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Abstract. Consider an exponential family such that the variance function is
given by the power of the mean function. This family is denoted by ED® if
the variance function is given by p2~*/(~% where 1 is the mean function.
When 0 < & < 1, it is known that the transformation of ED(® to normality is
given by the power transformation z(1=2%)/G=32) ang conversely, the power
transformation characterizes ED®). Our principal concern will be to show
that this power transformation has an another merit, i.e., the density of the
transformed variate has an absolutely convergent Gram-Charier expansion.
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1. Introduction

In statistical theory, the study of the exponential family has a long history.
The family has nice statistical properties, and many important distributions are
members of the family (Barndorff-Nielsen (1978) gave an excellent review on this
family). In particular, an exponential family whose variance function is given
by a power function of the mean is very interesting. This family is called the
exponential family with power variance function (PVF).

All exponential families with PVF were found by Jergensen (1987). He showed
that these families are also exponential dispersion (ED) models. The exponential
family with PVF is denoted by ED(® when the variance function is given by
p2-a)/(1-2) where 4 is the mean value. We may note that ED) coincides with
Poisson, gamma, inverse Gaussian and normal distributions when o = —o0, 0,
1/2 and 2 respectively. When o € (0,1) U (1,2), the density of ED® is given by
exponential tilting of the stable distribution. The density, however, is developed
by an infinite series except the case oo = 1/2.

It is well-known that the transformation of a chi-squared variate (or of a
gamma variate) to normality is given by the cube root transformation. In general,
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suppose that a random variable X has a pdf in ED'® with 0 < o < 1. Then Nishii
(1990) proved that the transformation of X to normality is given by the power
transformation X(1—20)/B=3%) and conversely, this transformation characterizes
an exponential family. Our aim in this paper is to present one reason why the
power transformation of ED® is effective. Suppose that 8 is a power in an
interval around the normalizing power (1 — 2¢)/(3 — 3c). Then it will be proved
that the density of the transformed variate X? has a convergent Gram-Charier
expansion.

In Section 2, we present a key theorem due to Cramér (1925), which gives two
sufficient conditions such that a density of a random variable has a convergent
Gram-Charier expansion. Also ED) is reviewed. In Section 3, it is proved that
the cube root transformation of a gamma variate accelerates the convergence to
normality. Also a similar result for the logarithmic transformation of an inverse
Gaussian variate is obtained. In Section 4, we can generalize the result into the
case ED® with 0 < o < 1. The error bound of the saddlepoint approximation
of the extreme stable distribution is estimated. Using the result, we discuss the
power transformation of the variate following ED(®). Section 5 gives a numerical
example. Finally, we give the proofs of Theorem 4.1 and Corollary 4.1 in the
Appendix.

2. Preliminary results

An exponential dispersion (ED) model is a family of probability density func-
tions (pdf’s) of the form f(z) = a(z; A) exp [M0z — x(8)}], where a(z; A) and «(6)
are given functions, and (), #) varies in a set A x ©. Suppose that a random vari-
able X has a pdf f(z). Then E(X) = «/(8) and V(X) = «"(#)/A. An ED model
satisfying &(8) = {x'(6)}(2~*)/(1=a) ig called an ED model with power variance
function, and denoted by ED®). Jgrgensen (1987) showed that there exists ED(®)
except the case o > 2. Hougaard (1986) studied properties of the family with
0<a<l.

Hereafter, we consider the case 0 < o < 1. Then ED ig a family of densities
of random variables taking positive values. The following theorem may be found
in, e.g., Hougaard (1986).

THEOREM 2.1. When 0 < a < 1, the density in ED'®) is given by

(2.1) fal@) = yp(vz; 0, 1) exp [Mz + A1 — a)a ™ H{~6/(1 — a)}°]
with  A>0 and 6 <0,

where
(2.2) v =1 — o)A}

and p(z; @, 1) is a density of the extreme stable distribution developed by the abso-
lutely convergent series:

o0

T'(ak
(2.3) plz:a, 1) = —% Z (a—kﬁ—l—)(—x—a)k sin(rak) if >0,
3 H 1 !

0 if £ <0.
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This theorem asserts that the pdfin ED'® is given by exponential tilting of the
stable density (see Zolotarev (1986) for stable densities). The following theorem
due to Cramér (1925) plays a key role in this article. See also pp. 173-174 of
Kendall and Stuart (1977). Let ¢(z) = (27)"/2exp(—2%/2) and let H;(z) =
#(z)~(=d/dz) ¢(z) be Hermite polynomials.

THEOREM 2.2. (Cramér) Suppose that X is a random variable with a density
f(z), and let f(z) be its Gram-Charier ezpansion (G-C ezpansion):

o0

flo)=> cHj(@)p(x)/5!  with ¢ = /_ ” H;(z)f(x)dz.

=0

(i) If f(z) is a function having a continuous derivative such that [ {f'(z)}? -

exp(z2/2)dz ezists and if f'(x) tends to zero as |x| tends to infinity, then f(z)
converges absolutely and uniformly to f(z) for —co < z < co. (ii) If f(x) is of
bounded variation in every finite interval and if [ f(x)exp(z?/4)dx exists, then

f(z) converges everywhere to { f(x+0) +f(z—0)}/2. The convergence is uniform
in every finite interval of continuity.

This theorem gives sufficient conditions such that a random variable X is well-
approximated by an expansion based on the standard normal distribution. Note
that the assertion (i) is stronger than (ii). If one needs to get the G-C expansion
of the pdf of X, one would standardize X by the mean and the variance to obtain
faster convergence.

If X is a random variable on the positive axis, put ¥ = (X — m)/s and
Z = X/s with positive constants m and s. Then the pdf’s of Y and of Z are
respectively given by sf(sy +m) and sf(sz). Immediately, it holds that

(24 [ 15+ et 2y
—m/s
< exp{m?/27)} [ {F(52))? expla?2)dz
0
and
(2.5) E [exp(Y?/4)] < exp{m?/(4s*)}E [exp(Z%/4)].

This implies that the G-C expansion of the pdf of Y converges if Z fulfills the
sufficient conditions.

3. Gamma distributions and inverse Gaussian distributions
Let X be a gamma variate whose pdf is given by

=13\, — AL AL Az
(3.1) Fola) = {I‘()\) AMu~rzr e if x>0,

0 if z<0,
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where A and u are positive parameters. Then it holds that E(X) = p and V(X) =
A~14?. Hence fo(z) is a member of ED® because the variance function is given by
p? = p-a)/(1-9 with o = 0. Now consider the Box-Cox power transformation
to X such as X — X%. The asymptotic mean and variance of X? are respectively
given by 1 and A7132u%? as ) tends to infinity. Thus we standardize X? as

(3.2) Vs = N2{(X/p)? —1}/8.

THEOREM 3.1. Let X follow a gamma distribution having the density fo(z)
of (3.1), and let Y be its Box-Coz transformation defined by (3.2). (i) If0 < 8 <
1/2 and X > 20, then the G-C expansion of the density of Yg converges absolutely
and uniformly to the density of Yg. (i) If 0 < 8 < 1/2 and 8 < A < 23, then the
G-C ezpansion of the density of Yg converges to its density, and the convergence
s uniform in every finite interval.

PRrROOF. Suppose 0 < 8 < 1/2. By the formulae (2.4) and (2.5), we shall
check the sufficient conditions for the variate Zg = A/2X8[(Buf). The pdf of Zg,
denoted by gs(z), is easily derived as gg(z) = doz™/ P~ exp{—pL/ANL-1/(28) ;1/8}
with do = 8*A=1A =2 (28) /T(X). Hence it holds that

(3.3) g5'(2) = do(dy — dpz'/P)2MB=2 exp{—BY/ONI=1/(28) ,1/8Y
where d; = A/8 — 1 and dy = YA~ \1=V/(28)_ (i) The assumption A/3 —2 > 0

yields that gg'(z) is continuous since lim,_, 10 g3'(2) = 0. Further we have

o0
(3.4) / {95/ ()} exp(#2/2)dz
0
=d} /oo(dl - Clzzl/ﬁ)gzm/ﬂ_4 exp{z%/2 — 9BY/BN\I=1/(28) ,1/8) gz,
¢}

The integral (3.4) over the interval [1, 00) converges since 1/3 > 2, and the integral
over (0,1] converges since 2A/3 —4 > 0. (ii) The assumption A > 3 implies that
di = A/B — 1 is positive. Hence by (3.3), the equation gs'(z) = 0 has the unique
solution. Therefore, gg(z) is unimodal, which yields that gs(z) is of bounded
variation. Further the integral

E [exp(Z3/4)] = do / AMB=Yexp{22/4 — BYBNI1/(26),1/0Y 4,
0

converges since A/ —1 > 0 and 1/8 > 2. The assertion (ii) is weaker than that
of (i). This completes the proof.

Remark. The cube root transformation Y7,3, which is a normalizing trans-
formation of a gamma variate, has an absolutely and uniformly convergent G-
C expansion if A > 2/3. Next consider the variance-stabilizing transformation
Yy = AY21og(X/u). Then

E [exp(YOQ/él)] = counst. /000 2 Lexp [/\{log(m/u)}2/4 —~ A" lz) dz



POWER TRANSFORMATION AND GRAM-CHARIER EXPANSION 177

is divergent because lim,_._oz*~!exp [A{log(z/u)}?/4 — \p™'z] = oo. Hence
the variance-stabilizing transformation does not meet the sufficient condition. Ac-
tually, Yy has no G-C expansion because E|H;(Yp)| =00 if j > 1.

Next we treat an inverse Gaussian (IG) distribution. Let U be an IG variate
whose pdf is given by

(N 2m) Y/ 24326 W) expl{—Au/(2u%) + N u}  if u> 0,

(3.5) fij2(u) = {O if u<0,

where A and p are positive parameters. Then it holds E(U) = p and V(U) =
A~tpd. Hence fi/o(u) is a member of ED®/? because the variance function is
given by u3. Here we standardize the Box-Cox transformation as

(3.6) Vs = {(/\/M)l/z{(U/u)ﬁ —1}/8 if B#0,

(M 1)*/?1og(U/ ) if 8= 0.

THEOREM 3.2. Let U be an IG variate with the pdf fi/2(u) of (3.5), and let
Vg be its Box-Cox transformation defined by (3.6). If |5 < 1/2, then the G-C
ezpansion of the density of Vg converges absolutely and uniformly to the density
of Vg for any positive numbers A and p.

PRrROOF. We shall prove that the sufficient condition (ii) of Theorem 2.2 is
enjoyed. First, consider the case § = 0, i.e., the logarithmic transformation.
The pdf of Vo = p™" log(U/p) is given by ppe” f1/2(ue?”) (= go(v), say), where
p = (p/N)/2. Obviously,

g0’ (v) = (1/2)(1 - pe’” — 2PV f15(pe”)

tends to zero as v tends to £oo. Moreover, putting v = p~1log(u/u), we know
that ‘

/ " {00’ (0)) exp(v?/2)dv

= (204) [ (1= Per = P gy o) exp(e? 2o

=ds /000(1 — pPu/p —u?[p?) Pt
~exp [{p7 log(w/w)}?/2 = Mu — A\~ ?u] du

is convergent, where d3 = Au?e?*/#/(87p). Second, in the case 0 < 8 < 1/2, we
only consider the variate W5 = p~1U?/(Bu?) instead of Vj of (3.6). The pdf of
Wy is given by gg(w) = B8~ lww /A1 f) ) (ww?/P) with w = (8p)'/P . Accordingly,

g5' (w) = (26%) 1A = (28 + Dww'’? — M0 3w™2 fy jo (ww'/?)
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satisfies limy,— 0 gg'(w) = limy— oo gg’(w) = 0. Moreover, putting w = (u/w)?,
we get

(3.7) /Ooo{qg'(w)}2 exp(w? /2)dw

= d4/ (A= (284 Du — Ap2u2)2y 304
0
-exp{u?® /(20?7 — \u"%u — M u}du,

where dy = Aw?Pe?*/# /(8733). The integral (3.7) is convergent since 0 < 28 < 1.
In the case —1 < 2 < 0, we get a similar result. This completes the proof.

Remark. In this case, we note that the sufficient condition (i) is equivalent to
(ii). The pdf of Vi, which is a normalizing transformation of an IG variate, has an
absolutely and uniformly convergent G-C expansion. However, the pdf of V_;/,
(variance-stabilizing transformation) does not meet the sufficient conditions.

4. Exponential dispersion model with power variance function

We shall consider the extreme stable density (2.3) with 0 < a < 1. The pdf
p(z;a, 1) is bell-shaped (see Gawronski (1984)). For large = the pdf is computed
by the infinite series. For small z, however, the convergence of the series is slow.
Near the origin, the saddlepoint approximation is available, see, e.g., Ibragimov
and Linnik ((1971), pp. 62-69). That is

(27(1 — @)z(2~@)/ (=)} =172

(4.1) plz; 1) = exp {_(1 ~a) (%)a/(l—a)

0 if z<0.

if £>0,

The following theorem and corollary will be proved in the Appendix.

THEOREM 4.1. When 0 < a < 1, let p(x; o, 1) be the extreme stable density
defined by (2.3), and let p(x;c, 1) be its saddlepoint approximation expressed as
(4.1). Then the remainder term is estimated by

(4.2) R(z;a) < p(z;a,1) — p(z; o, 1) < R(z; ),

where the closed forms of R(z; o) and of R(x;a) are respectively given by (A.19)
and (A.20) in the Appendiz.

COROLLARY 4.1. When x is sufficiently large, the upper bound of the re-
mainder term is dominated by

R(z;0) < Kip(z;a,1) + Ko
When x 1s positive and sufficiently small, it holds that

R(z;0) < Kap(z; 0, 1) + Kyz ™t exp{—Ksz ™/ (079},



POWER TRANSFORMATION AND GRAM-CHARIER EXPANSION 179

Here
(4.3) Ky = () Heos(ra/2)} Vo (™),  Ks = a*7% cos(na/2),
K1, K3 and K, are positive constants depending only on «.

Suppose a random variable X has a pdf (2.1) in ED®™ with 0 < & < 1,
A > 0 and § < 0. Then its mean and variance are respectively given by E(X) =
{(1 —a)/(=6)}1=* (= p, say) and V(X) = A"'p~2)/(-2) " Using the mean
parameter 1 we rewrite the pdf as

(44) fa(:[;) = 'yp(fym’ o, 1) exp |:_(1 _ a))\{u_l/(l_“)m _ a—lu—a/(l—a)}:l :

where v = a/*{(1 — a)A\}~(1=®)/* The saddlepoint approximation of f,(z), say
falz), is obtained by Hougaard (1986). It is expressed as

(45)  fale) =By D exp | =(1 = a)M ™/ 000 — a7 ym /0=y ]

where p(z;a,1) is the saddlepoint approximation of p(z;«,1) defined by (4.1).
Jensen (1988) proved the validity of saddlepoint approximations under some con-
ditions. His result is, however, not applicable to IG distributions (o = 1/2), which
he noted.

Nishii (1990) showed that the transformation of X to normality is given by
the power transformation X (1=20)/(3=39) (o -£ 1/2) or log X (& = 1/2) when the
concentration parameter A is large. Using this theorem we give another reason
why this power transformation is reasonable.

Here we define the Box-Cox transformation of X by

1/2,,—a/(2—2a) B _ :
10 o= [l s 6 £
7 log(X/p) if B=0.

THEOREM 4.2. Let X be a random variable having the pdf fo(z) of (4.4) with
0<a<l If—a/(2-2a) < B<1/2, then the G-C expansion of the density of
hg(X) converges to its density for any p and A, where hg(X) is defined in (4.6).
The convergence is uniform in every finite interval.

Remark. If one can obtain an approximation of f,’(z) and its sharp error
bounds, the sufficient condition (i) of Theorem 2.2 may be shown to be valid. The
normalizing transformation of ED(® is given by hg.(X) with 8 = (1 — 2)/(3 —
3a). Obviously —a/(2 — 2a) < B < 1/2. Hence the G-C expansion of the pdf of
hg«(X) is convergent. On the other hand, the variance-stabilizing transformation
is a power transformation with the power —a/(2 - 2a). This power does not meet
the sufficient conditions.

Proor. We check the sufficient condition given at (ii) of Theorem 2.2. First,
consider the case 8 = 0 (logarithmic transform). Put ¢ = A~1/2,0/2=20) vy —
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o log(X/u) and let go(y) be its density. Then go(y) = poe fo (neY) with fo(x)
of (4.4). The variation of go(y) on the interval [log a,logb] (0 < a < b) is evaluated
by

log b ub”
/ Wiy <o [ alfs/ @)+ fula)lan
1

oga na?

Here Hougaard (1986) showed that f,(x) is unimodal. Hence f,'(z) has one
change of sign. Therefore [ ;f ;’U x| f.'(z)|dz is finite, i.e., go(y) has finite variation
over any finite interval. Further, putting 7 = (1 — @) u~/ =) we have

/_ h exp(y®/4)go(y)dy

= E [exp{(log(X/p))?/(40”)}]

= const. /000 p(vz; o, 1) exp [{log(:r/p)}Q/(élJQ) —nz] dz

< const. [ {pir0: 1)+ Ryas o exp [{lo(a/))?/(40%) — ne] .

where p(y; o, 1), R(y; @) and « are found in (4.1), (4.2) and (2.2) respectively. Now
we get
wn) [ plwia1)exp [(og(o/n)/(40%) — ne) de

0 .

(o @]
:const./ g~ (2m0)/(2-20)
0

- exp [{1og(g;/u)}2/(402) —nz - T$_a/(1~a):| dz,

where 7 = (1—a)(a/7)*/(3=®). The integral (4.7) is convergent since {log(x/u)}?*/
(46%) < nz/2 when = is large, and since {log(z/p)}?/(40?) < 72~/ (1=9) /2 when
z is sufficiently small. Further [° R(yx;a)exp [{log(z/p)}?/4 — nz] dz is finite
because R(z; ) is estimated by Corollary 4.1.

Second, when 8 € (—a/(2 — 2a),0) U (0,1/2), put Z = (X/u)?/(|Blo). Then
the pdf of Z is given by gg(2z) = uo/?(|812)"/# 1 fo(u(|8|02)'/?), and the varia-
tion of gs(z) on a finite interval is finite because f,(z) is unimodal. Further,

/(;oo gs(2) exp(2%/4)dz
= E [exp{(Bop®) 2 X% /4}]

o0
= const./ p(yz; o, 1) exp [(ﬂauﬁ)—zxw/él - n:v] dx
0

< const. /oo{;b(fyx; a, 1) + R(yz; o)t exp [(ﬂguﬁ)—2m2ﬁ/4 — x| da.
0
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The integral based on the approximated pdf is:
(4.8) / pyz; 1) exp [(Bop”) "*2* (4 — nz) da
0 o0
= const./ g~ (2-2)/(2-20)
0
- exp [(ﬁa,uﬁ)_zxzﬁﬂ — T — Tﬂ:_o‘/(l“o‘)} dz,

where  and 7 are already defined in this proof. Then, the integral (4.8) over [1, 00)
is finite since 23 < 1. On the other hand, the integral over (0,1] is finite since
28 > —a/(1 — @). The existence of [;° R(vyz;a)exp [(BopP) 22?8 /4 — nx] da is
similarly proved by using Corollary 4.1.

The referee raised the problem to which extent the theorem can be extended
to cover the stable case § = 0. Suppose X has a density of the form (2.3).
Then, we can not account the mean and the variance of X since they are infinite.
When z is small, p(z;a,1) is approximated by (4.1), and when z is large, it is
O(z~17%). Using these orders in the tail areas, we get the result that the G-C
expansion of X7 is uniformly convergent to the density for every finite interval if
—a/(2 - 2a) < B < 0. However, log X does not meet the sufficient condition.

5.  Numerical example

The accuracy of the saddlepoint approximation of f,(z) is examined by a
numerical example. We use the weight data of 98 newly-enrolled male students,
which is analysed by Nishii (1990). The sample mean and variance are given

ot ! i T i T T

Exact pdf —
0.09 + Saddlepoint approximation ----- E
Upper bound -~
0.08 Lower bound B—

007 | 1
0.06 + ’ .

0.05 +

Probability density

0.04 +

0.03

0.02

45 50 55 60 65 70 75 80
: Weight (kg)

Fig. 1. Saddlepoint approximation of exponential dispersion model.
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by 61.0(kg) and 38.8(kg?), respectively. By means of the moment method, A
and ¢ are estimated by the solutions of {—6/(1 — a)}*~! = 61.0 and {-6/(1 —
a)He=2/(e=1) = 388 for given a. We choose o which maximizes the likelihood.
Thus we get & = .878, § = —.283 x 10715 and \ = .679 x 1015.

The values of A and 6 may look extreme. But this comes from the way of the
parametrization. Especially, when o is close to 1, # becomes small, and conse-
quently X becomes large. The density fa(z) of the form (4.4) is denoted by Exact
pdf, and its saddlepoint approximation of the form (4.5) is denoted by Saddlepoint
approximation in Fig. 1. The upper and lower bounds of the approximation are es-
sentially based on (A.19) and (A.20). Both bounds are evaluated more accurately.
These four curves are illustrated in Fig. 1.
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Appendix

PRrROOF OF THEOREM 4.1. Following Ibragimov and Linnik ((1971), pp. 62—
69), we approximate p(z;a, 1) with 0 < o < 1 based on the method of steepest
descent. Recall that p(z;«,1) is derived by inverting the characteristic function.
Dividing the integral region (0, co0) into three regions Ilg, IT; and IT, in the complex
plane, we have

(A.l) p(x;a,l) = (W.Z’)*lRe/ exp{——is— (S/x)ae—iﬂa/Z}dS
0
= (m”)_lRe/ +(7T$)_1Re/ +(7TCU)_1Re/
Ho 1'[1 HQ
=Igp+ L1+, say,

where i = /-1, Iy = (0,4r), II; is the circular arc from ir to 7, II; = (r, 00) and
7 is a saddlepoint

(A.2) r = ql/(1me)g=a/(-a)

Obviously Iy = (wz) 'Re [i [, exp(t — z7%t*)dt] = 0. Next, I, of (A.1) is esti-
mated as follows.

(A3) |of = (rz) ™"

/00 exp{—cos(ma/2)x” s} cos{s — sin(ra/2)z " *s*}ds

< (mz)™t /oo exp{— cos(ma/2)x~*s* }ds

= 5/ toletgr = ¢ [F(l/oe) -TI'(1/a, K533“a/(1_°‘))} ,
Ksz—a/(1=)
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where
(A.4) ¢ = (o) Heos(ra/2)}"H*  and Ky = o®/07%) cos(ma/2).

Here in general ['(a, z) denotes an incomplete gamma function [ s¢~le~*ds.
On the other hand, the integral [; is given by the integral over a compact
interval [0, 7/2].

/2 . : :
L = r(m:)_lRe/ exp(re™™ — ra e ) et
0

w/2
=r(rz)”! / exp(rcost — ra”* cos at) cos A(t)dt
0

(A.5) (where A(t) =t + rsint — ra ! sinat)
= r(nz) " texp{—(1 — a)r/a}

: /W/2 exp{—(1 — a)rt®/2 + B(t)} cos A(t)dt
0

(A.6) (where B(t) = r{cost — 1 + /2 —a tcosat + o™ — at?/2})
=r2(1 — )"V (rz) L exp{—(1 — &)r/a}

- /0 “exp [~02/2 4+ Blo//TT—a)n)| cos Aw/ /T~ a)r)de
(A7) (where ¢ = (wg)\/(l - a)r/?,;)) = /(1 —a)rt)
= plz; o, 1)\/2/7 UO j—”2/2dv —/C e~V 2y
+/O e /2{eP cos 4 — 1}dv] ,

(A.8) (where A = A(v/+/(1—a)r), B = B(v/y/(1—a)r))

where f(z;a,1) is defined by (4.1). By the relation cos 4 = 1 — 2sin?(A4/2), it
holds that

I = plz; a, 1) {1 —2{1 - ®(c)} + m/oce‘vzﬂ(eﬁ — 1)dv
—2\/2/—7r/oc e“”2/2e§sin2(—ﬁ/2)dv]
(A9)  =p(wa,1) [1-2{1- @)} + V2/mha —2v2/mha], sy,

where ®(z) denotes the standard normal distribution function. Therefore,
(A.10) p(z;a,l) =plz;a,1) [1 —2{1 -®(c)} +v2/mJ11 — 2\/2/7TJ1,2] + Ir.

The following identity on B = B (7) /4/ (1 — a)r) of (A.8) is shown by Ibragimov
and Linnik ((1971), p. 64):

(A11) B=B (v/\/(l - a)r) =v?/2[1 - (sin®e — o' sin® ae) /{(1 — a)e’}]
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where 0 < e =v/(2y/(1 — a)r) < 7/4. From a finite Taylor series with remainder
we get sin” e —a ™! sin® o = (1—a)e? — (1—a®)e*/3+2(cos ¢ — a® cos a()e% /45 for
0 < ¢ <1 Thus B =v?/2[(1+a+a?)e?/3 - 2(cos{ — o cos al)e?/{45(1 — a)}].

Taking the supremum of B w.r.t. {, we get
(A.12) 0<B< blv4/r + bt /7% = Brax,  say,
where
(A13) by = (1+a+a?)/{24(1—a)} and by = o® cos(ma/2)/{45-2*(1—a)3}.
Also (A.11) implies that B is dominated by §v2/2 with
§=(1+a+a®)r?/48 + an? cos(ma/2)/{5760(1 — )} < 1

since 0 < ¢ < 7/4. Thus using 0 < ¢ < 1, it holds that
(Al4) 0< Jy1 = /Oc e””2/2(e—§— 1)dv = /Oc e_v2/2(§+ §26¢§/2)dv
< [ [Bawe™2 + Breexp{=/2+ B} /2] o
< /Oc Braxe ¥ 2dv + (1/2) /0c anax exp{—(1 — 6)v*/2}dv.

Here Bax of (A.12) is a polynomial of v. Consequently, the integrals in (A.14)
can be expressed in terms of incomplete gamma functions as

(A15) 0 < Ji1 <2%21(5/2,c%/2)byr ™t + 25/2T(7/2, ¢? /2)bor 2
+ 9525792 p(9/2, 562 /2)b2r 2
+ 29257211/, 5c2 /2)bybyr—?
+29/25_13/2F(13/2,502/2)1257'_4 (=J11, say),

where b; are defined by (A.13), 7 is the saddlepoint as before, and 6=1-6.Itis
not difficult to show that 6 is positive for 0 < a < 1. On the other hand employing
a Taylor expansion of A of (A.8), we get

(A.16) 0 <A< ayv/yr—a®/Vr+azvt/r = Apay,  say,

where

ap =1/V1i—-a, ay=(14+a)/{6vVl—a} and

(A-17) a3 = 1/{24(1 — @)?}.

Hence we get 0 < sin?(4/2) < ZZ/4 < anax/él and

C _ C
0<4J12 < / e_”2/2Z,2naxede < / anax exp{—(1 — §)v?/2}dv,
0 0
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where c is defined in (A.7). Finally it holds that

(A.18) 0<4Jio < {271(2/8)%?1(3/2,6¢%/2)a? +271(2/8)7/1(7/2,6¢%/2)a’
— (2/8)°?T(5/2,8¢% /2)arazyr~t + {(2/8)%T(3,8¢%/2)a1as
+271(2/8)%/21(9/2,6¢% /2)a2r 2
- (2/5)41“(4,502/2)a2a3}r_3/2

= 4:7172, say.

From (A.3) and (A.10), the upper and lower bounds of the residual p(z;a, 1) —
p(z; a, 1) are obtained by

(A.19) R(z;a) = p(ws0,1) [~2{1 - ®(c)} + V2/m 14
i [F(a—l) ~T(a?, Kg,z“a/(l-a))]

and

(A.20) R(z;0) = p(z; 0, 1)[-2{1 — ®(c)} — 2¢/2/7 1 ]

- [N - D(a™, Ksa™/0=)]

where ¢ = 273/27(1 — @)1/2a1/(2720) p=/(2=2e) "¢ T, | and J; 5 are respectively
defined by (A.4), (A.15) and (A.18).

ProoF OF COROLLARY 4.1. By the formula (A.19), we have
(A21)  R(z;0) < V2/nJ11b(z;e1) +€{T(@™) = T(a™, Ksa~®/ 072N,

where K5 and J; 1 are defined in (4.3) and (A.15), respectively. Employing the
following inequality on the incomplete gamma function:

Ia,z) = / 5% le7%ds < min{T(a),a 'z} (a>0, z>0),
0
we evaluate the first term (omitting the multiplier) of Jy 1 as

I(5/2,c2/2)r"! < min {r(s/z)a-l/ﬂ—a)xa/(l—a),
995~ 1n%(1 — a)5/2a3/(2—2a)I~—3a/(2—2a)}
since ¢ = 273/27(1 — @) /2q1/(2=20) =/ (2=20) gpd p = g1/ (I=2)g—a/(1-a) Other
terms of 71,1 are similarly evaluated. Concerning the second term of the right

hand side of (A.21), the following inequality on the complementary incomplete
gamma, function is available.

/ s*7te™*ds < min[['(a),e ™ x* H1+ (a — Dz + (a — 1)(a — 2)2~2

+ota=1)(a—2) - (a— a0},
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where [a] denotes the maximum integer not exceeding a. Using this relation, we
have T(a™!) — D(a™t, Ksz=*/(1=9)) < Koz~  exp{—Ksz~*/(1=)} for a positive
but small z, where K is a positive constant depending only on «. This completes
the proof.
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