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A b s t r a c t .  Estimating the prediction error is a common practice in the sta- 
tistical literature. Under a linear regression model, let e be the conditional 
prediction error and ~ be its estimate. We use p(~,e), the correlation coeffi- 
cient between e and ~, to measure the performance of a particular estimation 
method. Reasons are given why correlation is chosen over the more popular 
mean squared error loss. The main results of this paper conclude that it is 
generally not possible to obtain good estimates of the prediction error. In par- 
ticular, we show that p(~, e) = O(n -1/2) when n --~ c~. When the sample size 
is small, we argue that high values of p(~, e) can be achieved only when the 
residual error distribution has very heavy tails and when no outlier presents in 
the data. Finally, we show that in order for p(~, e) to be bounded away from 
zero asymptotically, ~ has to be biased. 
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i .  Introduction 

One of the u l t imate  goals of statist ical  modelling is to be able to predict  future  
observations based on current ly  available information.  Such is the case par t icular ly  
in t ime series and regression analysis. One often judges the goodness of a model  by 
looking at its predict ion error. Many statist ical  methodologies are developed based 
on such a consideration. Examples  include model  selection and nonparamet r ic  
smoothing methods,  where the model  and the smoothing parameter  respectively 
are chosen so tha t  the es t imated predict ion error  is minimized. P roper  es t imat ion 
of the predict ion error  is of crucial impor tance  in these areas. For references, see 
Linhar t  and Zucchini (1986), Bickel and Zhang (1991), Bre iman and Freedman 
(1983), H~rdle et al. (1988). 

There  are usually two notions of predict ion error appearing in the  l i terature,  
namely the condit ional and uncondit ional  errors. Suppose tha t  we are concerned 
with a response variable Y tha t  could be vector  valued. Let  ]~ represent a future  
observation. Let  ]~ be the predicted value based on the current  data.  Let  ~ denote  
the a-field generated by the sample, the condit ional mean  squared predict ion error  
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is defined as e = E[ I I I ) -  IFI]21Jc]. The unconditional prediction error is simply 
E(e). In the literature, when an estimate is constructed, it is often unclear which 
of the two prediction errors we are estimating. One often perceives the problem 
as that  of estimating E(e) simply because it fits more readily into the classical 
framework of parameter estimation. In practice, however, e is by all means a more 
honest measure of the prediction error because it measures how well one can do 
given the data at hand. The unconditional prediction error, on the other hand, is 
only an index of average performance which may or may not represent the current 
data. The idea of estimating an unknown random quantity has been familiar to 
statisticians for a long time. Bayes theory provides a good example. For non- 
Bayesians, the so called random effect models fit into this category (Robinson 
(1991)). We consider only the specific case of estimating the squared error loss 
which depends on both the parameters and the observations. It is without doubt 
that  E(e) would be easier to estimate than e. Hgrdle ef al. (1988), in the context of 
bandwidth selection in kernal nonparametric regression, actually showed that  the 
conclusion can be very different depending on which prediction error is used and 
the unconditional version has clear advantages. It is fair to say nonetheless that  
there is still substancial disagreement over the use of e or E(e) in the literature. 

The current work is prompted by an observation made by Hgrdle et al. (1988) 
which suggests that  the optimal bandwidths based on ~ and e have a negative 
correlation coefficient. Some explanations of this phenomenon can be found in 
Johnstone (1988), Chiu and Marron (1990) and Johnstone and Hall (1991). Al- 
though not directly applicable, the results of this paper could shed some light on 
the above problem because the case for linear regression is much easier to under- 
stand and more insight could be obtained. 

The focus of this paper is to study, for the linear regression models, the per- 
formance of ~ as an estimate of the conditional prediction error e. We use p(~, e), 
the correlation coefficient between ~ and e, to measure the performance of a par- 
ticular estimation method. Traditionally, metric like error measures such as the 
mean squared error E(~ - e) 2 are considered to be more fundamental as a measure 
of performance. Decision theory is largely developed around such loss functions. 
There are two reasons that  lead us to consider the correlation coefficient p(~, e) as 
an alternative to the popular mean squared loss function. First of all, many of the 
model selection criteria amount to minimizing ~. This is based on the hope that  
if ~ is small, then e should also be small, hence the selected model is good. Corre- 
lation coefficient provides a natural gauge for measuring this kind of relationship. 
Secondly, it has been shown by Johnstone (1988) that  under the mean squared 
loss function, many natural estimate of e are not even admissible. 

Among the main conclusions of the paper, we show that  asymptotically, 
fails to capture any structure of e in the sense that the correlation coefficient 
p(~, e) = O(n -I/2) as n -~ c~. This is the case whenever we require E(~) = E(e). 

Unlike parameter estimation, here there is no reason to believe that unbiasedness 

is desirable. Thus some attempt has been made to increase p@,e) by relaxing 
the unbiasedness requirement. When the sample size is small, we argue that high 
values of p@,e) can be achieved only when the residual error distribution has 
very heavy tails and when no outlier presents in the data. In general, it seems 
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impossible to obtain good est imates for the predict ion error. 

2. Regression models with fixed design 

Let  e = ( q , . . . , e n )  t where the ei's are independent  identically dis t r ibuted 
random variables with Eel  = 0, Ee~ = 0.~ and Ee  4 < oc. Suppose tha t  A and B 
are non-negative definite n x n matrices. One can easily show tha t  

(2.1) E(etAe) = 0.2 t r (A) 

and 

(2.2) cov(etAe, etBe) = t~4 Z aiibii + 20. 4 t r (AB) ,  

where ~4 = E(e  4) - 3 0 .4  is the fourth cumulant  of ei. We denote  by aij and bij 
the elements of A and B respectively. 

In this section, we consider the linear regression model Y = Xf l  + e, where X 
is a fixed n x k design mat r ix  and the residual error vector e = ( q ,  . . . ,  cn) t satisfies 

the conditions listed above. Suppose t h a t / 3  = ( X t X ) - I X t y  is the least squares 
es t imator  of ft. Using the notat ions of Section 1, a future  value is predicted by 
1) : X¢). We can easily verify tha t  the condit ional predict ion error as defined in 
Section 1 is given by e = n o .  2 -f- etPke, where Pk = X(XtX)  -1Xt is the project ion 
matrix.  

It follows from (2.1) tha t  E(e) = (n + k)¢ 2. Thus to  es t imate  e, a na tura l  
choice would be ~ = (n + k)~r 2, where if2 is an est imate  of cr 2. In this paper,  
we restrict  ourselves to quadrat ic  est imators  if2 = y t B y  for some non-negative 
definite mat r ix  B. In order  for ~ to be unbiased, we must  have 

(2.3) BX = 0 and t r (B)  = 1. 

Let  A = -Pk and B be arbitrary.  Since A 2 = A and t r (A) = k, we have from (2.1) 

and (2.2) t ha t  

(2.4) p(~,e) = 
1~4 E aiib~i 

41~4 E ai2i 2V 2]~0"4 4/~4 E bi2i "Jc 20.4 tr(B 2) 

Some observations are in order here. The  correlat ion between ~ and e is not  
always positive. When  ~4 = 0, as is the case for normal ly  dis t r ibuted errors, the 
correlat ion coefficient is zero. Presumably,  a good est imate  ~ should have high 
correlat ion with e. In this sense, an est imate such tha t  p (<  e) = 0 hardly  make 
any sense because it fails to capture  any s t ruc ture  of e. When  p(~, e) is negative, 
the s i tuat ion is even worse because now our es t imate  ~ is total ly  misleading. The  
correlat ion coefficient is positive if and only if ~4 > 0, i.e., the  residual error 
dis tr ibut ion has heavier tail than  normal distribution.  Another  observat ion is 
tha t  for any given B, p(~, e) depends only on the a~i's, i.e., the  leverages of the 
design points. Thus the robustness of the design mat r ix  has a direct impact  on 
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the quality of ~ as an estimate of e. This issue will be further discussed in the next 
section. 

The usual estimator of (72 based on residual sum of squares corresponds to B = 
(n - k ) - l P ~ ,  where P~- = I - P k .  Under the assumption of normal distribution for 
the residual errors, this estimator has the property that var(~) is minimum among 
all estimators satisfying (2.3). This can be seen by noting that var(~) = 2(74 tr(B2). 
Since B X  = 0, B has at most n - k  non-zero eigenvalues. Let them be A1, . . . ,  A~-k. 
Since E Ai = tr(B) = 1, we have t r (B 2) = E A~ >- (n - k ) - i  due to the Cauchy- 
Schwarz inequality. The equality holds if and only if A1 . . . . .  A~-k = (n - k) -1 , 
which corresponds to B = (n - k ) - l P ~ .  

THEOREM 2.1. Suppose that B satisfies (2.3) and that maxl<i<naii = 
o (n -1 ) .  The~ p(e, ~) = 0(~-1/~) .  F~rthe~,~o~e, if B = (~ - k ) - i P ~ ,  then 

p(~,e) = kn4 

V/2(74( 20-4 + ~4) 
n-1/2 + o(n-i/2). 

PROOF. For a general B, the assumption implies that 

~4Eai2i  + 2k(74 : 2k(74(1 + O(n-1)) .  

Since t r ( B  2) = E~,j b~2j > E bi~, we have 

t~4 Ebi2i + 2(74 t r (B 2) _> (t~4 + 2(74) Ebi2/ .  

Finally, the Cauchy-Schwarz inequality implies that Y]aiibii _< O ( n - 1 / 2 V / ~  bu).2 
The conclusion follows by substituting the above inequalities into (2.4). 

If B = ( n - k ) - l P ~  -, notice that b~ = ( n - k ) - l ( 1 - a ~ )  and t r (B 2) = 

(n -- ]g)--l, we have ~;4 E 52 +2(74 tr(B2) = n - l (  2(74 ~-g4)(1 ÷o(1))  and E a~ibii = 
n- lkn4(1  + o(1)). The conclusion follows immediately. [] 

On the one hand, the above theorem states that it is in general impossible 
to obtain good estimates for e since p(~, e) always tends to zero. On the other 
hand, one rarely has k /n  ~ 0 in practice. When k /n  is bounded away from zero, 
Theorem 2.1 does not apply since the assumption au = O(n -1) is no longer valid. 
We shall argue below that the value of p(~, e) is essentially determined by the 
kurtosis of the residual error distribution. 

3. Some small sample considerations 

We consider in this section only the case where B = (n - k ) - l P ~  -. In other 
words, the (72 is to be estimated by the usual residual variance. Let hi = aii be 
the i-th diagonal element of Pk. Then (2.4) becomes 

p(e,  e) = 
~4 ~ hi(1 - hi) 

V/n4 E h~ + 2k(74V/na E (1 - h~) 2 + 2(n - k)(7 a 
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Denote by f14 the kurtosis for the distribution of the residual errors, i.e., f14 : 
~4/o -4. Recall that P4 measures the heaviness of the corresponding distribution as 
compared with normal distribution. When p > 0 the tail is heavier than normal 
while a negative p value indicates the opposite. By the Cauchy-Schwarz inequality, 

P(e'e)<~ p4~h2 ~ P4 }-] (1 - hi)2 
- p4Eh~+2k paE(1-hi)2+2(n-k)" 

Thus p(~, e) can be very small if either 2k >> P4 Y] h~ or 2 ( n - k )  >> P4 E (1 --  hi) 2. 
In particular, these are the case if P4 << 2. We only need to verify the first 
inequality. Now P4 <~ 2 implies that 

2]~ >> p4]g=t94Ehi ~ I94Eh 2. 

The last inequality above is because h~ _< i by the properties of projection matrices. 
Next, let us consider the case when Pa -~ oc. We then have 

c) E h (1 - hi) 

~ i r  (1 - hi) 2 

In the special case where all the hi are the same, the above limit equals 1. Con- 
sequently, p(E, e) may be very close to 1 if the hi's are relatively homogenous. 
Using the language of robust statistics, a large value for hi indicates that  the i-th 
observation is an outlier. 

The above arguments seem to suggest that the ordinary prediction error esti- 
mate is good only when the residual error disbribution has very heavy tails and 
that no outlier presents in the observed data. One might argue that a small cot- 
relation coefficient does not necessarily mean that @ is not related to e the right 
way because they might have a non-linear relationship. This, however, could not 
happen in our case. Consider simply the case where the residual errors are nor- 
mally distributed. Not only does p(@, e) = 0, ~ and e are also independent of each 
other! 

4. Biased estimates 

In this section, we assume that the residual errors are normally distributed. 
In this case, the correlation coefficient between ~ and e equals to zero as long as 
we require E(~) = E(e). We shall show below that by relaxing the unbiasedness 
requirement, it is possible to keep p(~, e) bounded away from zero uniformly for 
all n > 1. 

A slight modification of (2.2) yields that 

= 2o .4 tr (BPk) 

2x/  V/0. 2 ItBX II 2 + 20 .4 t r (B 2) 
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Throughou t  this section, we assume tha t  ~ takes the form y t B y  and B = aPk + 
bP~- where a and b are scaler constants.  It  is easy to verify tha t  t r (BPk)  = ak, 
[1BXgll 2 = a21]Xgl] 9~ and t r ( B  2) = a2k + b2(n - k). Hence 

(4.1) p(~,e) = 
2a4ak 

~ ¢ / c ~ 2 a 2 1 1 x g r l  2 + 2cr4(a2k + b2(n - k))  

Without  loss of generality, assume tha t  a > 0 is bounded.  Thus  in order for (4.1) 
to be bounded  away from zero, one must  require 112911 _< c and b <_ C n  -~/2 for 
some C < oe. We state  the conclusion in the following theorem. 

THEOREM 4.1. Let ei's be independent identically distributed with distribu- 
tion N(O, ~r 2) and ~ = y t B y  with B = aPk + bP~ as above. Suppose that there 

exists constant C > 0 such that 0 < a < C, Ibl < C n  -~/2 and I]xgl] 2 < C. Then 
we can f ind Po > 0 such that p(~, e) >>_ Po for  all n > 1. 

In general,  a condi t ion such as ]lx9]l _< C is not  regarded  as a reasonable  one. 
W h e n  112911 - "  o~, (4.1) implies t h a t  

~ v q ~  

p(~, e) = 112911 " (1 + o(1)), 

This suggests, as also observed earlier in Section 2, tha t  we consider the kind of 
asymptot ics  where k / n  does not tend  to zero. If this is case, then  in order  for (4.1) 
to be bounded away from zero, one must  have 112911 = O ( n  1/2) and Ib/al = 0(1) .  
Combining this with the s i tuat ion described in Theorem 4.1, we see tha t  whatever  
the case, in order for (4.1) to be non-zero asymptotically,  b/a must be bounded.  
In part icular,  a must not equal to zero. This means tha t  the est imate  ~ must  be 
biased. 

To assess the bias, let us write 

E(~) - E(e) = a21lxgll 2 + a2[ak + b(n - k)] - (n + k)cr 2. 

It  is clear tha t  under  the set up of Theorem 4.1, ~ is severely biased downward. 
In fact, since IlXgll is bounded, n-l[E(~) - E ( e ) ]  ~ _¢2. For the case when k / n  
does not  tend  to zero, we can actual ly solve the equat ion E(~) = E(e)  to find the 
corresponding a and b. Notice tha t  we need a > 0 because one wants p(~, e) to 
be positive. While such solutions are available if we set b < (n + k ) / ( n  - k), the  
solutions depend on the unknown parameters /3  and cr 2. We can always subst i tu te  
the parameters  by their  corresponding estimates.  Asymptotical ly,  it is reasonable 
to expect  tha t  this will lead to an est imate tha t  is approximate ly  unbiased yet 
having positive correlat ion with e. It is still unclear how such a procedure  works 
in practice. 
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