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Abstract. Nonparametric kernel estimators for hazard functions and their
derivatives are considered under the random left truncation model. The esti-
mator is of the form of sum of identically distributed but dependent random
variables. Exact and asymptotic expressions for the biases and variances of the
estimators are derived. Mean square consistency and local asymptotic normal-
ity of the estimators are established. Adaptive local bandwidths are obtained
by estimating the optimal bandwidths consistently.
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1. Introduction

Let X be a random variable (r.v.) of interest, referred to as the lifetime. In
practice the observation of X may be prevented by another independent random
variable Y called the truncation variable. Suppose (X;,Y;), ¢ = 1,...,N is a
random sample of (X,Y). Then, under the random left truncation model, one
observes only those i.i.d. pairs (X;, Y;) for which Y; < X;. We index those observed
pairs by ¢ = 1,...,n. There is a similarity of the left truncation model to the
left censoring model studied by Csorgé and Horvath (1980), but the number of
observations n in the former is a random variable.

Much of the literature has been devoted to the censoring model and the sta-
tistical interest in the truncation model spurred only more recently, partly due to
its applicability to AIDS data (Lui et al. (1986), Lagakos et al. (1988), Kalbfleisch
and Lawless (1989)). More applications of the random left truncation model can
be found in Allredge and Gates (1985), among others.

Let F' and G be the (right continuous) distribution functions (d.f.) of X and Y’
respectively. The nonparametric maximum likelihood estimator (MLE) of F was
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first suggested by Lynden-Bell (1971) and studied by Woodroofe (1985), Wang et
al. (1986), Chao and Lo (1988), Gu and Lai (1990) and Keiding and Gill (1990).
In this paper, our interest focuses on the hazard function )\ of ' defined as

(1.1) Az) = f(x)/[1 - F(z)], for F(z)<1,

where f is the probability density function of F.

The hazard function is important for the assessment of risks and has been
studied extensively for randomly censored data, e.g., hazard estimates of the
type (2.10) were studied by Ramlau-Hansen (1983), Tanner and Wong (1983),
Yandell (1983), Diehl and Stute (1988) and Miiller and Wang (1990) among oth-
ers. However, little is known about hazard estimation for truncated data although
this problem is of applied interest. For example, in the Channing House data in
Hyde (1977), F is the lifetime distribution for males, and A(#) is their hazard at
age t which is of demographic interest. However the lifetime X is subject to left
truncation since the data consists of only those males who were alive at the time
the study started; thus the truncation variable Y is the age at entry into the study.
A detailed analysis of these data can be found in Giirler and Wang (1992).

Although our main interest is the hazard function itself, we consider the more
general problem of estimating its r-th derivative, A("), for » > 0. One motivation
being that they are involved in the choice of data-dependent optimal bandwidths.
We consider the kernel hazard estimator A" in (2.10) of A by convolving the
kernel with a cumulative hazard estimator. Exact and asymptotic expansions for
the mean and variance of A(") (z) are given in Theorems 3.1 and 3.2 which then
imply the mean square consistency of S\(T)(z). The computation of the variance
term of A" (z) (cf. (3.2) and Appendix A) is much more complicated under the
present truncation model than the consoring model. Asymptotic normality of
A™)(z) is obtained in Theorem 3.3 via the Hajek projection method (Hajek (1968)).

It is well known that the choice of bandwidths is crucial for the quality of the
resulting kernel estimate and that the optimal local bandwidth depends on the
curvature at a point. This was first noticed, for kernel density estimators by Parzen
((1962), equation (4.15)). This effect is magnified, even for i.i.d. observations, for
kernel estimated hazard functions since the variance of 5\(2) tends to infinity as
z tends to the right end of the support of F. The left truncation scheme further
complicates the situation and the variance of A(") (z) also blows up as z tends to
zero (cf. (3.5)). Local bandwidth choice is therefore considered here instead of
a global one. The optimal local bandwidth b* depends on unknown quantities
(cf. (3.8)). We show in Theorem 4.1 that any consistent estimator of it will give
rise to a kernel hazard estimator which possesses the same limiting distribution as
the kernel hazard estimator employing the optimal bandwidth. Such procedures
provide efficient methods for hazard estimation and the resulting bandwidths are
called locally adaptive bandwidths. Some choices of locally adaptive bandwidths
are given in Section 4. Lengthy proofs are relegated to the Appendices.
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2. Kernel hazard estimates

We shall assume without loss of generality that both X and Y are nonneg-
ative random variables. We adopt Woodroofe’s (1985) notation throughout the
presentation. The cumulative hazard function of F (or X) is:

(2.1) A(z) = /w At)dt = —log(1l — F(z)).
0
For any d.f. W, define
aw = inf{t: W(t) >0} and bw =sup{t: W(t) <1},

as the left and right endpoints of the support of W. As Woodroofe (1985) points
out, in random truncation models, F' can be estimated completely only if ag < ap.
We shall assume this and put

(2.2) a=a(F,G)=P(Y <X)= /00 G(x)dF(z) > 0.
0

Let H* denote the joint distribution of the observed (X,Y) pair, and F* and
G* denote the corresponding marginal d.f.’s. Then

(2.3) H*(z,y)=P(X<z2,Y<y|Y <X)=a! /Ow G(min(y, t))dF(t),
(2.4) F*(z) = H*(z,00) = a! /Oz G(t)dF(t),
(2.5) G*(y) = H*(o0,y) =a ! /000 G(min(y, t))dF(t).

Theorem 1 of Woodroofe (1985) gives the following representation for the cumu-
lative hazard A:

(2.6) Mo) = [ R )0,

0
where
(2.7) Cz)=P(Y <2< X)=G*(2) - F*(z—) = a 'G(?)[1 - F(z-)].

Note that C is not monotone and C(z) tends to zero as z tends to either ag or
br. The representation (2.6) then suggests estimating A(z) by

(2.8) An(z) = / Cal@))  dFy(z) = 3 [nCa(Xa)] Y,
0 X<z
where F} and C,, are the empirical functions of F* and C, e.g.,

(2.9) Cn(z) =#{i:Y; <2 < X;}/n.
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Notice that C,,(X;) > 1/n, however, it is not a monotone function.
We consider the following kernel estimator for A" (2) by convolving a kernel
K, with A,, in (2.8):

1 z
b+l / B (

where K, ;(z) = b=tV K, .(x/b), and b = b, is the bandwidth sequence.

To obtain the properties of A we need to assume that:

(A1) for somep >r, A is p times continuously differentiable at z.

As for the bandwidth sequence we require that:

(Bl) b, —0,

(B2) nbZtl — oo

For the kernel function it is assumed that: K, is a function of bounded varia-
tion with support [—1,1] and it is a function of order (r,p), i.e., K, satisfies

(210)  A7(z) =

T\ 4 = 1
) dAn(z) = ;Kr,b(z - Xi)mi—),

(211) K, € M, , = {qeLQ[ 1,1]:
' (=1)"r! j=r
/q(:c)a:’dxz 0 0§j<p,j7ér}.
# 0 but finite j=p

Note that under (2.11) K, and K,(z) implicitly involve p; however, for
brevity of notation this is suppressed. _

3. Mean square consistency and asymptotic normality
We will derive in this section the properties of S\(T)(z) for ag < z < bp. The
notations in Sections 1 and 2 are used. All expectations hereafter are with respect

to conditioning on n, the number of observations.

THEOREM 3.1. (Mean and variance)

3.1 BOO@) = [ Keale =o)L - (1= C@)"liA(z)
and
(3.2) Var(A"(z / — )1 (C(x))dA(z)

+2 Krp(z—t)Krp(z—s)
t<s

- {[1 ~ O - prgrs - CO = P(s,0)

—-[1-Cc@"1 - C(S)]”}dA(t)dA(S),
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where for 0 <y <1

=Y (1) -y,

k=1
P(s,t) = P(neither s nort isin [V, X] | Y < X)
—1— a UG - F(s)] + G)[F(s) - F(t)]),

ProoOF. The proof is given in Appendix A. [

Remark. The I, function is also used in Watson and Leadbetter ({(1964),
formula (2.3)). Note that nyl,,(y) < 2 and nl,(y) converges uniformly to y~! on

any interval [a,b] with @ > 0 and b < 1.

Asymptotic behavior of the bias term and the variance is given in the following
theorem. The proof is in Appendix B.

THEOREM 3.2. (a) For p > r and under (Al),

(3.3) bias(A") (2)) = P"AP) (2)B, , + 0P,
where
(3.4) B,p = (—% / K- (y)yPdy.

(b) If z is a continuity point of G, then

(3.5) Var(A")(2)) = nb217“+1 {%%VW + 0(1)} ,
where
(3.6) Vo= | Kiwdy

COROLLARY 3.1. Under the conditions of Theorem 3.2,

(a) If (B1) holds, then \")(z) is asymptotically unbiased for \(7)(z).

(b) If (B1) and (B2) hold, then \")(2) is a mean square consistent and hence
consistent estimator of A7) (z).

(¢)

(3.7) MSE(S\(T)(z)) = nb21r+1 ‘2«%})%7? + (bp‘T)‘(p)(z)Br,p)z

1 2(p—r
To (nb2r+1 + 62 )) :
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The optimum bandwidth which minimizes the leading term in (3.7) is given
by

o +1 Az) Vi Y/ @pt1)
2(p — 1) C(2) AP)(2) B, ;)
= n_l/(2p+1)w*(z).

(3.8) b*(z) = n~ 1/ (2p+1)

Note that the optimum rate, n=1/(2»*1) for bandwidth and the optimum rate,
n~2=r)/2r+1) for MSE, are analogous to the ii.d. case (i.e. without truncation).
The optimal bandwidth b*(z) depends on the unknown quantities A(z), C'(z) and
AP (z). Data dependent adaptive bandwidth choices will be addressed in Section
4.

Next, we will derive the local limiting distribution of A)(z). Notice that
A (2) is a sum of identically distributed but not independent terms since Cy, (X;)
depends on the entire sample. As mentioned earlier, we will utilize the Hajek
projection method. This method was also used by Tanner and Wong (1983) for
kernel hazard estimates based on randomly censored data.

Let W be a function of i.i.d. random variables Z3, Zs, ..., Z,. Hajek (1968)
defines the projection W* of W to the space S of the sum of i.i.d. variables as
follows:

(3.9) W* — E(W*) = Z[E(W | Z;) — E(W)),

(3.10) E(W*)=E(W), EW*-W)?=Var(W) - Var(W*).

In the truncation setting, Z; = (X;,Y;), W = A (2), and A*(")(2) denotes the
Hajek projection W* of A(")(z). The following lemma gives the form of A*(")(z).
The derivation is in Appendix C.

LemMa 3.1. (Hajek projection) (a)
311 NO() - B0 (2)

i i{mw X - [1 - O]
- /I(Yi <5< X)Kpy(z— 3)
(O~ (1~ C(5)) M)
4 g/u(m <5< X)) —C(s)]
Koslz— )1 — O dAG)

o i@-(z) + ﬁ;mz),
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where E(§;(z)) = E(n;(2)) = 0.
(b) If z is a continuity point of G, then for V,, defined in (3.6),

(3.12) Var(A*((2)) = nb—21+—1 {g%%vr,p + 0(1)} .

THEOREM 3.3. (Asymptotic normality) Assume G is continuous at z and
(B1)—(B2) are satisfied. We then have

(2) (nb2 1) Y2(IN(2) [C(2)]Vrg) 2 AN (2) = B (2))] 5 N (0, 1),
(b) If d = lim,, o, nb?P*! < 00, then

(b )20 (2) = MO (2)] S N(d AP (2) Bry, N (2) /C(2) Vi ).
PROOF. (a) It follows from (3.5), (3.10) and (3.12) that

E(A"(z) - 1) (2))? .
Var(A(")(z))

Var(\"(2))/ Var(A*(”(2)) -1  and

Therefore, [Var(A")(2))]"Y/2[A(")(z) — E(A")(2))] has the same asymptotic dis-
tribution as Z,(z) = [Var(A\*™) (2))]7 2\ (2) — E(A*()(2))] and it suffices to
show that Z, — N(0,1). This is accomplished by verifying Lindeberg’s condition
for a triangular array.

(b) Follows immediately from (3.3) and (a). O

4. Adaptive bandwidth choice

Consider the estimator (2.10) with local bandwidth b(z) = n=1/Cr+hy(z) =
n~ Y@ty which attains the optimal rate of convergence by (3.8) and denote it
as

. 1 - z—X; 1
(r) — %
(4.1) ATz w) = [n—1/@p+1)|r+1 Z;KT <n~1/(2p+1)w> nCn(X;)

Thus A" (z,w*(z)) is optimal in terms of minimizing the asymptotic MSE. In this
section we show that locally adaptive bandwidth choices are indeed feasible. More
precisely, it is shown that the estimator A(")(z,&*(z)), where &*(z) is a consistent
estimator of w*(z), has the same asymptotic distribution as the hypothetical op-
timal estimator A (z,w*(2)). To obtain this result, it will be convenient to deal
with a suitably normalized form of (4.1), given as

(4.2) Up(2,w) = n®@=/CPEDR0) (2 ) — A (2)].

For fixed z choose w,, wp such that 0 < w, < w*(2) < wy < co.

Let Lip,(A) denote the class of real functions on the set A which satisfy
Lipschitz continuity of order @ > 0. The next lemma provides the key to the main
result, Theorem 4.1, of this paper. The proof of Lemma 4.1 is in Appendix D.
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LEmMA 4.1. Assume (Bl), (B2), and G is continuous at z. If K, €
Lipo(—o00,00) where a > 0.5 and p > 7, then for 0 < w, < w < wy < 00,
and wy —w, < 1 the process Uy (z,w) given by (4.2) converges weakly in Clwg,wp)
to a Gaussian process U(z,w) with

(4.3) E(U(z,w)) = [w(2)P"AP)(2)B,.,,
and
(4.4) Cov(U(z,w1),U(z,w2))

= (n,) NG/ [ K, (w—) K, (-) du,

w2
where By, is given by (3.4).

THEOREM 4.1. (Locally adaptive bandwidth choice) Under the conditions
of Lemma 4.1 and for any estimator &(z) satisfying &(z) —iw*(z), both U,,(z,w(z))
and Uy (z,w*(2)) converge weakly to a normal distribution N([w*(2)]P~"A®)(z) -
By p;w*(2) " @V (2)/C(2)]Vrp), where Brp and Vi, are given by (3.4) and
(3.6).

PROOF. Lemma 4.1 implies that U,(z,0) — U,(z,w*) — 0 in probability.
The result then follows from Lemma 4.1 and application of Slutsky’s Theorem. O

Remarks 1. Note that Lemma 4.1 is only a tool to show the adaptive band-
width choice result in Theorem 4.1. In practice one doesn’t need to locate w, and
Wp.

2. Theorem 4.1 requires construction of consistent estimators for w*(z) which
reduces to estimating the quantity A(2)/[C'(z)AP)(z)] consistently. By Corollary
3.1(b), consistent estimators for A(z) and A®)(z), denoted by Ao(z) and 3\(()”) (2)
respectively, can be obtained via selecting proper Ky, K, and initial bandwidths
bp and b,. The initial bandwidth for ;\8’) )(z) should be larger than the initial
bandwidth for Ag(z) (nby — oo but nb2P*! — o0). As for estimating C(z), the
Cy(2) given by (2.9) is not appropriate for the present purpose since it may assume
zero value. Let C,, be any modified version of C,, which is nonzero and consistent
for C, e.g., let Cp(2) = 1/(n + 1), whenever Cy,(z) = 0. Then, a candidate for
adaptive bandwidth choice can be given as:

2r +1 5\0(2) Vip
2(p— 1) Cu(2) AP (2) B, )2

1/(2p+1)
(45)  b(z)=n-1CPD [ }

3. Another choice of adaptive bandwidth can be obtained using the fact that
A = dF*/C which follows from (2.6), and that dF”* = f* can be estimated using
the ordinary kernel estimate

i) = [ Koo~ 0o = 5= Sk (52,

i=1
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An alternative candidate for adaptive bandwidth choice is then:

. 1/(2p+1)
(4.6) b (2) = n-Voen) | 2rHL Sa(2)Vey
2(p = 7) [Co(2) AP (2) Brp)?

)
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Appendix A

PROOF OF THEOREM 3.1. The mean of A(")(z) follows directly from Lemma
2 of Woodroofe (1985). To find the variance, consider

(a.1) EQAM(2) (Z 20(z — Xi)[nCo (X))~ 2)
+2E<§:§:KM& X)) Krp(z — X;)

: [n2Cn(Xi)Cn(Xj)]_1>
=1+1L

Now, observe that given X;, nCn(X;) — 1 ~ Binomial(n — 1,C(X;)), and
E([n?C2(X,)] 1| Xi) = 1n(C(X,))/InC(X:)]. Hence by (2.6)

(a.2) I=E{K7,(z = X1)Io(C(X1))/C(X1)},

which is the first term in (3.2). To evaluate II, first consider the following condi-
tional expectation:

{ZZKM Xi)Krp(z — X;)

1<J

E([n*Cu(X:)Cu(X))] 7 | X, X Y;,Y])}

For X; < Xj, nCp(X )—1+M2+M3, and

L 14+ M+ M, i X <Y
ncn(Xl)—{HMﬁMg, if X > Y,
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where (M7, My, M3, My) have a multinomial distribution with parameters n — 2
and P, = Pu(X;,X;), k = 1,2,3,4. The cell probabilities Py’s are defined as
follows:

Pi(s,t) =P(Y <t,t <X <s|Y < X)=a G{)[F(s) — F(t)],
Py(s,t) = Pt <Y <8,X >s|Y <X)=a G(s) - G(t)][1 - F(s))],
Py(s,t) = P(Y <t,X >s|Y < X)=a 'G{)[1 - F(s)],

Py(s,t) = P(neither t nor sisin [V, X] | ¥ < X)

=1- Pl(S,t) e Pz(.s’,t) - Pg(S,t).

(23)  I(Xi < X5)E([n*Cn(X:)Cu (X)) 71 | X4y X5, Y, Y))
= I(X; < Y;)E[(1+ My + Ms)(1 + My + Mz)]™>
+I(Y; £ Xi < X;)E[(2+ My + M3)(1 + My + M3)]?

Similarly, one can replace I(X; < X;), I(X; < Y;) and I(Y; < X; < X;) in (a.3)
by I(X; > X;), I(X; <Y;) and I(Y; < X; < X;) respectively. Now using the
facts that:

(1) (ab)™ fof 12 Yy~ tdady, for a,b > 1.

(2) (a+b+c+d)" Zk1+k2+k3+k4=n(k1k2k3k4 YaF1bk2cksdhe for integer
n>1,
it can be shown that (details are available in Appendix A of Uzunogullari and
Wang (1990)),

(a.4) I = QE{KTJ)(Z — Xi)Krp(z — X;)

1 [1-CX)"
' [I(Xi <) (C(Xi)C(Xj) - PC(X;) )

~I(X; <Y; < Xj) (%ﬁggw N P]E-f’g)] }

= 2/ Kop(z—8)Krp(z—t)
t<s

i A2FO o Bris - (1 - o)
{1- =B - e - ppsl - - coor
dA(t)dA(s).

Theorem 3.1 now follows from (a.1), (a.2), (a.4), and noting that Ps(s,t) = P(s,t),
and

B2 (2))

=92 /< K, (= rb(z —8)
N-{1-C(s)"=[1-C@®I"+[1—-C@®)]"1—C(s)]"]dA(t)dA(s). O
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Appendix B

PROOF OF THEOREM 3.2. (a) Using integration by parts and the moment
conditions in (2.11), it follows that if one defined K,_;(z) = f K, (y)dy, for
r > 1, then

K. ¢ Mr——l,p—l; Kr_j S M'r‘—j,p—j and K=Ky € MO,p—r-
Hence

/Kr p(z — x)dA(z / K ()M (z — yb)dy.

By (3.1) this leads to the following bias expansion:
(b.1) bias(A(")(2) [ / KA (z — yb)dy — X7 (2)

/KM z —z)[1 = C(z)]"dA(x)
=I+4+1IL

Now utilizing the assumptions (A1) and Taylor expansion, it follows that
Cev() oy 1P r
(b.2) [=pP77AP (z)—p'- K- (y)yPdy + o(b°™").

On the other hand, for n large enough and ag < z < bp, there exists § > 1 such
that 1 — C(x) < §. Therefore,

1
(b3) || < 6T / I = ph)dy = O(E"™7) = oft? )

since K, € L?[—1,1] and X is continuous at z. Part (a) now follows from (b.1) to
(b.3).

(b) Consider the first term in (3.2). Using the assumptions on the kernel and
bandwidth, the continuity of A/C at z and the uniform convergence of nl,(C(z))
to 1/C(x) on [z — by, z + by], one can show that

nb* T /Kf’b(z — ) [,(C(z))dA(z) = M2)V;.,/C(2).

It remains to show that the second term in (3.2) is of the order o((nb* *1)~1). To
see this observe that:

ba) 1= COI - gL - O — P,
~ - P -
< (1= CO" + =gyl — O = P(s,0)

<(n+DL-C@E)"
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where the last inequality follows from the fact that 1 — C(s) — P(s,t) = a'G(t) -
[F(s) — F(t)], P(s,t) < min{l — C(s),1 — C(¢)} and the following polynomial
expansion:

F(t)_ §35>[[ — s~ P (s,1)
Ol = OO+ 1L~ COP () - P s)
ll — C(s))""

For large n, (b.4) implies that for some § > 0,

(nb®"t1) - [second term in (3.2)]

< (b / Ky p(z = 8) Ky (2 — £)(n + D)[1 — C(s)]"~2dA(1)dA(s)

n(n + 1)p2r+ign-1 [/ K p(z — t)dA(t)] 2 — 0. O

Appendix C
PRrOOF OF LEMMA 3.1. (a) Application of (3.9) to A(")(z) yields
(c.1)  XN0(z) = BV (2))

= Z{E(Wy‘ | X5, Y5) + (n = DEW; | X;,Y;) — EQT(2)},

where Wy, = K, (2 — Xi)[nC,(Xy)] 71, and

(c2)  B(W;|X;,Y;) = [nC(X;)] " Krp(z — X5)[1 — (1 - C(X;))",

by Lemma 2 of Woodroofe (1985). Also,

(c3) E(W; | X;,Y;) = E{Krp(z — X)) B[(nCp(X:)) ™" | X3, Yi, X5, Y] | X5, Y5}

Let p = C(X;) and observe that, given X;, Y;, Xj, Yj, and n, the conditional
distribution of nC,(X;) is

Co(X) 2 + Binomial(n — 2,p), #fY; < X; < X;
it 1 + Binomial(n — 2,p), otherwise.

Hence for ¥; < X; < X,

(c4) B(nCa(X)|"" | Xo Yo X;,Yy) = 3 b 1<k ;)pk_z(l—p)n_k
k=2

= [n(n - 1)p*] np -1+ (1 —p)"].
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Similarly, for X; <Y or X; < Xj,
(€5)  B(InCo(Xa)] ™| X, Ye, X5, Yy) = [(n— Dp) ML = (1= p)" 7],
Combining (c.4) and (c.5) we have

(c.6) E([nCrn(X:)] ™ | X3, Y5, X5, Y5)

=[(n—1p] M1~ (1 -p)"7]
+[n(n—1)p?| 7 (1 - p)" +np(1 - p)" " = I(Y; < X; < X;).

Replacing p back by C(X;), and plugging (c.6) into (c.3), we obtain
B¥: 1 X,%5) = (0= 17 [ Ktz = 9)l1 = 1= O JaAGs)
- / I(Y; < s < X;)Ko(z — 8)[nC(s)] ™"
=[1-C(s)] =nC(s)[1 — C(s)]"’l]dA(s)}.

(3.11) now follows from (c.1), (c.2), (c.6) and (3.1). The fact that & and 7; have
mean zero follows from (2.6), (2.7), and the fact that the first and second term in
& have the same expectation.

(b) For this part we utilize the following result whose proof is given in Ap-
pendix C of Uzunogullari and Wang (1990):

(c.7) Var(§i(2)) = /Kf,b(z = 2)[1 = [1 = C(@)]"P[C(s)] " dA(s).

Using the continuity of A/C at z, the fact that K € L?[—1,1] and the dominated
convergence theorem, (c.7) can be written as

(©8)  Varte(s) = g [ K20) e~ (1~ CCe — )Py

_ b;ﬂ [%Vr,p + 0(1)] .

Next, consider 1;(z). For some § > 0,
(c9) In(2)| = ’/Kr,b(z —8)[[(Yi < s < X;) = C(s)][L = C(s)]" " dA(s)

< ) [ Kestz = o)1= Cla)aa(s)

=b""5"

/Kr(y)/\(z - by)dy‘ :

Formula (3.12) now follows from (c.8), (¢.9) and application of the Cauchy-Schwarz
inequality for the covariance term. O
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Appendix D

Proor orF LEMMA 4.1. The course of the proof is to show that

(a) the finite dimensional distributions of U, (z,w) converge to a multivariate
normal distribution, with the covariance structure given by (4.4), and

(b) the process U, (z,w) is tight.

Part (a). By the hypothesis of the lemma, Theorem 3.2(a) and Theorem
3.3(a), it follows that

(d.1) Un(2,w) = N(w(z)P"AP (2)B, ,, o™ F V() /C(2)][Vip).

The Cramér-Wold device then implies the weak convergence of the finite di-
mensional distributions of U,(z,w) to a multivariate normal distribution with
mean given by (4.3). It remains to verify the covariance structure of the limiting
multivariate normal distribution.

Let a,, = n~*/(2P+1)_ Then following the proof of Theorem 3.1(b) and Theorem
3.2(b) for the variance computations, we arrive at

(d.2) Cov(Upn(z,w1), Un(z,ws))
— n2(p+1)/(2p+1)(w1w2)~(r+1)

{5 (B0 w0 (28 nlewian)
e Go) e () oo (o) = ()]
- [{1 )L - (1 - C))

~ F(#) - 8
( ) - F(t)({l C(s)]" = p"( ,t))]}dA(t)dA( )

= (wiwa)~ (D) C(é))/K (5’-1) K, (i-) dt + o(1).

Part (a) is now completed by (d.2).
Part (b). To see that the process Uy, (z,w) is tight, consider

(d.3) E(Un(z,w1) — Un(2,w2))?
= E[p®=7)/ @D (X0 (2 w1) — A (2, w0)))?

n 2
= 21/ p {Z H(z,Xi,wl,wg)/[nCn(Xi)]} ,

=1

where H(z, X;, w1, ws) = (1/w] ™K, ((2—X;)/anw1)—(1/ws™h) T((z—XE-)/anwl).
Observe that the last expression in curled brackets is similar in form to A (2) in
(2.10) and therefore one can obtain this expectation from the proof of F[A()(2)]?
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in Appendix A since H is a fixed function of X;. Hence we have
E[Un(2z,w1) — Un(2,w2)]?

= n?(p+l)/(2p+1) I:/ H2(27 S’w17w2)1n[c(x)]dA(S)
+2/ H(Z,S,Wl,Wz)H(Z,t,wl,WQ)
t<s

30 .
A= F sl - cr - 2]

o) - cunn}dA(t)dA(s)}
=1+1I.

Now consider term I, with a, = n~1/(@p+1).

(d4) 1= / NI [C(z — ant)](w VK, (tfwn) — wy TV K (¢ /i)
‘Az — ant)dt
— [ #lCG - antifer K tfon) - Kot
4 wr Y s TR we) Y2 A (2 = ant)dt
<2 [ 1L, [C(: = ant oy DK (tfn) — Botfn))
o T — Wy TR R (/w2 — ant)dt
< constant / L [C(z = ant)] - Jwr — wal*R2OD N2 g Pt
< constant|w; — we[Pin(22)

where the second last step follows from the Lipschitz condition on K, and that
lwi — wa| < 1; the last step follows from the continuity of A/C at z and the fact
that nyl,(y) <2for 0 <y < 1.

Term II can similarly be bounded by L{w; — wz)mi“(z""Q) for some L > 0.
Therefore

EU,(2,w1) — Un(z,ws)]? < constant(w; — wy)™in(e2)

for all (w1, ws) € [wa;ws)|. This implies the tightness of U, (z,w) by Theorem 12.3
of Billingsley (1968). O
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