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Abstract .  Motivated by recent work of Joe (1989, Ann.  Inst. Statist.  Math., 
41, 683-697), we introduce estimators of entropy and describe their proper- 
ties. We study the effects of tail behaviour, distribution smoothness and di- 
mensionality on convergence properties. In particular, we argue that root-n 
consistency of entropy estimation requires appropriate assumptions about each 
of these three features. Our estimators are different from Joe's, and may be 
computed without numerical integration, but it can be shown that the same 
interaction of tail behaviour, smoothness and dimensionality also determines 
the convergence rate of Joe's estimator. We study both histogram and kernel 
estimators of entropy, and in each case suggest empirical methods for choosing 
the smoothing parameter. 

Key  words and phrases: Convergence rates, density estimation, entropy, his- 
togram estimator, kernel estimator, projection pursuit, root-n consistency. 

1. Introduction 

This paper was motivated by work of Joe (1989) on estimation of entropy. 
Our work has three main aims: elucidating the role played by Joe's key regularity 
condition (A); developing theory for a class of estimators whose construction does 
not involve numerical integration; and providing a concise account of the influence 
of dimensionality on convergence rate properties of entropy estimators. Our main 
results do not require Joe's (1989) condition (A), which asks that  tail properties 
of the underlying distribution be ignorable. We show concisely how tail properties 
influence estimator behaviour, including convergence rates, for estimators based 
on both kernels and histograms. We point out that  histogram estimators may be 
used to construct root-n consistent entropy estimators in p = 1 dimension, and 
that  kernel estimators give root-n consistent entropy estimators in p = 1, 2 and 3 
dimensions, but that  neither type generally provides root-n consistent estimation 
beyond this range, unless (for example) the underlying distribution is compactly 
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supported, or is particularly smooth and bias-reduction techniques are employed. 
Joe (1989) develops theory for a root-n consistent estimator in the case p = 4, 
but he makes crucial use his condition (A). Even for p = 1, root-n consistency 
of our estimators or of that estimator suggested by Joe (1989) requires certain 
properties of the tails of the underlying distribution. Goldstein and Messer (1991) 
briefly mention the problem of entropy estimation, but like Joe they work under 
the assumption (A). 

To further elucidate our results it is necessary to introduce a little notation. 
Let X1,X2,.. .  ,X~ denote a random sample drawn from a p-variate distribution 
with density f ,  and put I = f f log f, where the integral is assumed to converge 
absolutely. Then - I denotes the entropy of the distribution determined by f .  We 
consider estimation of I. Our estimators are motivated by the observation that 
f = n -1 y]in__m log f(Xi) is unbiased for I, and is root-n consistent if f f(log f)2 < 
oc. Of course, since f is not known then _f is not a practical estimator. However, 
if f may be estimated nonparametrically by f ,  say, then 

n 

(1.1) fm = • - - 1  ~--~ log f (Xi)  
i = 1  

might be an appropriate alternative to [. 
Since f would typically depend on each Xi then the expected value of E(/:I) 

might differ significantly from f rE( log f) .  This observation motivates an alter- 
native estimator, 

n 

(1.2) ~f2 = n -L E log f i (X i ) ,  
i = 1  

where fi has the same form as f except that it is computed for the (n - 1)-sample 
which excludes Xi. We develop a version of/*1 when f is a histogram estimator, 
and a version of I2 when f is a kernel estimator. A version of/*1 for kernel esti- 
mators is also discussed. In both cases we prove that, under appropriate regularity 
conditions, _T = [ ÷  op (n-1/2). Then, a central limit theorem and other properties 

of/~ follow immediately from their counterparts for [. 
The estimator i;2 is sensitive to outliers, since the density estimator can be 

very close to zero when evaluated at outlying data values. This is one way of 
viewing the effects noted by Hall (1987). There it is shown that the adverse effects 
of tail behaviour, or equivalently of outliers, may be alleviated by using a kernel 
with heavier tails. Depending on their extent, outliers can be problematic when 
using entropy estimators in exploratory projection pursuit. 

For both histogram and kernel methods, choice of smoothing parameter de- 
termines the performance of the entropy estimator. We suggest practical methods 
for smoothing parameter choice. For the histogram estimator of type (1.1) we 
propose that a penalty term be subtracted from/~1, that the penalized version be 
maximized with respect to histogram binwidth, and that the resulting binwidth 
be used to compute/~1. A version of this technique may also be developed for the 
kernel estimator of type (1.1). For the kernel estimator of type (1.2) we suggest 
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that/~2 be maximized with respect to bandwidth, without regard for any penalty. 
The performance of each approach is assessed by both theoretical and numerical 
analyses. Section 2 treats the case of histogram estimators, and kernel estimators 
are studied in Section 3. 

Our theoretical account is based on arguments in Hall (1987, 1989), which 
analyse empirical properties of Kullback-Leibler loss. We develop substantial gen- 
eralizations of that work which include, in the case of histogram estimators, a 
study of/~l for a wide class of densities f having unbounded support. 

Entropy estimators may be employed to effect a test for normality (see e.g. 
Vasicek (1986)) and to construct measures of "interestingness" in the context of 
projection pursuit (see e.g. Huber (1985), Friedman (1987), Jones and Sibson 
(1987), Hall (1989) and Morton (1989)). If one-dimensional projections are used 
then the first step of exploratory projection pursuit is often to choose that orienta- 
tion 0o which maximizes I(0) = f fo log fo, where 0 is a unit p-vector, fo denotes 
the density of the projected scalar random variable 0. X, and u. v denotes the dot 
(i.e. scalar) product of vectors u and v. The results in Sections 2 and 3 show that, 
under appropriate regularity conditions, 

= f(0)  + op(  (1.3) 

for each 0, where/~(0) denotes the version of I computed from the univariate sample 
0.  X1 , . . .  , 0 .  X~, and [ (0 )=  n -1 ~in=llogfo(Xi). R e s u l t  (1 .3)may readily be 
proved to hold uniformly in unit p-vectors 0, by using Bernstein's inequality and 
noting that the class of all unit p-vectors is compact. Arguing thus we may show 
that if 0, 0 are chosen to maximize/*(0), [(0) respectively, then 0 -  0 = %(n-1/2). 
A limit theorem for 0, of the form nl/~(O-Oo) ~ Z (where Z is a normal random 
variable with mean zero) in distribution, is readily established. It then follows 
immediately that n 1/2 (0 - 00) ~ Z. 

2. Histogram estimators 

2.1 Summary 
Subsection 2.2 proposes a histogram estimator, I, of negative entropy, I = 

f f log f .  Properties of the estimator in the p-dimensional case are outlined, and 
it is shown that the estimator can only be root-n consistent when p = 1 or 2. 
Furthermore, only in the case p = 1 can binwidth be chosen so that [ is identical 
to the unbiased estimator _f = n -1 }-~i=1 logf(Xi)  up to terms of smaller order 

than n-i~2; when p = 2, any root-n consistent histogram estimator of I has 
significant bias, of size n -1/2. (For reasons of economy, detailed proofs of some 
of these results are omitted; they are very similar to counterparts in the case of 
kernel estimators, treated in Section 3.) 

Thus, only for p = 1 dimension is the histogram estimator particularly at- 
tractive. Subsections 2.3 et seq confine attention to that context. In particular, 
Subsection 2.3 suggests an empirical rule for bandwidth selection when p = 1, and 
describes its performance in the case of densities with regularly varying tails. The 
rule is based on maximizing a penalized version of/~, and is related to techniques 
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derived from Akaike's information criterion. Subsection 2.4 describes properties 
of/~, and of the empirical rule, when the underlying density has exponentially 
decreasing rather than regularly varying tails. A numerical study of the rule is 
presented in Subsection 2.5, and proofs are outlined in Subsection 2.6. 

2.2 Outline of general properties 
We first introduce notation, then we define a histogram estimator of the en- 

tropy of a p-variate density, and subsequently we describe its properties. 

Let Z p denote the set of all integer p-vectors i =  ( i1 , . . . ,  ip)r,  let v = ( v l , . . . ,  

Vp) T denote any fixed p-vector, and let 

Bi ---- { x  ---- ( X l , . . . , x p ) T  : lxj -- (vj + ijh)l < 1-h l < j < 2 ' - - 

represent the histogram bin centred at v +ih.  Here h, a number which decreases to 
zero as sample size increases, represents the binwidth of the histogram. Write Ni 
for the number of data values which fall into bin Bi. Then for x E Bi, N i / ( n h  p) 
is an estimator of f ( x ) ,  and 

: n-1 E Ni log { N i / (nh p) } -~ 7~ -1 E Ni log N i - log (ha p) 
i i 

is an estimator of I = f f log f .  
Let II" II denote the usual Euclidean metric in p-dimensional Euclidean space. 

It may be shown that  if f ( z )  has tails which decrease like a constant multiple of 

Ilxll as Ilxlt -~ ~ ,  for example if f ( x )  = cl @2 + Itzll) for positive constants 

Cl and c2, then/* admits an expansion of the form 

(2.1) I =  f +a l (nhP)  -I+(p/~) - a 2 h  2 @Op{(nhP) -l+(p/c~) ~- h2}, 

where al, a2 are positive constants and _f = n -1 Elogf(X~). The term of size 

(nhP) -l+(p/a) in (2.1) comes from a "variance component" of I, and the term 
of size h 2 comes from a "bias component". The constraint that  f be integrable 
dictates that  a > p. 

In the multivariate case, our assumption that  the density's tails decrease like 
ilxll serves only to illustrate, in a general way, the manner in which tail weight 
affects convergence rate. We do not claim that  this "symmetric" distribution might 
be particularly useful as a practical model for real data. However, when p > 1 
it is not possible to give a simple description of the impact of tail weight under 
realistic models, because of the very large variety of ways in which tail weight 
may vary in different directions. Variants of result (2.1) are available for a wide 
range of multivariate densities, that decrease like Ilxll -~ in one or more directions 
but decrease more rapidly in other directions. The nature of the result does not 
change, but the power (p/a) does alter. There also exists an analogue of (2.1) 
in the case of a multivariate normal density, where the quantity (nhP) -l+(p/a) is 
replaced by (nhP) -1 multiplied by a logarithmic term. 
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However, in the case of p = 1 dimension, our model is amply justified by 
practical considerations. See for example Hill (1975) and Zipf (1965). We employ 
the model for general p in order to show that ,  at least in simple distributions 
and for the histogram estimator,  optimal convergence rates may only be obtained 
when p = 1. Then we focus on the latter case, where the model may be strongly 
motivated. 

If 42 = f f ( log f)2 _ 12 < oc then /~ is root-n consistent for I ,  and in fact 

n l / 2 ( I  - I)  is asymptotical ly normal N(0 ,~2) .  The extent to which /~ achieves 
the same rate of convergence, and the same central limit theorem, is determined 

largely by the size of the difference d(h) = al(nhP) -I+(p/~) - a 2 h  2 in (2.1). In 
principle, h can be chosen so tha t  d(h) = 0, i.e. 

h ---- ( a l / a 2 )  ~/{~(p+2)-p2 }n_(a_p)/{a(p+2)_p 2 }, 

in which case the "remainder term" in (2.1) must be investigated. However, this 
is a somewhat impractical suggestion. First of all, it requires careful est imation 
of c~, al  and a2, which is far from straightforward, part icularly when p > 2. 
Secondly, it does not indicate how we might deal with circumstances where the 
model f ( x )  ,-~ const.Hz[] -~  is violated. 

The best we can realistically hope to achieve is tha t  h is chosen so tha t  
"variance" and "bias" contributions are of the same order of magnitude; tha t  is, 

(nhP)-l+(P/~)/h 2 is bounded away from zero and infinity as h --+ 0 and n --+ oc. 
Subsection 2.3 will describe an empirical rule for achieving this end when p = 1. 
Achieving this balance requires taking h to be of size n -a ,  where 

a = - + 2 )  - p 2 } .  

In this case, d(h) is of size n-2% If f is to be asymptotical ly equivalent to [,  up 
to terms of smaller order than  n -1/2, then we require 2a > 1/2, or equivalently 
a ( p - 2 )  < p ( p - 4 ) .  I fp  = 1 then this condition reduces to c~ > 3, but  i fp  _> 2 then 
the condition does not admit  any solutions a which satisfy the essential constraint 
c~ > p. Thus, the mean squared error of f is greater than  tha t  of [. 

Thus, we conclude tha t  the histogram method for est imating entropy is most 
effective in the case of p = 1 dimension. In other cases binwidth choice is a critical 
problem, and for p _> 2 it is virtually impossible to achieve root-n consistency. 
We shall show in Section 3 tha t  these difficulties may be largely circumvented by 
employing kernel-type estimators. 

2.3 The case p = 1: an empirical rule 
In the case p = 1 it may be deduced from Theorem 4.1 of Hall (1990) tha t  

(2.1) holds with 

(2.2) al  = 2bUaD(a) ,  a2 = ( 1 / 2 4 ) / ( f , ) 2 f - 1 ,  

where b is the constant  in the regularity condition (2.3) below, and 

/5 D(oz) = oz - 1  x - U c ~ E ( l o g [ x - l { M ( x ) + l } ] ) d x ,  oz> 1, 



74 P E T E R  HALL AND SALLY C. MORTON 

with M ( x )  denoting a Poisson-distributed random variable with mean x. The 
following regularity condition is sufficient for (2.1) to hold uniformly in any col- 
lection ~n  such that for some (5, C > 0, n - l+e  _< h _< n -e for each h E ~ n  and 
¢/:~n = O(nC); see Section 4 of Hall (1990): 

(2.3) 

f > 0 on ( -oc ,  oc), f '  exists and is continuous on ( -oc ,  oc), 

and for constants b > 0 and a > 1, f ' ( x )  ~ -bcex - ~ - 1  

and f ' ( - x )  ~ - b a x  -~-~  as x -+ oo. 

In order to determine an appropriate bandwidth for the estimator f we suggest 
subtracting a penalty Q from/~, such that for a large class of densities, 

(2.4) [ -- i - Q = [ -  s ( h )  + op{( h) + h2},  

where 

(2.5) S ( h )  = a3(fth) -1+(1/°z) @ a2h 2 

and a2, a3 are positive constants. In view of this positivity, maximizing f is 
asymptotically equivalent to minimizing S(h) ,  and so to minimizing the distance 
between I and I. This operation produces a bandwidth of size n -(a-1)/(3a-1), 
which we showed in Subsection 2.2 to be the optimal size. 

We suggest taking 

(2.6) Q = n -1 (number of nonempty bins). 

For this penalty function it is demonstrated in Hall ((1987), Section 4) that under 
(2.3), formula (2.4) holds with a2 given by (2.2) and with 

a3 = 2b / {r(1 - _ 

It may be shown numerically that a3 > 0 for a > c~0 -~ 2.49, which corresponds to 
a density with a finite absolute moment of order greater than 1.49. (For example, 
finite variance is sufficient.) 

A question arises as to whether the penalized version of i ,  i.e. ], should be 
taken as the estimator of I, or whether I itself should be used. From one point 
of view the question is academic, since if the bandwidth is chosen to maximize I, 
and (2.3) holds, then/~ and [ are both first-order equivalent to f: for J =/* or [, 

J = [_ -~- Op(,r~-2(°e-1)/(3a-1)) = [ 4 -  Op(n-1 /2 ) ,  

provided only that c~ > 3. These formula follow from (2.1), (2.4) and (2.5) (in the 
context of condition (2.3), a > 3 is equivalent to finite variance). However, it is of 
practical as well as theoretical interest to minimize the second-order term, of size 
n -2(~-1)/(3~-1). Indeed, the simulation study outlined later in this section will 
show that for samples of moderate size, second-order effects can be significant. We 
claim that if the density f has sufficiently light tails then I is preferable to [. 
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To appreciate why, observe that  with 5n = r t  - 2 ( a - 1 ) / ( 3 a - 1 ) ,  and binwidth 
chosen as suggysted three paragraphs above (with Q given by (2.3)), the s tandard  
deviations of I and I bo th  equal n-1/2~ + o(5~), and biases equal v + o(Sn) and 
v + w + o(5~) respectively, where 

v z a l ( n h )  -l--(1/a) - a 2  h2, w z  -2bl/~r(1-a-1)(nh)-l+(1/~). 

If we regard first-order terms as being of size n -112 and second-order terms as 
being of size ft -2(a-1)/(3a-1) ,  then we see that  s tandard  deviations are identical 
to first and second orders, but  tha t  while biases agree to first order they differ to 
second order. The second-order bias term is less for f than it is for [ if and only 
if Iv[ < I v + wl, or equivalently if and only if - ( w  + 2v) > 0, i.e. 

(2.7) b l / ~ { F ( 1 -  a -1) - 2 D ( a ) } ( n h )  -1+0/~) + a2h 2 > O. 

tt  may be shown numerically tha t  F(1 __~--1) __ 2D(oL) > 0 for all a > 7.55, which 
corresponds to at least 6.55 absolute moments  finite. Therefore, since a2 > 0, we 
can expect  (2.7) to hold for all sufficiently light-tailed distributions. 

The "penalty method" for selecting h is appropriate  in a wide variety of differ- 
ent cases, including those where the density f has exponential ly decreasing, rather  
than regularly varying, tails. Rigorous analysis of tha t  case requires a little addi- 
tional theory, which is developed in the next subsection. Subsection 2.5 presents 
numerical examples which illustrate the performance of the penal ty method.  

2.4 Theory for distributions whose densities are not regularly varying 
The empirical rule developed in Subsection 2.3 is for the case where f ( x )  

blxl -~  as ]x] ~ co, for constants b > 0 and a > 1. A slightly more general 
case, where f ( x )  ~ blx -~1 and f ( - x )  ~ b2x -~2 as x --+ oo, may be t rea ted by 
applying results in Hall ((1987), Section 4). And similar arguments  may be used 
to develop formulae for the ease where f (x )  ~ x- lLl( ) and 
as x ~ ec, where L1 and L2 are slowly varying functions. The work in the present 
subsection is aimed at developing theory applicable to the case of densities whose 
tails decrease exponential ly quickly, at a faster rate than any order of regular 
variation; or which decrease in a manner  which is neither regularly varying nor 
exponential ly decreasing. We deal only with the case of p = 1 dimension. 

Our first result concerns the case of distr ibutions whose densities decrease like 
const, exp(-cons t . [x[~) ,  for some a > 0. Our regularity condition, replacing (2.3), 
is 

(2.8) 

f > 0 on ( - o c ,  oc), f~ exists and is continuous on ( - o c ,  ec), and for 

constants b11, b12, bin, b22, a l ,  a2 > 0 we have f ' ( x )  ~ (d /dz)b l l  

exp ( -b12x a) and f ' ( - x )  ,.o (d/dx)b21 exp ( -b22x ~) as x --~ oo. 

Define a2 as at (2.2). Let 7-t~ denote a collection of real numbers  h satisfying 
n - l + e  < h < n -e  for each h C ~ and ~7-t~ = O(nC) ,  where 5, C > 0 are fixed 
constants.  
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THEOREM 2.1. Assume condition (2.8). Then 

(2.9) 
2 

1 E bi2(nh)- l ( l°gnh)l /~ - a2h2 
i=1  

+ (nh)- (lognh) + h 

uniformly in h E ?in, as n --* ~ .  

Proofs of Theorems 2.1 and 2.2 are outlined in Subsection 2.6. 
The penalty method of bandwidth choice, introduced in Subsection 2.3 and 

discussed there in the context of densities with regularly varying tails, is also ap- 
propriate for the present case of exponentially decreasing densities. To appreciate 
the theory appropriate for this case we must first develop analogues of formulae 
(2.4) and (2.5); these are, 

(2.1o) [ = _ f - Q = [ - S ( h ) + o p  (nh)-l( lognh) 1 / ~ + h  2 , 

where 

2 
1 

(2.11) S(h) = -~ E bi2(nh)-l( l°gnh)]/~ + a2h2' 
i=1  

(The penalty function Q is defined by (2.6), and the underlying distribution is 
assumed to satisfy (2.8).) Formulae (2.10) and (2.11) follow from (2.9) and the 
result 

Q, : E bi2(nh)- l ( l°gnh)l /ai  ÷ Op (nh)- l ( lognh)  1/a~ , 
i=1  

which may be proved by an argument similar to that employed to derive Theo- 
rem 2.1. 

Application of the penalty method involves choosing h = h to maximize [, and 
then taking _](h) as the estimator of I. Of course, [(h) is an alternative choice, 
but we claim that the asymptotic bias of the latter is larger in absolute value than 

^ 

in the case of I(h). The standard deviations of both estimators are identical, up 
to and including terms of the same order as the biases. To appreciate these points, 
put a = min(al ,  a2), b = (bl ÷ b2)/2 if o~ 1 -m- OJ2, b = b~/2 if a l  ~ a2 and a = ai. 
Observe that by (2.9) and (2.11), 

S(h) ~ b(nh)-l(lognh) 1/~ + a2h 2, 

- i = b(nh)-l(lognh) 1/~ ÷ a2h 2 + Op{(nh)-l(lognh) 1/~ ÷ h2}. 
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Therefore, the bandwidth which maximizes [, or (asymptotically equivalently) 
which minimizes S(h), satisfies 

~ { (b/2a2)(2/3)l/art_l(logn)l/a} 1/3. 

Hence, 

f ( I z ) - / =  (2a2)1/ab2/3(3/2) U(3a) { 1 - ~ ( 2 / 3 )  Ua } {n-l( logn)Z/~} 2/3 

+ Op[{n-l(logn)Uc~}2/a], 

-I- Op [ {Tz-l (log ft)l/a } 2/3] . 

Noting these two formulae, and the fact that  [ is unbiased for I, we deduce that  
/~(h) has asymptotically positive bias, whereas [(h)  has asymptotically negative 
bias; and that  the absolute value of the asymptotic bias is greater in the case of 
[(h)  than it is for I(h).  

Our last result in the present subsection treats a wide variety of different 
contexts. It is intended to show that  there exists a very large range of situations 
where, for suitable choice of binwidth h, the result /~ = _f + op(n -1/2) obtains. 

This formula implies that  _T is root-n consistent for I, and also that  nl /2( f  - I) is 
asymptotically N(0, ~r2), where (7 2 = f f( log f)2. 

Since our assumptions about f do not explicitly describe tail behaviour then 
it is not possible, in the context of the result stated below, to be as explicit about 
the size of second-order terms as we were in the case of distributions with regularly 
varying or exponentially decreasing tails. 

We assume the following regularity condition on f:  

(2.12) 

f > 0 on ( -oo,  ~ ) ,  f "  exists on ( -oo,  ~ )  and is monotone on 

( -oe ,  a) and on (b, co) for some - oo < a < b < oc, If"] + [if If] 

/]f"l + / ( f , ) 2 f - 1  < ec, and for some e > 0, is bounded, 

sup f l f " (x) l{ logf (x  + y)}2dx < oo. 
lyl<_~a 

Let xln, X2n denote respectively the largest negative, largest positive solutions of 
the equation f (x)  = (nh) -1. 

THEOREM 2.2. Assume condition (2.12) on f ,  and that the bandwidth h is 
chosen so that 

(2.13) f (  f[ log f[ + h i = o(n-1/2). 
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Then E l f  - f] : o(n -1/2) as n ~ oo. 

Two examples serve to illustrate tha t  for a very wide class of distributions, 
h may be chosen to ensure tha t  (2.13) holds. For the first example, assume tha t  
f ( x )  ~ btxl - a  as Ixl --+ oo, where b > 0 and c~ > 3. Then x2n - -  X l n  ~ b'(nh) 1/~, 
where b' > 0, and 

f t  log f[ = O{(nh) -1+(1/~) lognh}.  
-oc,xl~)u(x2,~,oc) 

It follows tha t  if h ~ const.n -(1/4)-e for some 0 < e < (c~ - 3)/{4(c~ - 1)} then 
(2.13) holds. 

For the second example, assume tha t  f ( x )  ~ bl exp (-b2lxl ~) as txl --~ oc, 

where bl, b2, a > 0. Then x2n - x l ~  ~ b3(lognh) 1/~, where b3 > 0, and 

f(  f] log f[ = O{(nh)-l(lognh)l/~}. 
-cc,xln)u(x2~,cc) 

It follows tha t  if h ~ const.n -(1/4)-~ for some 0 < e < 1/4 then (2.13) holds. 

2.5 Simulat ion study 
In this subsection we discuss the results of a simulation s tudy  for five uni- 

variate distributions with binwidth h chosen by the empirical rule outlined in 
Subsection 2.3. The five distributions chosen are a s tandard  normal (an exam- 
ple of a distribution with exponentially decreasing tails), and four Student 's  t 
distributions (examples of distributions with regularly varying tails). The four t 
distributions have degrees of freedom y equal to 3, 4, 6 and 10. In the notat ion 
o f  the previous subsections, the rate of tail decrease a for a regularly varying dis- 
t r ibut ion is equal to u + 1. Thus, the t distribution with three degrees of freedom 
or c~ = 4, has the smallest integer number of degrees of freedom for which /~ is 
asymptotical ly equivalent to [ up to terms of smaller order than  n -1/2,  as shown 

in Subsection 2.2. 
The true value of negative entropy I is known for the s tandard  normal distri- 

bution and is equal to log(x/-~) + 1/2 = -1.42.  Of course, this distr ibution has 
maximum entropy among all continuous distributions with mean zero and stan- 
dard deviation one. While I is not known analytically for a t distribution, it may 
be est imated via numerical integration. 

For each of the five distributions we investigated the behaviour of ] and [ 
for four different sample sizes, n = 50, 100, 200, and 500. For each sample size 
we conducted 100 simulations and approximated expected values by taking the 

average over the simulations. The quantities reported are E ( f ) ,  [ E ( f  - I)211/2 

(i.e. root  of the mean squared error), and E(/~) - I (bias). Similar quantities are 
calculated for [. The results are shown in Table 1. 

For each particular sample, we calculate _ /=  ~f - Q over a grid of binwidth 
values h = 0.1, 0 . 2 , . . . ,  H,  where H is the smallest multiple of 0.1 which is large 
enough to contain the entire sample. Tha t  is, when h = H,  the histogram has only 
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n E( I )  [E(I  - i)211/2 E(-?) - I E ( I )  [E(I  - i)211/2 E( I )  - I h* quantiles 

N(0, t)  analytic value = -1 .42  

50 -1 .36  0.131 0.057 -1 .50  0.135 -0 .079 

100 -1 .38  0.089 0.035 -1 .47  0.093 -0 .049 

200 -1 .41 0.050 0.005 -1 .46  0.064 -0 .042 

500 -1 .42  0.030 0.002 -1 .44  0.037 -0 .022 

t (dof = 10) integrated value = -1 .52  

50 -1 .42  0.161 0.099 -1 .58  0.136 -0 .058 

100 -1 .47  0.100 0.052 -1 .57  0.095 -0 .045 

200 -1 .51  0.062 0.012 -1 .56  0.075 -0 .043 

500 -1 .51  0.039 0.008 -1 .54  0.044 -0 .022 

t (dof = 6) integrated value = -1 .59  

50 -1 .47  0.185 0.125 -1 .63  0.129 -0.042 

100 -1 .52  0.123 0.074 -1 .63  0.104 -0 .036 

200 -1 .56  0.078 0.032 -1 .62  0.078 -0 .033 

500 -1 .58  0.042 0.006 -1 .62  0.051 -0 .028 

t (dof = 4) integrated value = - 1 . 6 8  

50 -1 .50  0.233 0.174 -1 .70  0.156 -0 .022 

100 -1 .58  0.145 0.100 -1 .71 0.105 -0 .028 

200 -1 .63  0.081 0.048 -1 .71  0.080 -0 .036 

500 -1 .66  0.049 0.020 -1 .70  0.051 -0 .022 

t (dof = 3) integrated value = -1 .77  

50 -1 .58  0.247 0.189 -1 .78  0.159 -0 .019 

100 -1 .65  0.159 0.114 -1 .79  0.112 -0 .026 

200 -1 .70  0.101 0.068 -1 .79  0.079 -0 .026 

500 -1 .74  0.058 0.030 -1 .79  0.055 -0 .022 

9.5, 0.8, 1.2, 1.7) 

0.6, 0.7, 0.9, 1.0) 

0.6, 0.6, 0.7, 0.9) 

0.5,0.5,0.6,0.6) 

0.4, 0.8, 1.3, 2.4) 

0.5,0.7,0.9,1.1) 

0.6,0.7,0.8,0.9) 

0.5, 0.5, 0.6, 0.7) 

0.4,0.7,1.4,2.5) 

0.4, 0.6, 0.9, 1.2) 

0.5,0.6,0.8,0.9) 
0.5, 0.6, 0.6, 0.7) 

(0.4, 0.5, 1.2, 2.1) 
(0.4, 0.6, 0.8, 1.4) 

(0.4, 0.5, 0.7, 0.9) 

(0.5, 0.5, 0.6, 0.7) 

(0.4, 0.6, I.i, 2.3) 
(0.4,0.5,0.9,1.2) 
(0.4, 0.5, 0.7, 0.9) 

(0.4, 0.5, 0.6, 0.7) 

one bin. For each particular h, the bins are centred at zero. The first bin covers 
(-hi2, hi2), the second ( -2h /2 ,  -h/2], the third [h/2, 3h/2), and so on. Thus for 
each simulation we have [(h) for a grid of h values spaced by 0.1. 

There are a number of options for choosing the optimal binwidth h*. We could 
take as h* that  h which maximizes ~f(h), as our empirical rule suggests. However, 
in practice I(h) is bumpy due to sampling fluctuations and to the discreteness 
of histogram estimators. Thus, we smooth [(h) using running medians of seven, 
producing 5 ~ ( h )  say and thus choose the largest h which maximizes [s,~(h) as 
our h*. The lower quartile, median, upper quartile and the 90th percentile of h* 
over the simulations are given in Table 1. Since our previous theory was based on 
the unsmoothed/~(h) and ~f(h), we use as our estimates I(h*) and [(h*). In our 
experience, this approach works well. A cursory investigation of other strategies, 
such as basing the smoothing window width on sample size, using smoothed ver- 
sions/~s,~(h*) and 5,~(h*) as estimates, or using the results of a search on a coarse 
grid to target a search area on a finer grid, did not produce significant changes in 
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the results. 
Several comments may be made about the results in Table 1. Further sim- 

ulation investigation is warranted given the fact that only 100 simulations were 
conducted for each situation. However, exploration revealed that two standard 
deviation confidence intervals for these simulation-based approximations of/~ and 
[ indicate deviations of at most three points in the last significant figure for all 
sample sizes and distributions considered. As the number of degrees of freedom 
increases from three to effectively infinity for the standard normal, and thus the 
tail rate of decrease c~ increases, the mean squared error of/* decreases for any 
specific sample size n, as predicted by (2.1). In addition, throughout the table the 
ratio of the square root of the mean squared errors for two sample sizes nl and 

n2 is close to n-11/2 : n-21/2. For the chosen sample sizes n = 50, 100, 200, and 
500, these ratios are between 0.63 and 0.71. The reported error ratios, for example 
0.123 : 0.185 = 0.67 for the t distribution with 6 degrees of freedom at n = 50 and 
n = 100, are between 0.53 and 0.70. 

For most of the distributions, [ tends to be more biased than /~, a result 
shown in Subsection 2.3 to be true asymptotically: The bias of _/is negative and 
larger in absolute value than the positive bias of I for the standard normal. This 
relationship was shown in Subsection 2.4 to be true asymptotically for distributions 
with exponentially decreasing tails. 

The variation in the value of h* decreases as n increases, due to reduced 
sampling fluctuation. In addition, it seems to decrease slightly as the tail rate 
increases. 

2.6 Proofs 
Outline of proof of Theorem 2.1 
For the sake of brevity we indicate only those places where the proof differs 

significantly from that of Theorem 4.1 of Hall (1990), the differences occurring 
in the derivation of approximate formulae for "E(Tk2)" (k = 1, 2). The new 
approximate formulae, in the case of large s and small r, may be described as 
follows. Put  gk(x) = bkl exp (-bk2x~), and let M(x) denote a Poisson-distributed 
random variable having mean x. Then E(Tk2) is approximated by 

f 
h-lg~l{(nh) -1} 

tk =- n-1 E(M{nhgk(hx) } log [M {nhgk (hx)}/nhg (hx)])dx 
Jh-19~-1(1 ) 

fi -- (nh) E[M(y) l o g { M ( y ) / y } ] d y g - l { ( n h ) - l y }  

= ( n h )  -1 yE(log[{M(y)+ 1}/y])dy{b-~log(bklnh/y)} ~/~ 
1 

Since E(log[{M(y) + 1}/y]) ~-, (2y) -1 as y --+ oo, then 

j n h  
tk ,",., (2?'th) -1 dy{bk211og(bkl•h/y) } 1/ak 

h-l/ k (2 h)-X(log 
~k2 
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As in the proof of Theorem 4.1 of Hall (1990), the "variance component" of _T-[ is 
asymptotic to tl + t2; this produces the series on the right-hand side of (2.9). The 
next term, the quantity - a 2 h  2, represents the "bias component" and is obtained 
in a manner identical to that in Hall (1990). 

Outline of  proof of Theorem 2.2 
We begin with a little notation. Let 

qi =n-IE(N~) :/B f ( x ) d x ,  
i 

representing the probability that a randomly chosen data value falls in bin Bi. 
Put/~ = n -1 •i Ni log (qi/h) .  Theorem 2.2 is a corollary of the following result. 

LEMMA 2.1. I f  h =  h(n) --+ 0 and nh  --~ oo as n ~ oo, and i f  (2.12) holds, 
then 

(2.14) 

(2.15) 

(2.16) 

IE(I)-I[=O(h2), 
var(I - - / )  = O(n-lh2),  

EI - il = O{(nh) -1 (x2 - Xl ) 

+ f(-zc,xl~)u(x2~,~c) 
fl log f[ + h 2 } + o(n -1/2) 

a s  n ----~ o c .  

For the remainder, we confine attention to proving (2.14)-(2.16). We may 
assume without loss of generality that the constant v, in the definition of the 
centre v + ih of the histogram bin Bi, equals zero. 

(i) PROOF OF (2.14). 
Observe that E(I) = fflogg, where g(x) -- qi/h for x C Bi. For small h, 

and all x, 

f 1/2 
g(x) = - 1 / 2 f ( x  + i h -  x + h y ) d y =  f ( x )  + ( i h -  x ) f ' ( x )  + Re(x) '  

where IRl(x)l _< C l h 2 { l f " ( x  - h)t + I f " ( x  + h)l} and Ct, C2 , . .  denote positive 
constants. Thus, 

(2.17) logg(x) = log f(x) + (ih - x ) f ' ( x ) f ( x )  -1 ÷ R2(x) 

where 

(2.18) [R2(x)[ <_ C2 (h 2 [ { f ' ( x ) / f ( x ) }  2 + { I f " ( x  - h)t + [ f " (x  + h)[} f (x )  -1] 

x I [ C z h 2 { l f ' ( x  - h)l + I f " ( x  + h ) l } f ( x )  -1 < 1/2] 

+ {]logf(x)l + l l o g / ( x -  h)l + [logf(x + h)l } 

x I [ C l h 2 { l f " ( x  - h)l + I f " ( x  + h)[} f (x )  -1 > 1/2]). 
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The last inequality entails 

Therefore, writing i = i(x) for the index of the block Bi containing x, 

which establishes (2.14). 

(ii) PROOF OF (2.15). 
Observe that  

whence 

where g is as in (i) above. We may prove from (2.17) and (2.18) that  

which together with (2.19) implies (2.15). 

(iii) PROOF OF (2.16). 
Define Ai = (Ni-nqi )  / (nqi), and let ~-~', ~-~" denote summat ion  over values 

of i such that  nq~ > 1, nq~ < 1 respectively. Write m for the number  of i's such 
that  nq~ > 1. Since 
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and Ilog(1 + u ) - u  t <_ 2{u 2 + l l o g ( l + u ) l f ( u  < 1/2)} then 

E/ E' (2.20) n i l  - 71 _< N~Zx~ + 2 N~Zx~ 
i 

i 

+>_2  llog(l+Zxdl 
i 

Now, NiAi = (nqi) -1 (Ni - nqi) 2 + Ni - nqi, and so 

/ I f 

<_ m + n 1/2 1 - } - ~ '  q~ = m + o ( n l / 2 ) ,  

i 

since 2~'q{ ~ 1. Likewise, noting that  NiA~ = (nqi)-2(Ni - nqi) 3 + (nqi)- 
nq ) 2 - , we see that  

E (~i 'NiA~) = E '  (nqi ) - l ( l -  3qi+ 2qi) + E '  ( i -q i )  i 

If Ai < -1//2 then 1 + Ai = Ni/(nqi) < 1/2, and so 

Nil log (1 + A{)I = Ni log { (nqi)/N{ } <_ Ni log (nq{), 

whence 

(  )lj2 
2~-~ n q ~ l l o g ( n q i ) l P  A i  < - , 

i 

the last line by the Cauchy-Schwartz inequality. By Bernstein's inequality, 

P /ki < -- = P - nqi < - ~ n q i  < exp - nqi , 

and so, defining C3 = sups>0 xl log x I exp( -x /32) ,  we have 

E { ~ ' N i l l o g ( l ÷ A i ) l I ( A i < - - 2 ) }  <-2C3m.  
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Combining the estimates from (2.20) down we deduce that 

(2.21) nE[I-I[ < (5+4C3)m+o(nl/2) + E{Nillog(l + Ai)l}. 
i 

Observe next that E{Ni[log(1 + A~)[} < E(NilogN~) + nq~llog(nq~)[. If 
nqi _< 1 then E(NilogNi) <_ E(Ng) <_ 2nqi, and Ilog(nqdl = - l o g ( n q i )  < 
- log (qi/h), whence 

}--~" 
(2.22) E "  E{Nil  log( 1 + Ai)l} -< 2 n Z " q i -  n qilog(qi/h). 

i i i 

Write B for the union of Bi over indices i satisfying ?tqi < 1, and let g be as in 
(i). By that result, f f[log(f/9)l = O(h2), and so 

E"qilog(qi/h)= fBflogg= f f logf  +O(h2 ). 
i 

Put D = ( -oc ,  Xln) U (x2n, ec). In view of the monotonicity of the tails of f ,  

-- fB f log f  = fDfllogfl +o(n-1/2), 

implying that 

- qilog(qi/h) = f l log fl +O(h 2) + o(n-1/2). 
i 

Similarly, 

z"lo qi = f + O(h2) + o(n-U~) < f[ log f] + O(h2) + o(n-1/2), 
i 

whence by (2.22), 

?'t-1 E E{ N~I log(1 + ~X~)[} ~ 3 f~ fl log fl + O(h ~) + °(~-~/~). 
i 

The desired result (2.16) follows from this formula and (2.21). 
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3. Kernel estimators 

3.1 Methodology 
Let X I , . . .  , Xn denote a random sample drawn from a p-variate distribution 

with density f ,  let K be a p-variate density function, and write h for a (scalar) 
bandwidth. (In practice, the data would typically be standardised for scale before 
using a single bandwidth; see Silverman ((1986), p. 84 ft.)) Then 

/,(~) = { ( n -  1)h~}-~ E K{ (x- Xj)/h} 
j#i  

is a "leave-one-out" estimator of f, and 

fk = n-1 ~ log f i (Xi)  
i = 1  

is an estimator of negative entropy, I. 
In the case p = 1, properties of Ik have been studied in the context of esti- 

mating Kullback-Leibler loss (1987). There it was shown that, provided the kernel 
function has appropriately heavy tails (e.g. if K is a Student's t density, rather 
than a Normal density), and if the tails of f are decreasing like [xl -~  as ]x] --* 0% 
then 

(3.1) I k = [ - { C t ( n h )  -1+0/~) +C2h4}+Op{(nh)  -1+(1/~) +h4} ,  

where C1, C2 > 0. 
More generally, suppose p ~ 1 and the tails of f decrease like []x[] -~,  say 

f (x )  = c1(c2 + ]Ix]]2) -~/2 for Cx,C~ > 0 and a > p. (The latter condition is 
necessary to ensure that this f is integrable.) Then, defining [ = n -1 • log f (Xi), 
we have 

(3.2) ~ =  i -  {cl(~hp) -I÷(p/~) + c 2 h  4} + op{(~h~) -I÷(p/~) +h4},  

for positive constants C1 and C2. The techniques of proof are very similar to those 
in Hall (1987), and so we shall not elaborate on the proof. 

Of course, [ is unbiased and root-n consistent for I, with variance n - 1 .  
{ f ( l og f )  2 f - Z2}. The second order term in (3.2) is 

J = C1 (nh p) -l+(p/~) + C2h4 ' 

and is minimized by taking h to be of size n -a where 

(3.3) a -- (~ - ; ) / { . ( ;  + 4) - ; 2 }  

Then J is of size re -4a, which is of smaller order than n -1/2 if and only if 1 _< p < 3 
and a > p(8 - p ) / ( 4 - p ) .  When p = 1 this reduces to c~ > 7/3, which is equivalent 
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to existence of a moment higher than the 1½'rd. (For example, finite variance 
s u m c e s . )  

Recall from Subsection 2.2 that histogram estimators only allow root-n con- 
sistent estimation of entropy when p = 1. We have just seen that  nonnegative 
kernel estimators extend this range to 1 _< p _< 3, and so they do have advantages. 
The ease p = 2 is of practical interest since practitioners of exploratory projection 
pursuit sometimes wish to project a high-dimensional distribution into two, rather 
than one, dimensions. As noted above, in the case of a density whose tails decrease 
like I[xl! - a  we need 

> 2 ( s  - 2 ) / ( 4  - 2) = 6 

if we are to get /~ = f +  op(n -1/2) in p = 2 dimensions. This corresponds to the 
existence of a moment higher than the fourth. 

Since C1 and C2 in formula (3.2) are both positive then a simple practical, 
empirical rule for choosing bandwidth is to select h so as to maximize £ =/~k (h). 
Now, it may be proved that (3.2) is available uniformly over h's in any set ~ n  
such that ~-~n ~ (n--1+6, n-6) for some 0 < (5 < 1/2 and # ~ n  = O(n C) for 

some C > 0. If the maximization is taken over a rich set of such h's then/~k = 
i + Ov(n-4a), where a is given by (3.3), and so/~k =/v  + %(n_1/2) if 1 _< p < 3 
and a > p ( 8 - p ) / ( 4 - p ) .  

In principle, the estimator -Tk may be constructed without using "leave-one- 
out" methods. If we define 

n 

f(x) = (naP) - 1 E  K{ ( x -  Xj)/h} 
j=l 

then an appropriate entropy estimator is given by 

n 

Zk z ~- l E log f ( Xi ) 
i=1 

n 

= n - 1 Z l o g  { (1 - n - l )  f (x d + 
i=1 

Here, as noted above, it is essential that  the kernel have appropriately heavy tails; 
for example, K could be a Student's t density. 

Formulae (3.1) and (3.2) continue to hold in this case, except that the constant 
C1 is no longer positive. Compare formula (2.1), which is also for the case of an 
estimator that  is not constructed by the "leave-one-out" method. Thus, the band- 
width selection argument described in the previous paragraph is not appropriate. 
A penalty term should be subtracted before attempting maximization, much as in 
the case described in Section 2. 

3.2 Simulation study 
This subsection describes a simulation study of the behaviour of our kernel esti- 

mator of negative entropy, Ik. It is similar to the previous simulation study of the 
histogram estimator presented in Subsection 2.5 and its interpretation is subject 
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to  t he  s a m e  cavea t  r ega rd ing  the  n u m b e r  of s imula t ions .  In  all u n i v a r i a t e  cases 
shown,  t he  kernel  used  is a S t u d e n t ' s  t w i th  four  degrees  of  f r eedom,  which  is heavy -  
ta i led.  In  the  b i v a r i a t e  case,  t he  kernel  was a p r o d u c t  of  two such funct ions .  T h e  
b a n d w i d t h  h chosen  is t h a t  which  m a x i m i z e s  I k (h ) ,  th is  be ing  the  empi r i ca l  rule  
d i scussed  previous ly .  T h e  func t ion  I k ( h )  is not  s m o o t h e d  first  be fore  h is chosen  
as it does  not  f l uc tua t e  as m u c h  as t he  inhe ren t ly  d iscre te  h i s t o g r a m  e s t i m a t o r .  
As a resul t ,  the  quan t i l e s  of  h v a r y  m u c h  less for the  kernel  e s t i m a t o r  e x a m p l e s  
p r e s e n t e d  in Tab l e  2 t h a n  for the  a s soc i a t ed  h i s t o g r a m  e s t i m a t o r  e x a m p l e s  of  
Tab le  1. 

Table 2. Performace of kernel estimator. 

n E(Ik) [E(Ik - i)2]1/2 E(Ik) - I h quantiles 

One dimension 
N(0, 1) true value = -1.42 
50 -1.45 0.110 -0.032 (0.3, 0.4,0.4,0.5) 

100 -1.44 0.070 -0.023 (0.3,0.3,0.4,0.4) 
200 -1.44 0.046 -0.016 (0.2,0.3,0.3,0.3) 

t (dof = 6) integrated value = -1.59 
50 -1.63 0.142 -0.040 (0.4, 0.5, 0.5, 0.6) 

100 -1.59 0.092 -0.001 (0.3,0.4, 0.5,0.5) 
200 -1.61 0.067 -0.023 (0.2, 0.3, 0.4, 0.4) 

t (dof = 4) integrated value = -1.68 

50 -1.68 0.134 -0.004 (0.3,0.5,0.6,0.7) 
100 -1.68 0.106 -0.006 (0.2, 0.4, 0.5, 0.5) 
200 -1.67 0.078 0.007 (0.2, 0.3, 0.4, 0.5) 

t (dof = 3) integrated value = -1.77 

50 -1.75 0.151 0.013 (0.2, 0.5, 0.6, 0.7) 
100 -1.75 0.131 0.015 (0.2, 0.4, 0.5, 0.6) 
200 -1.75 0.086 0.013 (0.2, 0.3, 0.4, 0.5) 

Two dimensions 
N(0, I) true value = -2.84 

50 -2.94 0.174 -0.098 (0.4,0.5,0.5,0.5) 
100 -2.91 0.117 -0.076 (0.4, 0.4, 0.4, 0.5) 
200 -2.88 0.082 -0.046 (0.3, 0.4, 0.4, 0.4) 

N(0, V) correlation 0.8 true value = -2.33 

50 -2.48 0.207 -0.149 (0.3, 0.3, 0.3, 0.4) 
100 -2.45 0.150 -0.119 (0.2, 0.3, 0.3, 0.3) 
200 --2.40 0.107 -0.072 (0.2,0.2, 0.2, 0.3) 

Four  u n i v a r i a t e  e x a m p l e s  are  p resen ted :  t he  n o r m a l  and  t h r ee  S tudenCs  t 
w i th  6, 4 and  3 degrees  of  f r e e d o m  respect ive ly .  In  general ,  t he  bias  is nega t ive ,  
as p r e d i c t e d  by  (3.1), and  the  e r ror  is less t h a n  t h a t  for t he  a s s o c i a t e d  h i s t o g r a m  
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estimator examples, again as expected. The bias is positive for the most heavy- 
tailed distribution, the Student's t with three degrees of freedom, perhaps due to 
the fact that higher-order terms are having a large effect on the expansion (3.1). 

Two bivariate examples are presented. Both are bivariate normals; in the first, 
components are independent, and in the second, the correlation coefficient is 0.8. In 
each case, the true negative entropy is known. The kernel estimator performs well 
in both examples, given the small sample size. However, the computational work 
required to calculate the distance between every pair of points makes the kernel 
estimator intractable for exploratory projection pursuit. The binning performed 
in the histogram estimator reduces the work required in the p = 1 case from O (n 2) 
to O (m2), where rn is the number of bins. Unfortunately this approach cannot be 
used in the p = 2 case, as discussed in Section 2. 
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