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A b s t r a c t .  Consider an exponential family such that  the variance function is 
given by the power of the mean function. This family is denoted by ED (~) if 
the variance function is given by #(2-~)/0-~),  where # is the mean function. 
When 0 < a < 1, it is known that  the transformation of ED (~) to normality is 
given by the power transformation X (1-2~)/(3-3a), and conversely, the power 
transformation characterizes ED (~). Our principal concern will be to show 
that  this power transformation has an another merit, i.e., the density of the 
transformed variate has an absolutely convergent Gram-Charier expansion. 
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1. Introduction 

In statistical theory, the study of the exponential family has a long history. 
The family has nice statistical properties, and many important distributions are 
members of the family (Barndorff-Nielsen (1978) gave an excellent review on this 
family). In particular, an exponential family whose variance function is given 
by a power function of the mean is very interesting. This family is called the 
exponential family with power variance function (PVF). 

All exponential families with PVF were found by Jorgensen (1987). He showed 
that these families are also exponential dispersion (ED) models. The exponential 

family with PVF is denoted by ED (a) when the variance function is given by 
#(2 -a)/(l-a), where # is the mean value. We may note that ED (a) coincides with 
Poisson, gamma, inverse Gaussian and normal distributions when c~ = -o% 0, 
1/2 and 2 respectively. When a E (0, i) U (1, 2), the density of ED (a) is given by 
exponential tilting of the stable distribution. The density, however, is developed 
by an infinite series except the case c~ = i/2. 

It is well-known that the transformation of a chi-squared variate (or of a 
gamma variate) to normality is given by the cube root transformation. In general, 
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suppose that a random variable X has a pdf in ED (~) with 0 ___ c~ < 1. Then Nishii 
(1990) proved that the transformation of X to normality is given by the power 
transformation X (1-2~)/(3-3~), and conversely, this transformation characterizes 
an exponential family. Our aim in this paper is to present one reason why the 
power transformation of ED (~) is effective. Suppose that /3 is a power in an 
interval around the normalizing power (1 - 2c~)/(3 - 3a). Then it will be proved 
that the density of the transformed variate X # has a convergent Gram-Charier 
expansion. 

In Section 2, we present a key theorem due to Cram6r (1925), which gives two 
sufficient conditions such that a density of a random variable has a convergent 
Gram-Charier expansion. Also ED (~) is reviewed. In Section 3, it is proved that 
the cube root transformation of a gamma variate accelerates the convergence to 
normality. Also a similar result for the logarithmic transformation of an inverse 
Gaussian variate is obtained. In Section 4, we can generalize the result into the 
case ED (~) with 0 < a < 1. The error bound of the saddlepoint approximation 
of the extreme stable distribution is estimated. Using the result, we discuss the 
power transformation of the variate following ED (~). Section 5 gives a numerical 
example. Finally, we give the proofs of Theorem 4.1 and Corollary 4.1 in the 
Appendix. 

2. Preliminary results 

An exponential dispersion (ED) model is a family of probability density func- 
tions (pdf's) of the form f (x )  = a(x; A) exp [A{0x - ~(0)}], where a(x; A) and ~(0) 
are given functions, and (A, 0) varies in a set A x O. Suppose that a random vari- 
able X has a pdf f (x) .  Then E ( X )  = t~'(O) and V ( X )  = t~"(O)/A. An ED model 
satisfying e;"(O) = {~'(0)} (2-~)/(1-~) is called an ED model with power variance 

function, and denoted by ED (~). Jorgensen (1987) showed that there exists ED (~) 
except the case c~ > 2. Hougaard (1986) studied properties of the family with 
0 < c ~ < l .  

HereaRer, we consider the case 0 < c~ < 1. Then ED (a) is a family of densities 
of random variables taking positive values. The following theorem may be found 
in, e.g., Hougaard (1986). 

THEOREM 2.1. When 0 < (~ < 1, the density in ED (~) is given by 

(2.1) f~(x) =- "/p(Tx; a, 1 )  exp [AOx + A(1 - a ) a - l { - O / ( 1  - o0} c~] 

with A > O and 0 < 0 ,  

where 

(2.2) = - 

and p(x; c~, 1) is a density of the extreme stable distribution developed by the abso- 
lutely convergent series: 

1 ~ F ( a k + l ) ( _ x _ ~ )  ksin(Trak) i f x > O ,  
= k! (2.3) ; (x;  1) k=l 

0 / f x < _ 0 .  
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This theorem asserts that the pdf in ED (~) is given by exponential tilting of the 
stable density (see Zolotarev (1986) for stable densities). The following theorem 
due to Cram~r (1925) plays a key role in this article. See also pp. t73-174 of 
Kendall and Stuart (1977). Let ¢(x) = (27c)- l /2exp(-x2/2)  and let Hi(x)  = 
¢(x) - l ( - d / d x ) j ¢ ( x )  be Hermite polynomials. 

THEOREM 2.2. (Cram~r) Suppose that X is a random variable with a density 
f (x) ,  and let f ( x )  be its Gram-Charier expansion ( G-C expansion): 

F f ( x )  = E c jHj (x )¢(x ) / j !  with cj = Hj (x ) f ( x )dx .  
O 0  j=0 

f~oo{f  (x)} - (i) If  f (x )  is a function having a continuous derivative such that oo , 2 

exp(x2/2)dx exists and if  f ' (x )  tends to zero as Ixl tends to infinity, then ](x) 
converges absolutely and uniformly to f (x )  for - oo  < x < oc. (ii) If  f ( x )  is of 
bounded variation in every finite interval and if f ~  f ( x )exp(x2 /4 )dx  exists, then 

f (x )  converges everywhere to {f(x+O)  + f ( x - O ) } / 2 .  The convergence is uniform 
in every finite interval of continuity. 

This theorem gives sufficient conditions such that a random variable X is well- 
approximated by an expansion based on the standard normal distribution. Note 
that the assertion (i) is stronger than (ii). If one needs to get the G-C expansion 
of the pdf of X, one would standardize X by the mean and the variance to obtain 
faster convergence. 

If X is a random variable on the positive axis, put Y = (X  - m ) / s  and 
Z = X / s  with positive constants m and s. Then the pdf's of Y and of Z are 
respectively given by s f ( s y  + m) and s f (sz ) .  Immediately, it holds that 

(2.4) 

and 

(2.5) 

/_ ~ {s2f ' (sy  + m)} 2exp(y2/2)dy 
rn/s 

/o < exp{m2/(2s2)} {sV'(sz)} exp(z2/2)d  

E [exp(Y2/4)] < exp{m2/(4s2)}E [exp(Z2/4)] . 

This implies that the G-C expansion of the pdf of Y converges if Z fulfills the 
sufficient conditions. 

3. Gamma distributions and inverse Gaussian distributions 

Let X be a gamma variate whose pdf is given by 

(3.1) f F(/~)-l,~;~p-;~x;~-le-)~x/~ if x > O, 
fo(x) [ 0 if x_<O, 
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where A and # are positive parameters.  Then it holds that  E(X)  = # and V(X)  = 
A - l #  2. Hence fo(x) is a member  of ED (°) because the variance function is given by 
#2 = p(2-~)/(1-~) with c~ = 0. Now consider the Box-Cox power t ransformation 
to X such as X --* X z. The asymptot ic  mean and variance of X ~ are respectively 
given by #Z and A-lf l2p 2z as A tends to infinity. Thus we standardize X ~ as 

(3.2) Yfl = )~l /2{(X/] ' t )  ;3 - 1}//9.  

THEOREM 3.1. Let X follow a gamma distribution having the density fo (x) 
of (3.1), and let Y~ be its Box-Cox transformation defined by (3.2). (i) If  O </3 < 
1/2 and A > 2/9, then the G-C expansion of the density of Y~ converges absolutely 
and uniformly to the density of Y~. (ii) If 0 < /9  < 1/2 and fl < A < 2/9, then the 
G-C expansion of the density of Y~ converges to its density, and the convergence 
is uniform in every finite interval. 

PROOF. Suppose 0 < /3 < 1/2. By the formulae (2.4) and (2.5), we shall 
check the sufficient conditions for the variate Z~ =_ AI/2X~/(/3#~). The pdf  of Z~, 
denoted by g~(z), is easily derived as g~(z) = do z ) ' / ~ - I  exp{-/91/~Al-1/(2~)z 1/~} 
with do =/3~/~-IA~-~/(2~) /F(A).  Hence it holds tha t  

(3.3) gf (z )  = d0(dl - d2zl/~)z ~/~-2 exp{-/91/~A1-1/(2~)zl/~}, 

where dl = A/fl - 1 and d2 = / 9 1 / f l - 1  ~1-1/(2~).  (i) The assumption A//9 - 2 > 0 
yields that  g~'(z) is continuous since limz--~+0 gf ( z )  = 0. Further  we have 

(3.4) ~o~{gz ' (z )}  2 exp(z2/2)dz 

= d 2 (d I - d 2 z l / ~ ) 2 z 2 A / ~  - 4  e x p { z 2 / 2  -- 2 /91 / /3~1-1 / (2~) z l /~}dz .  

The integral (3.4) over the interval [1, oe) converges since 1//9 > 2, and the integral 
over (0,1] converges since 2A//9 - 4 > 0. (ii) The assumption A > / 3  implies that  
dl = / V / 9  - -  1 i s  positive. Hence by (3.3), the equation gy(z) = 0 has the unique 
solution. Therefore, g~(z) is unimodal,  which yields tha t  g~(z) is of bounded  
variation. Further  the integral 

/0 E [exp(Z~/4)] = do z ;~/~-1 exp{z2/4 -/91//9)~1-1/(2/3)z1/19} dZ 

converges since I / /3  - 1 > 0 and 1//9 > 2. The assertion (ii) is weaker than that  
of (i). This completes the proof. 

Remark. The cube root t ransformation Y1/3, which is a normalizing trans- 
formation of a gamma variate, has an absolutely and uniformly convergent G- 
C expansion if A > 2/3. Next  consider the variance-stabilizing t ransformation 
Y0 = A 1/2 log(X/#) .  Then 

/0 °~ 
E [exp(Yo2/4)] = const, x ~-I exp [A{log(x/p)}2/4 - A;~-Ix] dm 
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is divergent because limx__++0xX-lexp [A{log(x/p)}2/4 - , ~ p - l x ]  = oo.  Hence 
the variance-stabilizing t ransformation does not meet  the sufficient condition. Ac- 
tually, Y0 has no G-C expansion because EIHd(Yo)I = oo i f j  > 1. 

Next  we t reat  an inverse Gaussian (IG) distribution. Let U be an IG variate 
whose pdf  is given by 

{{A/(2rc)} l / 9 ~ u - a / 2 e - X / ( 2 ' * )  exp{ -Au/ (2p  2) + A/p} if u > 0, 
(3.5) f l /2 (u)  = 0 if u _< O, 

where A and p are positive parameters.  Then it holds E(U) = p and V(U) = 
A - l p  a. Hence fl/2(u) is a member  of ED 0/2) because the variance function is 
given by pa. Here we standardize the Box-Cox t ransformation as 

.f (A/#)I/2{(U/p) ~ - 1}//3 if /3 7 ~ 0, 
(3.6) v ,  / (A/p) U2 log(U/p)  if /3 = O. 

THEOREM 3.2. Let U be an IG variate with the pdf fl/2(u) of (3.5), and let 
VZ be its Box-Cox transformation defined by (3.6). If [/3[ < 1/2, then the G-C 
expansion of the density of Vp converges absolutely and uniformly to the density 
of VZ for any positive numbers A and p. 

PROOF. We shall prove that  the sufficient condition (ii) of Theorem 2.2 is 
enjoyed. First, consider the case /3 = 0, i.e., the logarithmic transformation.  
The pdf  of V0 = p-1 log(U/p)  is given by ppeO'fl/2(pe o~) (= q0(v), say), where 
p = (p/A)U2. Obviously, 

qo'(V) = (p/2)(1  - p2 eP~' - e2PV) f u2(pepV ) 

tends to zero as v tends to -boo. Moreover, put t ing v = p-1 log(u/p) ,  we know 
that  

/ ~ {qo'(v)} 2 exp(v2/2)dv 
OO 

# = (p2/4) (1 - p2ePV - e2PV)2f~/2(PeP~ ) exp(v2/2)dv 
O<3 

/7 = d3  (1  - p 2 u / p  - 

• exp [{p-1 log(u/p)}2/2_ A / u -  Ap-2u] du 

is convergent, where d3 = Ap2e2:ff~/(87rp). Second, in the case 0 < /3 < 1/2, we 
only consider the variate W3 = p-lU~/(/3p~) instead of V~ of (3.6). The pdf  of 
W3 is given by q3(w) =/3-1wwl/~-lfl/2(wwl//~ ) with w = (/3p)U~p. Accordingly, 

q f  (w) = (2 /32) -1{A-  (2/3 + 1)ww U;~ - Ap-iw2w2/B}w-2 fu2(wwl//~ ) 
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satisfies lim~_~+0 qz'(w) = l i m ~ _ ~  qz'(w) = O. Moreover, put t ing w = (u/co) z, 
we get 

.L ~ {qy(w)}2 exp(w2 (3.7) /2)dw 

: d4  { a  - ( 2 9  + - 

• exp{ 2z/(2co 2 z )  - - 

where d4 = Acoa~e2a/"/(8zc33). The integral (3.7) is convergent since 0 < 2/3 < 1. 
In the case - 1  < 2/9 < 0, we get a similar result. This completes the proof. 

Remark. In this case, we note that  the sufficient condition (i) is equivalent to 
(ii). The pdf of V0, which is a normalizing transformation of an IG variate, has an 
absolutely and uniformly convergent G-C expansion. However, the pdf of V-l~2 
(variance-stabilizing transformation) does not meet the sufficient conditions. 

4. Exponential dispersion model with power variance function 

We shall consider the extreme stable density (2.3) with 0 < c~ < 1. The pdf 
p(x; a, 1) is bell-shaped (see Gawronski (1984)). For large x the pdf is computed 
by the infinite series. For small x, however, the convergence of the series is slow. 
Near the origin, the saddlepoint approximation is available, see, e.g., Ibragimov 
and Linnik ((1971), pp. 62-69). That  is 

(4.1) /3(x;a, 1 ) =  .exp - ( l - a )  x if x > 0 ,  

0 if x < 0 .  

The following theorem and corollary will be proved in the Appendix• 

THEOREM 4.1. When 0 < a < 1, let p(x; a, 1) be the extreme stable density 
defined by (2.3), and let iS(x; a, 1) be its saddlepoint approximation expressed as 
(4.1). Then the remainder term is estimated by 

( 4 . 2 )  R(x; a) < p(x; a, 1) - iS(x; c~, 1) < R(x; a), 

where the closed forms of R(x; a) and of R(x; a) are respectively given by (A.19) 
and (A.20) in the Appendix. 

COROLLARY 4.1. When x is sufficiently large, the upper bound of the re- 
mainder term is dominated by 

R(x; O~) < Kip(x; 06 1) + K2. 

When x is positive and sufficiently small, it holds that 

R(x; a) < KalS(x; 0~, 1) + K4x -1 exp{ -K5x -a /O-a ) } .  
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Here 

(4 .3)  K2  = n 5  = 

K1, I43 and K4 are positive constants depending only on a. 

Suppose a random variable X has a pdf (2.1) in ED (~) with 0 < a < 1, 
A > 0 and 0 < 0. Then its mean and variance are respectively given by E(X)  = 
{(1 - a ) / ( - 0 ) }  1-~ ( -  #, say) and V(X)  = A-l#  (2-~)/(1-~). Using the mean 
parameter # we rewrite the pdf as 

(4.4) f~(x) = 7p(Tz; a, 1)exp [ - (1  - a ) l { # - l / ( 1 - ~ ) z  - o~--l~--a/(1--a)}] , 

where 7 = al /~{(  1 - O 0 " ~ } - - ( 1 - - c ~ ) / c ~ "  The saddlepoint approximation of f~(x), say 
f~(x), is obtained by Hougaard (1986). It is expressed as 

(4.5) L(x) = 715(7x; c~, 1)exp [ - (1  - c~)A{#-l/(1-~)z - OL--l#--a/(1--a)}] , 

where/5(x; a, 1) is the saddlepoint approximation of p(x; a, 1) defined by (4.1). 
Jensen (1988) proved the validity of saddlepoint approximations under some con- 
ditions. His result is, however, not applicable to IG distributions (a = 1/2), which 
he noted. 

Nishii (1990) showed that the transformation of X to normality is given by 
the power transformation X (1-2~)/(a-a~) (c~ ¢ 1/2) or log X (a = 1/2) when the 
concentration parameter A is large. Using this theorem we give another reason 
why this power transformation is reasonable. 

Here we define the Box-Cox transformation of X by 

(4.6) 
- -  1}//3 if /3 ¢ 0, 

h l 3 ( X )  = / 1/2#-a/(2-2a)log(X/Ix) if 9 0. 

THEOREM 4.2. Let X be a random variable having the pdf f~(x) of (4.4) with 
0 < a < 1. If  - a / ( 2  - 2a) </3  < 1/2, then the G-C expansion of the density of 
hz(X)  converges to its density for any It and A, where hz(X) is defined in (4.6). 
The convergence is uniform in every finite interval. 

Remark. If one can obtain an approximation of fa~(x) and its sharp error 
bounds, the sufficient condition (i) of Theorem 2.2 may be shown to be valid. The 
normalizing transformation of ED (a) is given by h~,(X) with/3,  = (1 - 2 a ) / ( 3  - 
3a). Obviously - a / ( 2  - 2c~) < /3 ,  < 1/2. Hence the G-C expansion of the pdf of 
h~, (X) is convergent. On the other hand, the variance-stabilizing transformation 
is a power transformation with the power -c~/(2 - 2a). This power does not meet 
the sufficient conditions. 

PROOF. We check the sufficient condition given at (ii) of Theorem 2.2. First, 
consider the case/3 = 0 (logarithmic transform). Put cr = A-I/2# a/(2-2a), Y = 
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O'--1 log(X/ lA)  a n d  let go (Y) be its density. Then  go (Y) = Izae~Yfa (Pe ~y) with f~ (x) 
of (4.4). The variation of g0(y) on the interval [log a, log b] (0 < a < b)is evaluated 
by 

f l o g b  fy [go'(y)[dy < cr {x[h'(x)[ + f~(x)}dx. 
J log a d #a a 

Here Hougaard (1986) showed that  f a (x )  is unimodal.  Hence f~'(x) has one 

change of sign. Therefore / "~b" ju~, xlf,~'(x)ldx is finite, i.e., go(y) has finite variation 

over any finite interval. Further,  put t ing ~ = (1 - a)A# -1/(1-~) we have 

/ ~ e x p ( y 2  (y)dy /4)g0 

: E [exp{(log(X/#))2/(4a2)}] 

/o = const, p("/x; a,  1)exp [{log(x/#)}2/(4~r 2) - ~x] dx 

/o _< const. {~(~; ~, 1) + 2 ( ~ ;  ~)} exp [ { log(x / , ) }2 / (4~  2) - ~x] d~, 

where 15(y; c~, 1), R(y;  c~) and 7 are found in (4.1), (4.2) and (2.2) respectively. Now 
we get 

(4.7) f0 ~ , ( ~ ;  1) [ { log(x / , ) }2 / (4~  2) - vx] dz exp  

= const, x -(2-~)/(2-2~) 

• exp [{1og(x/~)}2/(4~2) - ~x - ~-~/(i-~] ~, 

where ~- : (1-a)(a/~/)  a/(1-a). The integral (4.7) is convergent since {log(x~#)}2~ 
(4~ 2) < vx/2 when x is large, and since { log(x / , ) }2 / (4~  2) < ~-~-~/(1-~)/2 when 
x is sufficiently small. Further  f o  R(~/x; a ) e x p [ { l o g ( x / # ) } 2 / 4 -  ~/x] dx is finite 

because R(x; ~) is est imated by Corollary 4.1. 
Second, when/3  e ( - a / ( 2  - 2a), 0) L2 (0, 1/2), put  Z : (X/p)Z/(I/3[a). Then 

the pdf  of Z is given by gz(z) : #o-1/Z(]/3]z)l/Z-lf~(p(]/3]az)l/Z), and the varia- 
tion of gz(z) on a finite interval is finite because f~(x) is unimodal.  Further,  

o ~ gg(z) exp(z2 / 4)dz 

: E [exp{(8~)-2X29/4}] 

= const, p@x; a, 1) exp [(¢~c~# ~) -2x2~/4 - fix] dx 

/o <__ ~onst. {~(~; ~, 1) + ~(~x; ~)} exp [ (9~S)-2x2~/4 - ~x] dx. 
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The integral based on the approximated pdf is: 

(4.8) o~, e x p  

= const, x -(2-~)/(2-2~) 

• exp [(/J .p~)-2x2Z/4 - ~x - 9-x -~/(1-~)] dx, 

where ~] and 9- are already defined in this proof. Then, the integral (4.8) over [1, oc) 
is finite since 2/3 < 1. On the other hand, the integral over (0,1] is finite since 
2/3 > - a / ( 1  - a). The existence of f o  R(Tx; a) exp [ (¢JaS)-2x2~/4  - ~?x] dx is 
similarly proved by using Corollary 4.1. 

The referee raised the problem to which extent the theorem can be extended 
to cover the stable case 0 = 0. Suppose X has a density of the form (2.3). 
Then, we can not account the mean and the variance of X since they are infinite. 
When x is small, p(x; a, 1) is approximated by (4.1), and when x is large, it is 
O ( x - l - ~ ) .  Using these orders in the tail areas, we get the result that  the G-C 
expansion of X z is uniformly convergent to the density for every finite interval if 
- a / ( 2  - 2a) < ~ < 0. However. log X does not meet the sufficient condition. 

5. Numerical example 

The accuracy of the saddlepoint approximation of fc~(X) is examined by a 
numerical example. We use the weight data of 98 newly-enrolled male students, 
which is analysed by Nishii (1990). The sample mean and variance are given 
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by 61.0(kg) and 38.8(kg2), respectively. By  means of the moment  method,  A 
and 0 are es t imated by the solutions of { - 0 / ( 1  - c~)} ~-~ = 61.0 and { - 0 / ( 1  - 
a )}  (~-2)/(~-1) = 38.8 for given a. We choose a which maximizes the likelihood. 
Thus we get & = .878, 0 = - .283  × 10 -15 and A = .679 x 1015. 

The values of A and 0 may look extreme. But  this comes from the way of the 
parametrization.  Especially, when c~ is close to 1, 0 becomes small, and conse- 
quently ~ becomes large. The density fa(x) of the form (4.4) is denoted by Exact  
pdf, and its saddlepoint approximation of the form (4.5) is denoted by Saddlepoint  
approximation in Fig. 1. The upper  and lower bounds  of the approximation are es- 
sentially based on (A.19) and (A.20). Both  bounds  are evaluated more accurately. 
These four curves are i l lustrated in Fig. 1. 
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Appendix 

PROOF OF THEOREM 4.1. Following Ibragimov and Linnik ((1971), pp. 62-  
69), we approximate  p(x; c~, 1) with 0 < a < 1 based on the method  of steepest  
descent. Recall that  p(x; ~, 1) is derived by inverting the characteristic function. 
Dividing the integral region (0, ec) into three regions 110, H1 and 112 in the complex 
plane, we have 

(A.1) f0 °° p(x; c~, 1) = (~-x)- lRe e x p { - i s  - (s/x)ae-i'ra/2}ds 

= ( x)-lae fHo +( x)-lae fHl +( x)-lae 
----/To + I1 + / 2 ,  say, 

where i = ~ ,  II0 = (0, it), 111 is the circular arc from ir to r, II2 = (r, oc) and 
r is a saddlepoint 

(A.2) 7" = oz l / (1- -a )x- -C~/(1-c~)  " 

Obviously f0 = (Trx) -1Re  [ i f o  exp(t  - x-ata)dt] = 0. Next, 12 of (A.1) is esti- 
mated  as follows. 

(A.3) I±~1 = (~_~)_~ r./~ exp{- cos(~/2)~-~ ~} COS{8 sin(Tra/2)x-%~ }ds 

/? _< (~x) -1 exp{- eos(~/2)x-~8~}ds 

= tl/~-le-tdt = ~ [r(1/~) - F(1/~,Ksx-~/(1-~))] 
5 x - ~ / ( 1 - ~ )  
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where 

(A.4) ~ = (Trc~)-~{cos(~r(~/2)} -~/~ and K5 = a~/(1-~)cos(Trc~/2). 

Here in general F(a, z) denotes an incomplete gamma function fo sa-le-~ds" 
On the other hand, the integral I1 is given by the integral over a compact  

interval [0, 7r/2]. 

7r/2 
h = ~(~)-XRe exp(r~ -~ - ~ '~-~-~)e-~dt  

JO 

= r(Trx) -1 exp(r  cost  - rc~ -1 cos a t ) c o s A ( t ) d t  
./0 

(A.5) (where A(t) - t + r s i n t  - r a  -1 sin at)  

= ~ ( ~ x / - i  e x p { - ( 1  - ~)~/~} 

• exp{ - (1  - c~)rt2/2 + B(t)} eosA(t)dt 
J0 

(A.6) (where B(t)  =- r{cos t - 1 + t2/2 - c~ -1 cos a t  + OZ - 1  - -  o z t 2 / 2 } )  

= ¢ / 2 ( 1  - ~ ) - ~ / 2 ( ~ x ) - ~  e x p { - ( 1  - ~)~/~} 

(A.7) (where c = (~ r /2 ) ( (1  - a)r/2, v =_ ~ - a)rt) 

/o ] + e - v 2 / 2 { e B c o s A -  1}dr , 

(A.8) (where A - A ( v / v  ~ - c~)r), t3 - B ( v / v / ~  - a) r ) )  

where/5(x;c~, 1) is defined by (4.1). By the relation cosA = 1 - 2sin2(A/2),  it 
holds tha t  

±l = ~(~;  ~ ,  1) 1 - 2{1  - e ( ~ ) }  + x / ~  ~ - v ~ / ~ ( ~  - 1)d~ 

(a .9)  =p ( z ;o~ , l )  [ 1 - 2 { 1 - ( I ) ( c ) } - + -  2 X ~ J 1 , l - 2  2X//~J l ,2] ,  say, 

where q)(x) denotes the s tandard  normal distribution function. Therefore, 

(a . lO) p(x;a, 1)=~(x;a,  1 ) [ 1 -  2 { 1 - ~ ( c ) } +  2 V ~ J 1 , 1  - 2 2 ~ J 1 , 2 ]  q- I 2 .  

The following identity on B =- B ( v / ~ )  of (A.8) is shown by Ibragimov 

and Linnik ((1971), p. 64): 

(A.11) B = B ( v / ~ )  = v 2 / 2 [ 1 - ( s i n  2 ¢ - a - l s i n  2 c ~ e ) / { ( 1 - a ) ¢ 2 } ] ,  
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where 0 _ ~ = v / ( 2 V / ~ -  c~)r) _< 7r/4. From a finite Taylor series with remainder 
we get sin s ~ _ ~ - 1  sin s ~e  = (1 - ~ ) e ~ - ( 1 -  ~ ) ~ 4 / 3  + 2 ( c o s  ¢ -  ~ 5 cos ~ ¢ ) ~ / 4 5  for 
0 < ~ < 1. Thus B = vS/2[(1 + c~ + a2)e2/3 - 2(cos ~ - a 5 cos a~)c4/{45(1 - a)}]. 
Taking the supremum of B w.r.t. ~, we get 

(A.12) 0 <_ -B <_ blV4/r 4 bsv6/r 2 = B ~ x ,  say, 

where 

(A.13) bl = ( l+a+as ) / {24(1 -a ) }  and bs = a 5 cos(Tca/2)/{45.24(1-a)3}. 

Also (A.11) implies that  B is dominated by 6vS/2 with 

6 = (1 + a + a2)Ir2/48 + OL57l "4 COS('FO~/2)/{5760(1 -- OZ)} < 1 

since 0 < e < 7c/4. Thus using 0 < ~ < 1, it holds that  

(A.14) /0 c /o c 0 <_ J1,1 = e-~2/S(e - g -  1)dr = e-~2/2(B +-B2eCB/2)dv  

--2 S < Bmaxe -v2/s + Bm~ x e x p { - v  /2 + Bm~x}/2 dv 

/0 /0 --Bmaxe-V2/2dv -~- (1/2) Bma x e x p { - ( 1  - 6)v2/2}dv. 

m 

Here Bm~x of (A.12) is a polynomial  of v. Consequently, the integrals in (A.14) 
can be expressed in terms of incomplete gamma functions as 

(A.15) 0 _< J1,1 _< 23/2F(5/2, c2/2)bl ?~-1 + 25/2r(7/2, c2/2)b2 r-2 

+ 2 5 / ~ - 9 / S r ( 9 / 2 ,  ~ c S / 2 ) @  - s  

+ 2 9 / s $ - l l / s i ' ( 1 1 / 2 ,  5cS/2)blbsr -a 

+ 29/25-1a/sr(13/2,ScS/2)b~r-4 ( -  71,1,  say), 

where bj are defined by (A.13), r is the saddlepoint  as before, and 5 = 1 - 6. It is 
not difficult to show that  6 is positive for 0 < a < 1. On the other hand employing 
a Taylor expansion of A of (A.8), we get 

(A.16) 0 <_ -A <_ alv/v/-r - a2va/v/r + a3v4/r = Amax, say, 

where 

(A.17) 
al  = 1 / v r f -  ~, a2 = (1 + ~ ) / { 6 , / 1  - ~} 

a3 = 1 /{24(1  - c~)2}. 

and 

m 2  
Hence we get 0 _< sin2(A/2) < A2/4  <_ Am~x/4 and 

/o 0 < 4J1,2 _< e-V~/2A2axeBdv ~ Amax e x p { - ( 1  - 5)v2/2}dv, 
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where c is defined in (A.7). Finally it holds tha t  

(A.18) 0 < 4J1,2 _< {2 -1(2/~)3/~r(3/2, ~2/2)~ + 2 -1(2/5)7/2F(7/2, 5c2/2)a~ 
- -  (2/~)5/2F(5/2, ~c2/2)ala2}r -1 + {(2/~)3F(3,~c2/2)ala3 
+ 2 -1 (2/~)9/2F(9/2, ~e2/2)aZr -2 
- -  (2/~)4F(4, 5c2/2)a2a3}r -3/2 

= 4J1,2, say. 

From (1.3) and (A.10), the upper and lower bounds of the residual p(x; a, 1) - 
/5(x; a,  1) are obtained by 

(A.19) -R(x;ct)--~(x;ct, 1)[-2{1-~(c)}+ 2~-~Jl,1] 

+~[r(ct-1)-F(a-l,K5x-a/(1-a))l 
and 

(A.20) _R(x; o~) =/ ) (x ;  ct, 1)[-2{1 - ¢I)(c) } - 2 2~-7J1,21 

-~[r(a-1)-V(a-l,Ksx-~/(1-~))], 

where c = 2-3/2zc(1 - a)l/2al/(2-2~)x-~/(2-2~), ~, Jl,1 and Jx,2 are respectively 
defined by (1.4), (1.15) and (A.18). 

PROOF OF COROLLARY 4.1. By the formula (A.19), we have 

(A.21) R(x;  a)  _< X/2X~Jl,1/3(x; a,  1) + ~{F(c~ -1) - F ( a  -1, Ksx-~/(1-~))}, 

where K5 and J1,1 are defined in (4.3) and (A.15), respectively. Employing the 
following inequality on the incomplete gamma function: 

/0 F(a, x) -~ sa- le -Sds  < min{r(a), a-~x a} (a > O, x > 0), 

we evaluate the first t e rm (omitting the multiplier) of J1,1 as 

F(5/2,  e2/2)r -1 <_ min {F(5/2)a-1/(l-~)x~/(~-~), 

2-95-17r5(1 _ a)5/2a3/(2-2~)x-3~/(2-2~) } 

since c = 2-3/27r(1 - c~)l/2al/(2-2~)x-~/(2-2~) and r = cp/(l-~)x-~/(l-~). Other  
terms of J1,1 are similarly evaluated. Concerning the second t e rm of the right 
hand side of (A.21), the following inequality on the complementary  incomplete 
gamma function is available. 

f ~ < min[F(a),  + (a - + (a - 1)(a - 2)x -2 sa-le-Sds e-Xxa-l{1 1)x -1 

+ - - .  + ( a -  1 ) ( a -  2 ) . . .  ( a -  [a])x-[~]}], 
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where [a] denotes the maximum integer not exceeding a. Using this relation, we 
have F(c~ -1) -F(c~  -1, KsX -~/(1-~)) G K x  -1 exp{-K5x -~/(1-~) } for a positive 
but small x, where K is a positive constant depending only on c~. This completes 
the proof. 
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