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A b s t r a c t .  We consider the problem of finding a heavy and light traffic lim- 
its for the steady-state workload in a fluid model having a continuous burst 
arrival process. Such a model is useful for describing (among other things) the 
packetwise transmission of data in telecommunications, where each packet is 
approximated to be a continuous flow. Whereas in a queueing model, each 
arrival epoch, tn, corresponds to a customer with a service time Sn, the burst 
model is different: each arrival epoch, t~, corresponds to a burst of work, that 
is, a continuous flow of work (fluid, information) to the system at rate 1 during 
the time interval [tn, t~ + S~]. In the present paper we show that the burst 
and queueing models share the same heavy-traffic limit for work, but that their 
behavior in light traffic is quite different. 

Key words and phrases: Fluid model, queue, burst arrivals, heavy traffic, light 
traffic. 

i. Introduction 

In Sigman and Yamazaki (1992) a fluid model with a continuous burst arrival 
process was presented and analyzed using sample pa th  techniques to obtain a 
variety of s teady-s ta te  type  relations concerning work in system. The  model was 
mot iva ted  by packetwise transmission of da ta  in te lecommunicat ions  (where it 's 
applications lie) and was preceded by several related papers  (Pan et al. (1989), 
Brand t  et al. (1990) and Miyazawa and Yamazaki (1992)). In Yamazaki et al. 
(1993), the same model  was then  analyzed in a stochastic set t ing (using the Rate  
Conservation Law) and a number  of interesting results were obta ined concerning 
the number  of active bursts  in the system. In the present paper,  we derive some 
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heavy and light traffic results concerning the steady-state total work in system in 
the case of renewal input. 

Using notation as in Sigman and Yamazaki (1992) (where the reader is referred 
to for details) we now briefly describe the burst model. The arrival process, ~ -- 
{(t~, Sn) : n _> 0}, is viewed as a marked point process (mpp) with arrival times 
0 = to _< tl <_ t2.-., marks, Sn c T~+ and counting process N(t). Each epoch, t~, 
starts its own burst, of length Sn, that is, a continuous flow of work to a common 

processor at rate 1 (during the interval of time In de=f [tn, tn + Sn]). The processor 

processes work at rate i. If at any time t, it holds that t E In, then we say that the 
n-th burst is active at time t. The service discipline is FIFO: the server processes 
all the work from each burst one at a time and does so in the order of the tn. 
The burst currently being processed is said to be in service. Work that flows in 

(arrives) from any bursts not in service waits in the queue (of unlimited size). 
Vb(t) (b for burst) denotes the total amount of unprocessed work in the system at 
time t. We say that the server is busy at time t if work is being processed, idle 
otherwise. Vb,s(t) denotes the amount of unprocessed work in service at time t 
and Vb,q (t) denotes the amount waiting in queue: 

Vb(t) = Vb, (t) + Vb,s(t). 

It is important to observe that Vb ,8 ( t )  = 0 if and only if either the server is 
idle at time t (that is, ~ ( t )  = 0 and there are no active bursts) or the system 
was idle at epoch t n -  with t E [tn, t~ + min(Sn, t~+l - tn)]. As in Sigman and 
Yamazaki (1992), we also construct from ~p the corresponding regular FIFO single 
channel queue (r) and infinite channel queue (oc), with Vr and V~ denoting the 
corresponding workload processes. 

In Sigman and Yamazaki (1992) (Proposition 2.2) the following fundamental 
relationship among the three models is proved: 

PROPOSITION 1.1. 

(1.1) V b ( t )  = V , ( t )  - V~(t); t _ O .  

2. Heavy traffic 

We shall now show that the burst model work has the same heavy traffic 
limit as work in the regular queueing model. We proceed with the same kind 
of heavy-traffffc set-up as in Asmussen (1987). Let ~ denote weak convergence. 
Consider the GI/GI/burst model in heavy-traffic, that is, we assume that we have 
burst models parameterized by integers k > 1 with renewal input mpp ~k having 
interarrival times, Tn(k), i.i.d. ~ Ak~A as k--+oc, independent of the marks (burst 
lengths), Sn(k), i.i.d. ~ Gk~G where Ak has mean 0 < /~k -I < ec, A has mean 
0 < /k -I < oc, Gk has mean0 < #k -I < oc and Ghas mean #-i. ~ denotes the 

renewal mpp with distributions A, G. We assume Pk def )~k/#k < 1, and )~/# = 1 
and the following heavy traffic condition holds: 

lim Pk  = 1. 
k--+oo 
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Letting S(k), T(k), S, T denote generic service and interarrival time r.v.s, from 
¢k and ¢ respectively, we also assume a uniform integrability condition 

0 < lim Var(T(k) - S(k)) = Var(T - S) < oo, 
k---~oc 

so that in particular 
def  E(T(k)  - S(k)) 

3'k = Var(T(k) - S(k))-*O" 

In the following, Vb = Vb,k denotes a r.v. with the steady-state distribution of work 
for the burst model with the mpp ~bk as input (we supress the k for notational 
simplicity), exp(2) denotes the exponential distribution with mean 1/2. 

PROPOSITION 2.1. As k ~ ,  

(2.1) 7k Vb~exp(2) 

and 

1 
(2.2) ETk Vb-~-~ . 

PROOF. We take all the mpp's ¢(k), ¢ to be time stationary versions on 
T~ on a common probability space. Using (I.I) (via Remark (2.1) in Sigman 
and Yamazaki (1992)), we then can construct r.v.s. Vr = Vr(0), lib = Vb(0), 
V~ = V~ (0) all on the same probability space satisfying 

(2.3) 175 = V~ - V~, 

and possessing the steady-state distributions of workloads (we supress the k). It 
is well known that 

(2.4) P(Vr > x) = pP(D + S~ > x); x > 0, 

where D and S~ are independent, D has the steady-state customer delay distribu- 
tion and S~ ~ G~ (the equilibrium distribution of service, with density # ( 1 -  G(x))) 
(see for example, p. 425 in Wolff (1989)). From Asmussen (1987) (Corollary 6.5, 
p. 199), (together with (2.4)) it follows that (2.1) and (2.2) hold with Vr in place of 
~ ;  thus it suffices to show that the V~ term in (2.3) is insignificant in the desired 
limits. To this end, we use the well known formula 

(2.5) E(V~)  = pE(S2)/2E(S) ,  

so that from our uniform integrability condition, we obtain ETkV~-~O, thus giving 
(2.2). (2.1) then follows by applying Theorem 4.4.6 of Chung (1974). [] 



4 KARL SIGMAN AND GENJI YAMAZAKI 

3. Light traffic results 

Whereas  the heavy traffic limits for b and r are identical, the  same is not  so 
in light traffic as we show in this section. We assume the G I / G I  set-up with a 
fixed service t ime distr ibution G (with generic service t ime S), fixed interarrival  
t ime distr ibution A (with generic interarrival t ime T),  and 0 < p < 1. We do not 
assume finite variances. By light traffic we mean tha t  the interarrival times, T~, 
are scaled by a parameter  a > 0 to obtain (~T~, where it is assumed tha t  a -+co ,  
and hence A--+0 so tha t  p-+0. In the following, we use the notion p--+0 to mean  
that ~-~e. 

It is well known (and easy to prove via the sample path methods found on 
p. 291 Example 5-22 in Wolff (1989)) that P(Vr,s > x) = pP(S~ > x), where 
Se ~ Ge (the equilibrium distribution of service, with density #(i - G(x))). 

LEMMA 3.1. In light traffic V~ ~ V~,~, that is, for all x 

(3.1) P(Vr > x) ,1 as p-+O. 
pP(S~ > x) 

PROOF. From (2.4) 

P(V  > x) 
pp(s  > x) 

Since D ~ 0  as p--+O, (3.1) follows. [] 

PROPOSITION 3.1. As p~O, 

(3.2) 

PROOF. 

P(D + Se > x) 

P(& > x) 

P(VD > x) 
P(V  > x) 

Let L = L(0),  where L(t) denotes a s teady-s ta te  version for number  
of customers in the r system and is taken to be const ructed on the same probabil i ty  
space as the work processes. Using the fact tha t  {V5 > x; L = 1} = {Vb,8 > x; L = 
1}, we obtain 

(3.3) 
P(Vb > x) = P(Vb,s >x;L=I)+P(Vb > x ;L  >_ 2) 

< P(Vb,s > x) + P(L  > 2). 

From Corollary 2.1 of Sigman and Yamazaki (1992), we have 

(3.4) 

Also, it is known tha t  

(3.5) 

P(Vb,s > x) = pP(D > x)P(S~ > x). 

P(L  > 2) = pP(D + S~ > T),  
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where T denotes a generic interarrival t ime and D, S~, T are independent (see 
for example, p. 433 of Wolff (1989)). From (3.1)-(3.5) we obtain the following 
asymptot ic  upper bound for (3.2): 

(3.6) P(D > x) + 
P(D + S~ > T) 

P ( &  > x) ' 

which completes the proof since both P(D > x) and P(D + S~ > T) tend to zero 
in light traffic. [] 

We next explore a bit deeper into how Vb tends to zero in light traffic. 

PROPOSITION 3.2. 
p < 15, then in fact 

If  for some critical value fi it holds that P(T > S) = 1; 

P(Vb = 0) = 1; p < t5. 

PROOF. If P(T > S) = 1 then .a . s . ,  Dn = 0; rt _ 0, where Dn denotes 
the delay in queue of the n-th customer for r. Every burst thus enters service 
immediately upon arrival in which case the service rate and the flow rate cancel 
one another  so tha t  a.s., Vb(t) = 0; t > 0. [] 

Since for r, V~ ~ V~,, in light traffic (via Lemma 3.1), one might expect 
intuitively the analogous behavior for b, tha t  is, tha t  Vb ~ Vb,~ so tha t  by (3.4), 
P(Vb > x)/(pP(D > x)P(S~ > x))--+l. This is far from being true as we show in 

PROPOSITION 3.3. In the M / G /  set-up 

(3.7) lim P(Vb > 0) 
p~o P(Vb,, > O) -- 1 + E(S2), 

so that in particular, if G has infinite second moment then the limit is infinite. 

Before proving this proposition, we point out tha t  in real applications, G will 
indeed have finite second moment  so tha t  the above proposition could be used in 
practice by saying tha t  

For p small, P(Vb > O) is approximately equal to p2 ( l  + P---~ E(S2)) . 

PROOF. We use Proposit ion 2.3 in Sigman and Yamazaki (1992) which states 
(in a more general setting) tha t  

(3.s) P(Vb = 0) = 1 - p + ATr0E min(S, T), 

where 7r0 def P(D = 0) (= 1 - p in the case of Poisson arrivals). Lett ing G(y) def 
Ee -yS, y > 0, denote the Laplace t ransform of G, we obtain Emin(S,T)  = 
(1 - a ( ~ ) ) / ~  so that (3 .8) leads  to 

P ( V b  > O) = ~ --  (1 --  p ) ( 1  -- 0 ( ~ ) ) .  
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From (3.4) we obtain P(Vb,~ > 0) = p2 and hence 

P(Vb > O) p - (1 - p)(1 - (7(A)) 

P(Vb,~ > O) p2 

Applying L'Hospital 's  rule twice to evaluate the limit gives (3.7). [] 

PROPOSITION 3.4. In the G I / M /  set-up, 

e2ttx 
(3.9) lira P(Vb > x) < - - ,  x > O. 

p--,o P(Vb,s > x) - xp 

In particular, it is always finite. 

PROOF. Since for the GI/M/1  queue, (DID > 0) ~ exp(#Tr0), and S~ 
exp(tt), we obtain for x > 0 the following upper bound by using Chebyshev's  
inequality (P(Vb > x) < EVb/x) together with the result (proved in a more general 
sett ing as Proposit ion 2.1 in Sigman and Yamazaki (1992)) tha t  EVb = pED: 

P(Vb > x)/P(VD,s > x) < 
ED 

xP(S~ > x)P(D > x) 
e2# x 

xp~ro 

Since 7~o-~I as p--~0, the result follows. [] 

Remark 3.1. In general, since Vb,s <_ Vb, we can immediately obtain the 
following lower bound by applying (3.4): 

P(Vb > x) 
lim pP(S~ > x)P(D > x) >- 1. 
p---*O 

Remark 3.2. Different light traffic definitions other than  scaling interarrival 
times could be used to obtain similar results to those above. For example, one 
might consider scaling the service times to zero or thinning the arrival process. 
The reader is referred to Asmussen (1992) for the most recent approach to light 
traffic concerning steady-state delay, D, in the GI/GI/1  queue. 

Remark 3.3. Explicitly evaluating the limit in (3.7) for the G I / M /  model 
does not appear to be as easy as for the M/G/model  (nor is our bound in (3.9) of 
much use); however, we can obtain a reasonable upper bound in the case when A 
is NWUE (new worse than  used in expectation). We sketch the result here where 
we now scale service times to zero as our light traffic definition (hence p--+cc): If 

def 
A is NWUE, then  ~ = 1 - rr0 _> p (see p. 482 of Wolff (1989)). Therefore, since 
P(Vb > O)/P(Vb,s > 0) can be shown to be a non-increasing function of a (via 

(3.8)), it has the upper bound (1 - a + ap)/p, where a de=f # E  rain(S, T) = l - A ( # ) .  
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This simplifies to 1 - A(#) + (#/A)A(#). Assuming that A has a density f(x) (to 
speed up our derivation, not essential to derive such a bound) we thus obtain as 
p--+oc the asymptotic upper bound 

lim P(Vb>O) < l+ f (O+) /A .  
p~O P(Vb,s > O) - 

We finally point out that if A is NBUE (new better than used in expectation) then 
a similar argument yields the lower bound 

> o) 
lira P(Vb,~ > O) --- 1 + f(O+)/A. 
p-+O 
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