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A b s t r a c t .  Consider the problems of the continuous invariant estimation of a 
distribution function with a wide class of loss functions. It has been conjectured 
for long that the best invariant estimator is minimax for all sample sizes n _> 1. 
This conjecture is proved in this short note. 
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1. Introduction 

This short note solves the conjecture that the best invariant estimator of a 
distribution function is minimax in the finite sample size invariant decision prob- 
lem, involving a wide class of loss functions. This is a well-known conjecture. The 
formulation of the problem, introduced by Aggarwal (1955), is as follows. 

Let X1,. •., Xn be a sample of size n from an unknown continuous distribution 
function F.  Let Y0, . . . ,  ]/n+l be the order statistics of 0, XI~..., Xn, 1. Write 1~ = 
(]I"1 . . . .  , Yn). Let A = {a(t) : a(t) is a nondecreasing function from (0, 1) into 
[0, 1]} be the action space; and O = {F : F is a continuous distribution function 
with support in (0, 1)} the parameters space. Let L(F, a) be the loss function, 
where 

(1.1) L(F, a) = f f  IF(t) - a(t)lkh(F(t))dF(t), 

with k E [1, oc) and h(t) > O. 
The decision problem of estimating F is invariant under monotone transfor- 

mations. The invariant estimators have the form 

n 

(1.2) d(Y,t)  = ~-~' uyl(Yj < t < Yj+l), 
j=O 
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where I(E) is the indicator function of a set E. d(!~, t) is of constant risk. So the 
best invariant estimator, denoted by do, exists. 

A special case of the loss (1.1) is the weighted Cramer-von Mises loss: 

(1.3) L(F,  a) = . / ( F ( t )  - a ( t ) ) 2 h ( F ( t ) ) d F ( t )  

where h(t)  = t-1(1 - t )  -1. In this case, the best invariant estimator is the empir- 
ical distribution function F(t)  (see Aggarwal (1955)). Also, it is asymptotically 
minimax (see Dvoretzky et al. (1956)), is admissible iff the sample size n is 1 or 
2 (see Yu (1989a, 1989b, 1989d)), and is minimax (see Yu (1989b, 1989d) and Yu 
and Chow (1991)). 

Much study has been devoted to the theoretical properties of the best invariant 
estimator under the above set-up with general h(t)  for the loss function (1.3). 
Whether or not the best invariant estimator is admissible was an interesting open 
question until 1984 (see, for example, Cohen and Kuo (1985)). When h(t)  = 1, 
Brown (1988) proved that the best invariant estimator is inadmissible for all sample 
sizes n _> 1. When h(t) = t ~ ( 1 - t )  ~, ~,/3 > - 1  in the loss (1.3), Yu (1988, 
1989a) extended Brown's result and proved the inadmissibility of the best invariant 
estimator in the case a,/3 ¢ (-1,0]  for n > 1. Also, Yu (1989a) proved the 
inadmissibility of the best invariant estimator in the case n > 2, c~ = - 1  and 
'3 = 0, or a = 0 and 3 = -1 .  

Whether or not the best invariant estimator is minimax has been an outstand- 
ing open question (see, for example, Ferguson (1967)). It has been conjectured for 
a long time that the best invariant estimator do is minimax. Yu (1989c) gave a 
proof of the minimaxity of the best invariant estimators under loss (1.1) for n = 1. 
Yu and Chow (1991) extended the idea used in Yu (1989c) and proved that under 
loss (1.3) with h(t) = t -1 (1 - t )  -1, the empirical distribution function is minimax 
for n > 3. In Theorem 2.3 of Section 2, the conjecture is proved in the affirmative 
under loss (1.1) for n > 2. The main idea of the proof of the main result is the 
same as that in Yu (1989c). Note that the situation in study on the minimaxity 
of do is different from that in the study on the admissibility. In the latter study, 
we can only get results for some special cases of the loss (1.3) and we have dif- 
ferent conclusion if the h(t)  in (1.3) is different or the sample size n is different, 
whereas we give a unified proof for the minimaxity of do under the whole class of 
loss functions (1.1) including (1.3). 

2. Minimax results 

In this section, the set-up is as in Section 1 with loss (1.1). It is proved in 
Theorem 2.3 that do is minimax. 

Given a distribution function F( t ) ,  let d F  denote the measure induced by F,  
i.e., dF{ (a ,  b)} = F(b) - F ( a ) ;  let (dF)  j denote the product measure d F  x . . . x d F  
with j factors, j = 2 ,3 , . . . .  Given a one-dimension measurable set B, let B k 
denote the product set B x .-- x B with k factors. We denote Lebesgue measure 
by rn. By a.e.m, we mean almost everywhere w.r.t Lebesgue measure. Note 
that according to our notation, given a measurable set B in R n, rn~{IP E B} ¢ 
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m~{(X1 , . . . ,  Xn) c B}.  For example, when n = 3, ma{(Y1, Y2, Y3) : Y1 < 1/2 < 
112} = 3!ma{ (X l ,X2 ,Xa)  : Xl < 1/2 < X2 < Xa}. g uniform distribution 
function F(t)  on a positive-Lebesgue-measure subset I is defined by 

t 

F(t)  = l(x c I ) / m ( I ) d x .  

The proof of the main minimax result depends heavily on Theorems 2.1 
and 2.2. 

THEOREM 2.1. (Yu and Chow (1991)) Suppose that the sample size is n 

(> 1) and d = d(IP, t) is a nonrandomized estimator with finite risk and is a 

(measurable) function of the order statistic Y .  For any 6,~7 > O, there exist a 
.uniform distribution function F(t)  on a positive-Lebesgue-measure subset I, and 
an invariant estimator dl (of form (1.2)) such that 

(2.1) (dF)'*+*({(~',t): I d ( r , t ) -  dl(]P,t)] > 6 } ) <  r/. 

THEOREM 2.2. Suppose that the sample size is n (> 1) and d = d(!P,t) is 
a nonrandomized estimator with finite risks and is a (measurable) function of the 

order statistic Y .  For any e > O, there exist a continuous distribution function F 
and an invariant estimator dx of form (1.2) such that 

(2.2) [R(F,d) - R(F, dl)[ < ~. 

To prove Theorem 2.2, we need the following lemmas. 

LEMMa 2.1. Suppose that n >_ 2 and E f~i '~ h (F( t ) )dF( t )  < ~ where h(t) >_ 

O. For any e > O, there exists an r 1 > 0 such that for all F E 0 and B C R n+l, 
satisfying (dF)'*+I(B) < rl. we have 

j~} E, 
(2.3) E l ( B ) h ( F ( t ) ) d F ( t )  < e. 

"I 

PROOF. Given F E O, define a transformation by x = F(t)  and let S be the 
image of T C R"+I A {Yt < t < y~} under the transformation (Xl , . . . , x ,~ , s )  = 
( F ( y l ) , . . . ,  F (y , ) ,  F(t)) .  By continuity of the integral f . . .  f dsd~, given e > 0, 
B r/ (independent of F)  such that 

f ... f h(F(t))dF(t)dF(yl)...dV(y~) = f ... £ h(s)dsdi < ~ 

whenever (dF)~+I(T) = f . . .  fT  d F ( t ) d F ( y l ) . . ,  dF(y,~) = f . . .  f s  dsdi, < r]. [] 

The foUowing two lemmas can be proved in a similar manner. 
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LEMMA 2.2. Suppose n > 1 and E fY_~ h ( F ( t ) ) d F ( t )  is finite, where h(t)  > 
O. For any e > O, there exists an ~ > 0 such that for  all F C 0 and t3 C R '~+1.• 
satisfying (dF)'~+a(B) < ~. we have 

\ 
(2.4) E l ( B ) h ( F ( t ) ) d F ( t )  < e. 

O<5 

LEMMA 2.3. Suppose n > 1 and E f ~  h ( F ( t ) ) d F ( t )  is finite. For any e > 

O, there exists an 7 t > 0 such that for  all F E 0 and B C R n+l,  satisfying 
( d F ) n + l ( B )  < 71, we have 

j~ OG 

(2.5) E l ( B ) h ( F ( t ) ) d F ( t )  < e. 

Remark. The  case h(t)  = t - l ( 1  - t) -1 is a good example tha t  we need to 

consider the above three lemmas separately. In tha t  case, E J~" h ( F ( t ) ) d F ( t )  < oc 

but  E f ~  h ( F ( t ) ) d F ( t )  = fd  h(t)t'~dt = oc and E f~_~ h ( F ( t ) ) d F ( t )  = fd  h ( t ) ( 1 -  

t )ndt  = oc. On the other  hand, to get finite risk, we need fd  h( t) t (1 - t)dt < ~o. 

PROOF OF THEOREM 2.2. Suppose tha t  an est imator ,  d, satisfies the as- 
sumptions in Theorem 2.2 and dl is another  est imator.  Note first tha t  

(2.6) f 
y,~ 

R(F,  d) - R(F,  d~) = E []F - d] k - ]F - d~ ]k]h(F(t) )dF(t)  
J ¥] 

/5 + E [iF - dl k - IF - d t l k ]h (F( t ) )dF( t )  
"n 

+ t72, [IF - dl k - I F  - d~lk]h(F(t ) )dF(t ) .  
,,'--:2~J 

We will show next  tha t  for any e > 0, there is an est imator ,  dl,  wi th  form (1.2) 
such tha t  the three integrals on the r ight-hand side of (2.6) are all bounded  by 2e 
and this basically completes the proof of Theorem 2.2. 

Given e > 0 and 6 = e/Co, where co = 2E f z  z~ h(t)dt ,  by Lemma 2.1, there  

exists an ~/> 0 such tha t  (2.3) holds. For this 7, it follows from Theorem 2.1 tha t  
there exist a distr ibution function F and an est imator  dl such tha t  (2.1) holds, 
i.e., 

(2.7) (dF)n+l (B)  < ~, 

where B = {(]Y,t):  [ d ( ? , t ) - d l ( Y , t ) ]  >6 ,  Y1 < t < Y~}. 

Then,  

(2.8) [IF - dl k - i F  - dl Ik]h(F(t ) )dF(t)  
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E I[IF - dl k - IF - d,  lk]l 

• [ l(Id - d l l  _> 5) + l ( Id  - dl l  < 5)]h(F(t))dF(t) 

_< E [l(Id - rill _> 6) 

+ I[IF - dE k - I f  - d l lk l l l ( Id  - dll  < 6)]h(F(t))dF(t)  

= E l(Id - all >_ 6 ) h ( F ( t ) ) d F ( t )  
1 

/? + E I[IF - dl ~ - IF  - d l l k ] l l ( I d  - a l l  < ~ ) h ( F ( t ) ) d F ( t )  
1 

f Y~ = E l(Id - dll >_ 6)h(F( t ) )dF( t )  

/? + E  I [ I t -  dl k - I t - d t l k ] l l ( I d - d l l  < e)h(t)dt ,  
1 

where Zi = F(Y~), i = 1 , . . . ,  n. Note  t h a t  F ( X t ) , . . . ,  F ( X ~ )  are r andom variables 
from a uni form d is t r ibu t ion  on [0, 1] and Z~'s are order  s tat is t ics  of them.  It can 
be shown tha t ,  for k _> 1 and  t • [0, 1], I[It - d l k - It - d l I k]l < 21d - d~ I. It  follows 
t h a t  

/? (2.9) E I[It - dl k - It - d l lk ] l l ( Id  - d~l < 6)h(t)dt < 6co, 
1 

where co = 2E f z ~  h(t)dt. On the  o ther  hand ,  it follows from (2.7) and  (2.3) t h a t  

(2 .10)  E l ( [d  - dl l  ~ 6)h(F(t))dF(t) = E l(B)h(F(t))dF(t) < e.  

1 

Note  t h a t  ~ = e/co by assumpt ion .  Thus,  (2.9) and (2.10) imply  t h a t  

f~ "~ ik]h( F(  t ) )dF( t ) ( 2 . 1 1 )  E [IF - dl ~ - IF - d l  < 2~. 

T h a t  is~ the  first integral  on the  r ight  of (2.6) is bounded  by 2e. Similarly, we can 
show t h a t  the  o ther  two integrals on the  r ight  of (2.6) are bounded  by 2e, i.e., 

(2.12) E [IF - dl k - IF - dl lk]h(F(t))dF(t)  < 2(; 

(2.13) E /~_~[IF - dl k - IF - dlIk]h(F(t))dF(t)  < 2(. 

To prove (2.12) and  (2.13), w i thou t  loss of generali ty,  we can assume t h a t  

E f h (F( t ) )dF( t )  is finite. Otherwise ,  if E f r ~  l (B )h (F( t ) )dF( t )  is no t  finite 
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for some F E 8 ,  since both d and dl have finite risks, due to the assumption on 
h(t) (see previous Remark), it can be shown that d = dl -- 0 for t < Y1 a.e.m n+l. 
(The proofs are similar to that of Theorem 3.1 in Yu (1989b).) Furthermore, if 
Ef~,,~ l(B)h(F(t))dF(t) is not finite for some F E 8,  since both d and dl have 

finite risks, it can be shown that d = dl = 1 for t > Y~ a.e.m n+~. In these cases, 
(2.12) and (2.13) are trivially true. Then, it follows from (2.6) that 

I R ( F ,  d) - R ( F ,  d )l [IF - dl k - I F  - d l  I k ] h ( F ( t ) ) d F ( t )  
"1 

/yi ~ [k]h( F( t ) )dF( t ) + E [IF - dl k - i F  - d t  
t 

+ dl - I F -  dllk]h(F(t))dF(t) 

<_ 6c 

(the last inequality follows from (2.11)-(2.13)). This completes the proof. [] 

Now the minimaxity of do follows. 

THEOREM 2.3. For sample size n >_ 1, under the assumptions (1.1)-(1.2), 
the best invariant estimator, do, is minimax. 

PROOF. Since do has a constant risk, it suffices to show that R(F, d) >_ 
R(F, do) for any F E O and any estimator d which has finite risks for any F E O. 
Without loss of generality, w e  can assume that any estimator we consider is a 
function of order statistics Y, since they form an essentially complete class. 

Given an estimator d which is a function of order statistics l~ and has finite 
risks for any F E 8 ,  by Theorem 2.2, there exists an F E 8 and there exists 
an estimator dl of form (1.2) and thus of constant risk such that (2.2) holds. 
It follows that 2e + R(F,d) >__ R(F, dl) >_ R(F, do), since do and dl are both 
invariant and do is the best invariant estimator. Note that e and d are arbitrary, 
so infd SUPFE e R(F, d) = R(F, do). [] 
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