Xi,Xj,Yi,  Yj)}.  

For Xi < Xj, nC~ (Xj) = 1 + M2 + M3, and 

1 + M 1  + M a ,  if Xi < Yj 
nCn(Xi) = 2 + M 1  + Ma, if Xi _> ~ ,  
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where (M1, M2, M3, M4) have a multinomial distribution with parameters n -  2 
and Pk = Pk(Xj ,X i ) ,  k = 1,2,3,4. The cell probabilities Pk's are defined as 
follows: 

P l ( S , t )  = P ( Y  < t , t  < X < s I Y ~ X )  = a - l G ( t ) [ F ( s )  - F( t ) ] ,  

P2(s, t) = P(t < Y <_ s,X > s I Y __ x )  = o z - 1 [ C ( 8 )  - C(t)][1 - F(s)], 
P3( s , t )  = P ( Y  < t , X  > s t Y < X )  = a - l G ( t ) [ 1  - F ( s ) ] ,  

P4(s,  t) = P ( n e i t h e r  t nor s is in [Y, X ] I Y  <_ X )  

= 1 - P l ( S , t )  - P2 ( s , t )  - Pa ( s , t ) .  

Hence, 

(a.3) i(x{ < xj)E([~2c~(xdG(xj)] -~ I x{, xj ,  ~, U) 
= I(Xi  < Yj)E[(1 + Mx + Ms)(1 + M2 + Ms)] -1 

+ I(Yj <_ Xi < Xj)E[(2 + M1 + M3)(1 + M2 + M3)] -1. 

Similarly, one can replace [(Xi  < Xj) ,  [ (Xi  < Yj) and I(Yj _ X~ < Xj)  in (a.3) 
by I (Xi  ~_ Xj) ,  I (X j  < Yi) and I(Yi ~ Xj  ~ Xi) respectively. Now using the 
facts that: 

(i) = I 1 Io for > i. 
( (2) (a + b + c + d) n = Ekl+k2+k3+k4=n klk2kak4 )aklbk2ckadk4' for integer 

n > l ,  
it can be shown that (details are available in Appendix A of Uzunogullari and 
Wang (1990)), 

f 
(a.4) n = 2 E ~ K r , b ( z  - X{)K~,b(~ - X j )  

• 

Jr< 8 

• 1 F(t) - F(s)[[1 - C(s)] n - Pg(s, t)] - [1 - C(t)] ~ 

• d A ( t ) d A ( s ) .  

Theorem 3.1 now follows from (a.1), (a.2), (a.4), and noting that P4(s, t) = P(s, t), 
and 

= 2 / m,,b(~ - t)K~,b(~ -- ~) 
Jr< s 

• [1 - [1 - C(s)] ~ - [i - C(t)]" + [1 - C(t)]~[l - C(s)]~]dA(t)dA(s). [] 
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Appendix B 

PROOF OF THEOREM 3.2. (a) Using integration by parts and the moment  
conditions in (2.11), it follows tha t  if one defined Kr - l (X)  = f~-i Kr(y)dy, for 
r >_ 1, then 

Kr-1 E Mr-l,p-1, Kr_j E M , r - j , p - j  and K - Ko E Mo,p_~. 

Hence 

/ Kr,b(Z-x)dA(x) = /_ll K(Y)A(r)(z- yb)dy. 

By (3.1) this leads to the following bias expansion: 

(b.l) bias(](~)(z)) = [./_I K(Y)I(~)( z _ yb)dy- l(<)(z)] 

- / K~,b(Z -- x)[1 -- C(x)]ndA(x) 

= I + I I .  

Now utilizing the assumptions (A1) and Taylor expansion, it follows tha t  

i t / ' .  J 

On the other hand, for n large enough and aC < x < bF, there exists 6 > 1 such 
tha t  1 - C(x) <_ 6. Therefore, 

/ (b.3) IIII < 6nb - r  IKr(y) l /~(z  - yb )dy  : o ( 6 n b  - r )  = o(b p - r )  
1 

since Kr E L2[-1 ,  1] and A is continuous at z. Part  (a) now follows from (b.1) to 
( 5 . 3 ) .  

(b) Consider the first term in (3.2). Using the assumptions on the kernel and 
bandwidth,  the continuity of A/C at z and the uniform convergence of nIn(C(x)) 
to 1/C(x) on [z - b~, z + b~], one can show tha t  

f K~,b(z - x)I~(C(x))dA(x) -~ ~(z)V~,,/C(z) ~tb2r+ 1 

It remains to show tha t  the second term in (3.2) is of the order o((nb2~+l)-l). To 
see this observe that:  

[1 1 - F(t) 
(b.4) - C(s)]'~ F(-t) --F--((s)[[1 - C(s)] ~ - P~(.s, t)] 

- [1 - c ( ~ ) p  [1 - c ( t ) ]  ~ 

1 - F ( t )  
< [1 - C ( s ) ]  ~ + F ( t )  - F ( s ) [ [ 1  - C ( s ) ]  ~ - P n ( s ,  t ) ]  

_< (~ + 1)[I - c(~)p -~, 
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where the last inequali ty follows from the fact t ha t  1 - C(s) - P(s,  t) = ct-iG(t)  • 
IF(s) - F(t)] ,  P(s, t) < min{1 - C(s), 1 - C(t)} and the following polynomial  
expansion: 

1 - F ( t )  
F~]-_-~-(s)-[[1 - C(s)] ~ -  P~(s,t)] 

: C(t)[[1 - C ( 8 ) ]  n-1 J-[1 - -C( s ) ]n -2p ( s ,  t ) + . . .  + Pn - l ( s ,  t)] 

< n[1 - C(s)] ~-~. 

For large n, (b.4) implies tha t  for some 6 > 0, 

( n b 2 r + l )  • [second t e rm in (3.2)] 

_< (nb 2~+1) / K<,b(Z -- s)K<,b(Z -- t)(n + 1)[1 -- C(s)]~-ldA(t)dA(s) 
. I t  <s  

< n(n + 1)b2<+16 ~-1 K~,b(Z -- t)dA(t) ~ O. [] 

Appendix C 

PROOF OF LEMMA 3.1. (a) Appl icat ion of (3.9) to  A(~)(z) yields 

(c.1) k*(~)(z) - E(k*(~)(z)) 
n 

= y-~{E(Wj I X j , ~ )  + (~ - 1)E(Wi I X j , ~ )  - E(i(r)(z))}, 
j= l  

where Wk = Kr,b(z -- Xk)[nC~(Xk)]- l ,  and 

(c.2) E(Wy I X j, Y~) = [nC(Xj ) ] - lKr ,b (Z-  Xj)[1 - (1 - C(Xj) )n] ,  

by L e m m a  2 of Woodroofe  (1985). Also, 

(c.3) E(Wi I X j , Y j )  = E{Kr,b(Z - Xi)E[(nCn(Xi))  -1 I X i , ~ , X j , ~ ] l X j , Y j } .  

Let p = C(X~) and observe that ,  given X~, Y~, X j ,  Yj, and n, the  condit ional  
dis t r ibut ion of nCn(Xi)  is 

nCn(Xi)  ~ { 2 + Binomial (n  - 2,p), if Yj <_ Xi  <_ X j  
1 + Binomial (n  - 2,p),  otherwise. 

Hence for Yj <_ Xi  <_ Xj ,  

(c.4) E(['~Cn(Xi)] -1 I X,, Y~, Xj, Yj) = Z ,  k-~ nk P ~ - 2 ( 1  - P)'~-~ 
k=2 

= [n(n - 1)p2]- l[np-  1 + (1 --p)n].  
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Similarly, for Xi < Yj or Xj <_ Xi, 

(c.5) E([nCn(Xi)] -1 ]X i ,Y i ,X j ,Y j )  = [(n - 1)p]-l[1 - (1 _p)n-]].  

Combining  (c.4) and (c.5) we have 

(c.6) E([nC~(Xi)] -1 I X~, ~,  Xj, Vj) 
= [ ( n -  1)p]-111 - ( 1  - p ) n - 1 ]  

-k [n (n -  1)p2]-1[(1 _ p)n + rip(1 __ p)n--1 __ l l / (Yj  ~ X i ~ X j ) .  

Replacing p back by C(Xi),  and plugging (c.6) into (c.3), we obta in  

1) -1 { / Kb(z -- s)[X - [1 - C(s)]n-1]dA(s) E(Wi I x  j, ~) (~ 

l [ (Z j  < 8 < X j ) K b ( z  - s)[?),C(8)] -1 

-[1 - [1 - C(s)] - nC(s)[1 - C(s)]n-1]dA(s)}. 

(3.11) now follows from (c.1), (c.2), (c.6) and (3.1). The fact that  ~i and V~ have 
mean  zero follows from (2.6), (2.7), and the  fact t ha t  the  first and second t e rm in 
~i have the  same expectat ion.  

(b) For this par t  we utilize the  following result  whose proof  is given in Ap- 
pendix  C of Uzunogullar i  and  Wang (1990): 

f K$,b(Z -- x)[1 -- [1 -- C(x)]~]2[C(s)]-ldA(s). (c.7) Var(~(z) )  

Using the cont inui ty  of A/C at z, the  fact tha t  K c L2[-1 ,  1] and  the  domina ted  
convergence theorem,  (c.7) can be wri t ten  as 

1 f ,.-2, , A(z - by)[1 - [1 - C(z - b y ) ] n ] 2 d y  (c.8) Var(~i(z)) - b2r+ 1 tt;~'Y) C(z - by) 

1 [ A ( z ) ,  ] 
-- b2r+ ~ L~(z) V~,p +o(1)_  . 

Next, consider ~i(z). For some ~ > O, 

(c.9) I ~ ( z ) l  = / K , , b ( z  - s)[±(Y~ < s < X~) - C ( s ) ] [ 1  - C(s)]n-ldA(s) 

<_ .~ K,,b(Z -- s) [1  -- C(s)]~-ldA(s) 

= b- '5  ~ / K , ( y ) A ( z  - by)dy I 

Formula  (3.12) now follows from (c.8), (c.9) and  appl icat ion of the  Cauchy-Schwarz 
inequali ty for the  covariance term. [] 
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Appendix D 

PROOF OF LEMMA 4.1. The course of the proof is to show that 
(a) the finite dimensional distributions of U~(z, w) converge to a multivariate 

normal distribution, with the covariance structure given by (4.4), and 
(b) the process U~(z, co) is tight. 
Part (a). By the hypothesis of the lemma, Theorem 3.2(a) and Theorem 

3.3(a), it follows that 

(d.1) Un(z, 02) --+ X(w(z)P- 'A (p) (z)B,,p, a~ -(2~+1) [A(z)/C(z)]V,,p). 

The Cram6r-Wold device then implies the weak convergence of the finite di- 
mensional distributions of U~(z,w) to a multivariate normal distribution with 
mean given by (4.3). It remains to verify the covariance structure of the limiting 
multivariate normal distribution. 

Let as = n -  1/(2p+1). Then following the proof of Theorem 3. l(b) and Theorem 
3.2(b) for the variance computations, we arrive at 

(d.2) Cov(Un(z ,  col), g n ( z , ~ 2 ) )  

= n2(p+l)/(2p+]) (021022)--(r+1) 

" { f K~ (~a~l ) K~ ( ~ )  I~[C(x)laA(x) 

+ L F 
• [[1 - C ( s ) ] n [ 1  - (1 - C ( t ) )  ~] 

1 - F(t) 1 - t))] }dA(t)dA(s) F ~ g - T ( t )  ([ - c (s )p  p~(s, 

( ,)( ' )  : (<02~)-(~+1)c(~) K~ ~ K~ ~ dt + o(1). 

Part (a) is now completed by (d.2). 
Part (b). To see that the process Un(z,a~) is tight, consider 

(d.3) E(Un(z,021) - Sn(Z,022)) 2 

: eb (~-~)/(~'+1) (i (~) (~, 021) - i (~) (~, 02~))]~ 

= n2(p+I)/(2p+I)E z, Xi,021,w2 n i , 

~'"kl r+l whereS(z,X~,~l,022) = (1/021)S~((z-X~)/an021)-(1/022 )K~((~-Xd/an021). 
Observe that the last expression in curled brackets is similar in form to ~(r)(z) in 
(2.10) and therefore one can obtain this expectation from the proof of E[A(r)(z)] 2 
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in Append ix  A since H is a fixed funct ion  of Xi .  Hence we have 

E[Un(z,  col) - Un(z, 

~- Tt'2(pq-1)/(2Pq-1) V [ H2( Z, 8,col,co2)Zn[C(x)]di(8) 
LJ 

= I + I I .  

+ 2 ft H(z, s, col, co2)H(z, t, col, co2) 
<s 

1 - F ( t )  
• 1 F-(~) -F((t)[[1 - C(s)] n - Pg] 

- [1 - C(s)]n[1 - C(t)] n }dA(t)da(s)] 

Now consider t e r m  I, wi th  an = r t - 1 / ( 2 p + l ) :  

(d.4) I = f nI~ [C(z - an t ) ]  (co;  (r+l)Kr ( t /co 1 ) - co2 (r+l)Kr ( t /°22))2 

• ),(z - ant)dr 

= / nIn[C(z - ant)]{col -(r+l)  [Kr(t/col) - Kr(t/co2)] 

+ [co~-(~+l) _ co~(~+l)]Kr(t/co2)}2A( z _ ant)dr 

<<_ 2 / nIn[C(z - ant)]{co~ -2(~+1) [K~(t/czl) - K~(t/co2)] 2 

+ [co[(r+l) _ co~(r+l)]2K~(t/cz2)}A( z _ ant)dr 

_< cons tan t  f nIn [C(z - ant)]" Icol - co21 min(2a'2) ~(z - ant)dt 

_< c o n s t a n t  Icol - 022 ]min(2a,2) 

where the  second last step follows f rom the  Lipschitz  condi t ion  on BLr and t h a t  
Icox - co2] _< 1; the  last step follows f rom the  con t inu i ty  of A/C at  z and  the  fact  
t h a t  nyIn(y) _< 2 for 0 _< y _< 1. 

Term II can s imilar ly be bounded  by L(cox -co2)  min(2~'2) for some L > 0. 
Therefore  

E[Un(z, Wl) - Un(z, co2)] 2 _< constant(col - c02) min(2a'2),  

for all (col, co2) E [a~a; cob]. This  implies the  t ightness  of Un(z, co) by T h e o r e m  12.3 
of Bill ingsley (1968). [] 
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