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A b s t r a c t .  When an empirical model is fitted to data, bias can arise from 
terms that have not been incorporated, and this can have an important effect 
on the choice of an experimental design. Here, the biases are treated as random, 
and the consequences of this action are explored for the fitting of models of 
first and second order. 
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1. Introduction 

Suppose we wish to fit, by least squares, a linear model of the form 

(1.1) y = X ~ + e  

where y is an n x 1 vector of response observations, X is an n x p matr ix  whose p 
columns consist of n sets of observations on p predictor  variables (one per column),  
where ~ is a p x 1 vector of parameters  to be est imated,  and e is a vector of errors 
in the y's. Typical ly it is assumed e ~,, N(0 ,  Ia2). The  problem of exper imental  
design is then the choice of n "design points" at which to observe the y-values; 
essentially we have to select X (or some par t  of it in cases where parts  of X depend 
on other  parts) .  For example, if (1.1) represents a polynomial  in x l , x 2 , . . .  ,xk,  
we need to select the values x~ = (Xl~,X2~,. . .  ,xku), u = 1,2 . . . .  ,n ,  from which 

t is usually called the X is generated.  The  n x k matr ix  whose u- th  row is xu 

design matrix.  After the design has been run, ~ = ( X ~ X ) - I X P y  provides the 
least squares vector es t imate  of j3. 

If we are sure tha t  our choice of (1.1) is correct,  the design can be selected 
according to a "variance" criterion. Popular  criteria are those of A-, D-, E- 
and G-optimality.  A-opt imal i ty  requires minimizat ion of t race ( X P X ) - I ;  for D- 
opt imal i ty  one maximizes D = IX'XJ/nP; the largest eigenvalue of ( X ' X )  -1 is 
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minimized for E-optimality; while for G-optimality, one minimizes, over design 
choice ~, the maximum over a selected design region, of the variance of the pre- 
dicted value of ~); we can write this as 

! r 

(1.2) m i n m a x u  (X X ) - l u  

where u ~ denotes a general vector whose form is that of a row of the X matrix. 
We shall be concerned with designs with n distinct points. A more general 

"measure design" approach allows the proof of several powerful results including 
the famous equivalence theorem which connects D-optimality to other types of 
variance optimality. Much of the work in this area was initiated and carried out 
by Kiefer and coauthors. See Kiefer (1985) and also Bunke, H. and Bunke, O. 
((1986), Section 8.1.3). A particularly wide set of references will also be found in 
Bandemer et al. (1987). 

Another approach is to fit (1.1) but to fear that it may not be fully adequate. 
The fear is only a modest one. (If we felt sure that  (1.1) were completely out of 
the question, it would not be fitted.) We can decide to choose our design to guard 
against the possibility that the model 

(1.3) y = xz+x2z2 

is the correct one, where X2~2 represents extra terms not in (1.1). For example, 
(1.1) might be a plane, (1.3) a quadratic equation. The extra terms in (1.3) would, 
in general, be expected to produce bias error in the least squares estimates, in 
addition to the variance error considered in the variance-only approach above. See 
Box and Draper (1959, 1963) for the basic philosophy; this work has been continued 
and extended in numerous papers some of which are listed in the references, viz., 
Draper and Guttman (1986), Draper and Lawrence (1965a, 1965b, 1966, 1967). 

In both of the above approaches, assumptions are usually made about a region 
of operability, O say, of the x-space within which experiments can be performed, 
and a region of interest, R say, within which predictive goodness is desired. Often 
O will include R. When only variance is considered, it is usually assumed that 
R = O and then the best design is the one that places most or all points on the 
outer boundary of this joint region. When the model is feared to be inadequate, the 
appropriate best design depends on the relative size of the bias error B compared 
to the variance error V, where these quantities are defined in Box and Draper 
(1959). Although B is unknown, it can be shown that even if the variance error V 
(which is known apart from a 2) is several times as large as the bias error B, the 
best design is much closer to the all-bias design than to the all-variance design. 
The all-bias design, which is the design theoretically appropriate when there is 
no variance error, and whose moments are the same as those of the region R, 
"crouches" well within the region R. As the size of V increases, the best design 
gradually expands. In a typical case, when V and B are of roughly the same 
size, the design points may lie inside and close to the boundary of R (see Draper 
and Guttman (1986)). For V >> B, the design generally passes outside R and 
into the part of O outside R. When we reach the all-variance, no bias case, the 
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design points lie on the boundary of O, in theory. In practice, experimenters show 
reluctance to experiment outside R. 

One can, of course, argue about the relative merits of the two approaches. 
Instead, we explore an approach that is, to a limited extent, a compromise between 
the two. 

2. Bias as variance 

We now assume that, in (1.3), the elements of ~: are not fixed effects, but 
random effects such that 

(2.1) 82 ~ N ( ~ ,  a~I) .  

(Two previous but different approaches have points of contact with this. Welch 
(1983) suggests that it might be possible to place an upper bound on the maximum 
absolute value of all the elements of X2f~2 in (1.3). He offers a computer algorithm 
that can be used to obtain measure-type and integer type designs, and he illustrates 
his method by a discussion of designs in two factors based at the sites of a 32 
factorial design and used for fitting a first order model. Steinberg (1985) applies a 
Bayesian approach to the entire model (1.3) assuming that the X2~2 terms consist 
of orthogonal polynomials. His examples also relate to first order models and 
designs, and he discusses 2 k-p type designs with 4, 8 and 16 runs. Our development 
is not Bayesian and uses a variance function as a criterion, incorporating the bias 
errors as random rather than fixed effects.) We now apply the result 

(2.2) V(u) = Ev{V(u J v)} + vv{E(u J v)} 

to the usual least squares estimator ~, regarded as u, fitted on the (wrong) as- 
sumption that (1.1) is appropriate. Here v is 82. We find that 

(2.3) U(~) -- o 2 ( X t i )  -1 + a~AA' 

where A = (X'X)-IX'X2 is the so-called alias matrix (also sometimes called 
the bias matrix). Note that normalizing (2.3) by n/~r 2, and writing 7 = a~/a2 
provides 

(2.4) V ~-- (77~/o -2) g(~)  ~- ~ ( X ' X )  -1 qL 7nAA'" 

This enables us to consider a variance-type approach while incorporating "bias" 
through the presence of % 

We now consider introduction of the regions fl and O. The quantity u ~ Vu 
where V is from (2.4), and where u is a row vector whose elements are of the 
same form as a row of X ,  is n/a 2 times the variance of ~ at a general location 
(xl, x2 . . . . .  xk). The quantity 

(2.5) L =/0  tV(x)u'Vudx = trace V fo VV(x)uu'dw -----trace V#, 
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is an averaged variance value, over O, with respect to a weight function W(x).  A 
simple choice of W(x),  for example, would be to set W(x)  = 0 for x outside R 
and within O and, within R, to set 

(2.6) W - l ( x )  = f R d ~ .  

Then 

J R  I Ft 

Such a choice corresponds to uniform interest within R, none outside, and then # 
is a matrix of moments of a uniform distribution over R. Whatever choice is made 
for the weight function we can use the criterion "minimize L" to select a suitable 
design under any specific set of assumptions. We illustrate use of this criterion via 
two examples. 

3. Examples 

Example 1. Suppose we wish to fit a first order model to k factors xl, x2,. .  •, 
xk, fearing some second order bias. Assume R is the unit sphere of radius 1. 
Restrict the design class to orthogonal designs with third order moments zero and 
pure second moments all equal to c, so that for design points (Xl~, x2~, . . . ,  xk~), 
u =  1 , 2 , . . . , n ,  

(3.1) c n-1 ~ 2 = Xiu. 
u=l  

Take W(x)  uniform over R, zero outside R. This implies that # = diagonal(i, 
#2 . . . .  , #2), with #2 = 1/(k + 2). It is easily shown that  (2.5) reduces to 

(3.2) L = 1 + vknc 2 + kt~2/c 

which is minimized when 

(3.3) c = {2vn(k + 2)} -1/3 • 

If we consider using a 2 k - p  fractional factorial of resolution IV or higher with 
points at (4-0, 4-0, . . . ,  4-0) where 0 is a scale factor, plus no center points, making 
n = 2 k-p + no in all, then nc = 2k-PO 2 and (3.3) becomes 

(3.4) 0 ----- n l / 3 { 2 3 ( k - P ) + l ? ( k  + 2)} - 1 / 6  . 

The axial distance of the points is then r = Ok 1/2 which can be compared with 
the unit radius of R to see if the points are inside or outside R for a particular 
solution. 
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What values of 7 would be "typical" ? We offer the argument that  the variance 
contribution from the bias terms might, not unreasonably, be about the same size 
as V ( e ) = a 2 over R. Now 

V { / ~ l l  x 2  -t- • • - ~- /~kkX2k ~-/~12XlX2 "b • " • Jr- /~k-l,kXk-lXk} 
2 4 2 2 2 2 = o's{x1 + ' "  + x  4 + x l x 2  + " "  + x k _ l x k }  

with a maximum value within R at x i = k -1/2,  of a ~ k - ~ { k  + k ( k  - 1)/2} = 

a~(k + 1)/(2k). Setting this maximum value equal to cr 2 provides "y = 2 k / ( k  + 1). 
For various k, this is 

k = 2 3 4 5 6 7 8 
= 1.33 1.50 1.60 1.67 1.71 1.75 1.77 

so that, under this argument, comparatively large values of 7 still lead only to a 
maximum doubling of the error variance over R. Table 1 shows some values of 
r = Ok 1/2 for 0.1 < 7 -< 2 for the values of k, p and no shown. We see that in 
"typical" (as defined above) cases, the design points are drawn somewhat within 
the region R. Higher 3' values (more bias) would shrink the designs more, lower ~, 
values (less bias) would lead to an expanded design, as shown. We see that designs 
with points on or outside the boundary of R are appropriate only for quite low 
bias cases. 

We argue that the above is an appropriate way to implement a variance type 
criterion, by defining it in a way to allow the possibility of an inadequate model 
to enter. 

(An aside: What would happen if we ignored the region of interest and at- 
tempted to apply the A, D, E and G criteria directly to (2.3) rather than to 
( X ' X ) - I ?  For the A criterion, the solution is like (3.3) but with factor (k + 2) 
omitted so that 0 is bigger by a factor of (k + 2)~/6; for the G criterion (k + 2) 

k / r m a  x where is the distance of the largest, x-site de- in (3.3) is replaced by 2 2 r m a x  

sired. If 2 1, 0 is smaller by a factor of [k / (k  + 2)] 1/6. The D criterion gives r m a  x = 

c = (3,n) -1/2 if k = 1, and c -- oo if k _> 2. For the E criterion, the only solution 
possible occurs when the eigenvalues are equal namely when 1 + 7 k n c  2 = c -1 .  

For a 2 k-p design this spreads the points somewhat more widely than does the 
criterion (3.4). The numbers shown in Table 1 would, typically, be about 15-20% 
larger. ) 

We can make a partial rough comparison of our Table 1 results with those 
of Steinberg ((1985), p. 523) for the 2 k designs, k = 2, 3 and 4, and the 25-1 
design. A difficulty is the following: our region R is a unit circle (k = 2) or sphere 
(k = 3, 4). This is equivalent to a weight function uniform over the unit circle or 
sphere. Steinberg's equivalent of R is a multivariate unit normal weight function 
whose highest point is at the origin and which falls off to zero in all directions. 
As a rough conversion, we divide Steinberg's d-ranges (Steinberg's d is our 0) by 
the radii of the 95% central region of his weight density, and multiply by k 1/2 to 
produce figures comparable to those of our Table 1. This provides Table 2, in which 
we also show the corresponding ranges of our values from Table 1. Steinberg's and 
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Table 1. Values of r = Ok 1/2 for the factorial point distance of a 2 k -p  design via (3.4), for 
0.2 _< y _< 2 and for the values o f k ,  p a n d  no shown. When r < 1. the points lie within the 
region of interest R. 

k = 2 ,  p = O  

0 1 2 3 4 

0.20 1.038 1.118 1.188 1.251 1.308 

0.40 0.925 0.996 1.058 1.114 1.165 

0.60 0.864 0.931 0.989 1.041 1.089 

0.80 0.824 0.887 0.943 0.993 1.038 

1.00 0.794 0.855 0.909 0.956 1.000 

1.20 0.770 0.829 0.881 0.928 0.970 

1.40 0.750 0.808 0.859 0.904 0.945 

1.60 0.734 0.791 0.840 0.884 0.925 

1.80 0.720 0.775 0.824 0.867 0.907 

2.00 0.707 0.762 0.809 0.852 0.891 

k=3 ,  p=O 

0 1 2 3 4 

0,20 1.091 1.135 1.175 1.213 1.249 

0.40 0.972 1.011 1.047 1.081 1.113 

0.60 0.909 0 . 9 4 . 5  0.979 1.010 1.040 

0.80 0.866 0.901 0.933 0.963 0.991 

1.00 0.834 0.868 0.899 0.928 0.955 

1.20 0.809 0.842 0.872 0.900 0.927 

1.40 0.789 0.820 0.850 0.877 0.903 

1.60 0.772 0.802 0.831 0.858 0.883 

1.80 0.757 0.787 0.815 0.841 0.866 

2.00 0.743 0.773 0,801 0.827 0.851 

k=4 ,  p=O 

0 1 2 3 4 

0.20 1.089 1.111 1.132 1.153 1.173 

0.40 0.970 0.990 1.009 1.027 1.045 

0.60 0.907 0.925 0.943 0.960 0.977 

0.80 0.864 0.882 0.899 0.915 0.931 

1.00 0.833 0.850 0.866 0.882 0.897 

1.20 0.808 0.824 0.840 0.855 0.870 

1.40 0 . 7 8 7 "  0.803 0.819 0.834 0.848 

1.60 0.770 0.786 0.801 0.815 0.829 

1.80 0.755 0.770 0.785 0.799 0.813 

2.00 0.742 0.757 0.772 0.786 0.799 
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k = 5 ,  p = 0  

Table  1. (continued).  

"y 0 1 2 3 4 

0.20 1.057 1.068 1.079 1.089 1.099 

0.40 0.942 0.951 0.961 0.970 0.979 

0.60 0.880 0.889 0.898 0.907 0.915 

0.80 0.839 0.848 0.856 0.864 0.873 

1.00 0.808 0.817 0.825 0.833 0.841 

1.20 0.784 0.792 0.800 0.808 0.816 

1.40 0.764 0.772 0.780 0.787 0.795 

1.60 0.747 0.755 0.763 0.770 0.777 

1,80 0.733 0.740 0.748 0.755 0.762 

2.00 0.720 0.728 0.735 0.742 0.749 

k = 5 ,  p = l  

-'/ 0 1 2 3 4 

0.20 1.187 1.211 1.234 1.256 1.278 

0.40 1.057 1,079 1.099 1.119 1.139 

0.60 0.988 1.008 1.028 1.046 1.064 

0.80 0.942 0.961 0.979 0.997 1.014 

1.00 0.907 0.926 0.944 0.961 0.977 

1.20 0.880 0.898 0.915 0.932 0.948 

1.40 0.858 0.875 0.892 0.908 0.924 

1.60 0.839 0.856 0.873 0.888 0.904 

1.80 0.823 0.839 0.856 0.871 0.886 

2.00 0.808 0.825 0.841 0.856 0.871 

k=6,  p = l  

"y 0 1 2 3 4 

0.20 1.132 1.144 1.156 1.167 1.178 

0.40 1.009 1.019 1.030 1.040 1.049 

0.60 0.943 0,953 0.962 0.972 0.981 

0.80 0.899 0.908 0.917 0.926 0.935 

1.00 0.866 0.875 0.884 0.892 0.901 

1.20 0.840 0.849 0.857 0.866 0.874 

1.40 0.819 0.827 0.836 0.844 0.852 

1.60 0.801 0,809 0.817 0.825 0.833 

1.80 0.785 0.793 0.801 0.809 0.817 

2.00 0.772 0.779 0.787 0.795 0.802 
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Table 1. (continued). 

k = 7 ,  p = l  

0 1 2 3 4 

0.20 1.069 1.074 1.080 1.085 1.090 

0.40 0.952 0.957 0.962 0.967 0.971 

0.60 0.890 0.894 0.899 0.903 0.908 

0.80 0.848 0.853 0.857 0.861 0.865 

1.00 0.817 0.821 0.826 0.830 0.834 

1.20 0.793 0.797 0.801 0.805 0.809 

1.40 0.773 0.777 0 . 7 8 1  0.784 0.788 

1.60 0.756 0.760 0.763 0.767 0.771 

1.80 0.741 0.745 0.749 0.752 0.756 

2.00 0.728 0.732 0.736 0.739 0.743 

k = 8 ,  p = l  

7 0 1 2 3 4 

0.20 1.000 1.003 1.005 1.008 1.010 

0.40 0.891 0.893 0.896 0.898 0.900 

0.60 0.833 0.835 0.837 0.839 0.841 

0.80 0.794 0.796 0.798 0.800 0.802 

1.00 0.765 0.767 0.769 0.771 0.773 

1.20 0.742 0.744 0.746 0.748 0.749 

1.40 0.723 0.725 0.727 0.729 0.730 

1.60 0.707 0.709 0.711 0.713 0.714 

1.80 0.693 0.695 0.697 0.699 0.701 

2.00 0.681 0.683 0.685 0.687 0.688 

Table 2. Rough conversion of Steinberg's ((1985), p. 523) d-ranges. 

95% Range from 

k Steinberg's d radius, r k l / Z d / r  values Table 1 

2 1.19-1.50 2.45 0.69-0.87 0.71 1.47 

3 1.09-1.49 2.80 0.67-0.92 0.74-1.40 

4 0.96-1.49 3.08 0.62-0.97 0.74 1.32 

5 0.86-1.41 3.33 0.58-0.95 0.81-1.28 

our  resul t s  are b road ly  cons i s t en t  in spi te  of the  very  different  a s s u m p t i o n s  m a d e  

in  the  two cases and  the  a p p r o x i m a t i o n s  m a d e  in the  convers ions .  

Welch ' s  (1983) example  is for a 32-site des ign  for f i t t ing  a first order  mode l  a n d  

he is conce rned  wi th  design po in t  weight ing,  r a the r  t h a n  wi th  des ign  re-scal ing.  

E x a m p l e  2. Suppose  we wish to fit a second order  mode l  to  k factors x l ,  

x2,  . .  •, x k ,  fear ing some th i rd  order  bias.  A s s u m e  R is the  u n i t  sphere  of r ad ius  
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1. Restrict the design class to second order rotatable designs with pure second 
moments c, pure fourth moments 3 f  and mixed even fourth order moments  f 
(and all odd moments  of order five or less are zero), so that  for design points 
(Xlu, X 2 u , . . . ,  Xku), U = 1, 2 , . . . ,  n 

(3.5) c n -1 2 3 f  r / - 1  4 3n-1 2 2 Xiu ; Xi u = = ~__ XiuXju. 
u = l  u = l  u = l  

Take W ( x )  uniform over R, zero outside R. This implies that ,  when the second 
order polynomial terms are in the order 

(3.6) 1; x l ,  z2 . . . .  , xk; x~, x 2 , . . . ,  z2; x l x 2 , . . . ,  Xk-xZk, 

(3.7) # =  

1 0' p2 I I  0 
0 p 2 I  0 0 

#21 0 (21 + J)#22 0 
0 0 0 #221 

where 1' = (1, 1 . . . .  ,1) of length k, where J = 11', where the dimensions corre- 
spond to the semicolons in (3.6), with P2 = 1 / ( k + 2 )  and p22 = 1 / { ( k + 2 ) ( k + 4 ) } .  
It can be shown tha t  (2.5) becomes 

(3.8) L = D + k p 2 ( 2 E + c - l + n y Q ) + k p ~ 2 { 3 F + ( k - 1 ) ( P + ( 2 f ) - l ) }  

where 

(3.9) 

D = 2(k + 2) f2 /H ,  

E = - 2 f c / H ,  

F = {(k + 1)f  - ( k -  1)c2}/H, 

P = (c 2 - f ) / H ,  

g = 2f{(k  + 2 ) f -  kc2}, 

Q = ( k + S ) f 2 / c  2. 

If we specialize further to a central composite design consisting of (i) a 2 k-p 

fractional factorial design, with points at (4-1, =t=1 . . . .  ,-4-1)0, (ii) 2k axial points 
(±a ,  0, 0 . . . . .  0), (0, ± a ,  0 , . . . ,  0 ) , . . . ,  (0, 0, 0 . . . .  , =t=a) where a = 2(k-P)~40 to en- 
sure rotatabil i ty and (iii) no center points at (0, 0 . . . . .  0), then 

(3.10) 

rtc = (2 k-p 4- 2(k-P)/2)O 2, 

n f  = 2k-PO 4, 

n ---- 2 k -p  4- 2k 4- no 

and we can determine the value of 0 tha t  minimizes L for given k, p, no and 7- 
Again, the value of Ok 1/2 enables us to see whether the factorial points lie inside, 
on or outside the unit radius region of interest. 
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Table 3. Values of r -- t~k 1/2, for the  factorial point  distance of  the 2 k - p  port ion of a rotatable 
central composite design, which minimize (3.8) for 0.50 ~ 7 < 4 and for the values of k, p and 
no shown. When r ,: 1 the 2 k -p  portion points lie within the region of interest R. 

k = 2 ,  p = O  

no 

"~ 1 2 3 4 5 

0.50 0.925 0.965 0.982 0.992 0.998 

1.00 0.884 0.903 0.912 0.917 0.920 

1.50 0.857 0.868 0.872 0.875 0.876 

2.00 0.838 0.842 0.845 0.846 0.847 

2.50 0.822 0.823 0,824 0.824 0.824 

3.00 0.809 0.807 0.807 0.806 0.806 

3.50 0.798 0.794 0.793 0.792 0.791 

4.00 0.788 0.783 0.781 0.779 0.779 

k = 3 ,  p = 0  

"~ 1 2 3 4 5 

0.50 0.985 1.032 1.052 1.064 1.071 

1.00 0.942 0.967 0.978 0.984 0.987 

1.50 0.914 0.929 0.935 0.939 0.941 

2.00 0.894 0.902 0.906 0.908 0.910 

2.50 0.877 0.882 0.884 0.885 0.886 

3.00 0.864 0.865 0.866 0.866 0.867 

3.50 0.852 0.851 0.851 0.851 0.851 

4.00 0.842 0.839 0.838 0.838 0.837 

k = 4 ,  p = 0  

1 2 3 4 5 

0.50 0.993 1.043 1.066 1.079 1.087 

1.00 0.954 0.981 0.993 1.000 1.004 

1.50 0.928 0.944 0.952 0.956 0.958 

2.00 0.908 0.918 0.923 0.925 0.927 

2.50 0.892 0.898 0.900 0.902 0.903 

3.00 0.879 0.881 0.882 0.883 0.884 

3.50 0.867 0.867 0.868 0.868 0.868 

4.00 0.857 0.855 0.855 0.854 0.854 

k = 5 ~ p - - 0  

y 1 2 3 4 5 

0.50 0.986 1.031 1.053 1.066 1.074 

1,00 0.948 0,972 0.984 0,991 0.995 

1.50 0.923 0.937 0.944 0.948 0.951 

2.00 0.904 0.912 0.916 0.919 0.920 

2.50 0.888 0.893 0.895 0.896 0.897 

3.00 0.875 0.877 0.877 0.878 0.878 

3.50 0.864 0.863 0.863 0.863 0.863 

4.00 0.854 0.852 0.851 0.850 0.849 
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k = 5 ,  p = l  

Table 3. (continued). 

"~ 1 2 3 4 5 

0.50 1.124 1.172 1.194 1.206 1.214 

1.00 1.066 1.094 1.107 1.114 1.119 

1.50 1.031 1.049 1.058 1.063 1.066 

2.00 1.005 1.018 1.024 1.028 1.030 

2.50 0.984 0.994 0.999 1.001 1.003 

3.00 0.968 0.975 0.978 0.980 0.981 

3.50 0.953 0.959 0.961 0.962 0.963 

4.00 0.941 0.945 0.946 0.947 0.948 

k = 6 .  p = l  

1 2 3 4 5 

0.50 1.059 1.119 1.146 1.162 1.171 

1.00 1.018 1.053 1.069 1.078 1.083 

1.50 0.991 1.014 1.025 1.030 1.034 

2.00 0.970 0.986 0.994 0.998 1.000 

2.50 0.953 0.965 0.970 0.973 0.97,5 

3.00 0.939 0.947 0.951 0.953 0.954 

3.50 0.927 0.933 0.935 0.936 0.937 

4.00 0.917 0.920 0.921 0.922 0.922 

k = 7 ,  p = l  

~' 1 2 3 4 5 

0.50 1.026 1.073 1.098 1.113 1.123 

1.00 0.988 1.015 1.029 1.037 1.042 

1.50 0.962 0.979 0.988 0.993 0.996 

2.00 0.942 0.954 0.959 0.963 0.965 

2.50 0.926 0.934 0.937 0.939 0.941 

3.00 0.913 0.917 0.919 0.921 0.921 

3.50 0.902 0.904 0.905 0.905 0.905 

4,00 0.892 0,892 0.892 0,892 0,892 

k = 8 .  p = l  

"~ 1 2 3 4 5 

0.50 1.043 1.058 1.068 1.076 1.081 

1.00 0.984 0.992 0.997 1.000 1.003 

1.50 0.949 0.953 0.956 0.958 0.959 

2.00 0.923 0.925 0.927 0.928 0.929 

2.50 0.903 0.904 0.905 0.905 0.906 

3.00 0.887 0.887 0.887 0.887 0.887 

3.50 0.873 0.873 0.872 0.872 0.872 

4.00 0.862 0.860 0.860 0.859 0.859 
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We again need to ask what a "typical" value of 7 might be, and we again argue 
that it is one such that the variance contribution from the bias terms is about as 
big as a 2. We can write 

v{;3111x  + +   -2,k-l,kXk- Xk- Xk} 
2 4 2 2 2 : 0"2~{X 6 -~- . . . -4-  X l X  2 --~-... "4;- X l X 2 X  3 -~ ' - . . . } .  

I f w e s e t t h e  maxinmm value of th isover  R equal to  ~2bysubs t i tu t ing  xi = k -1/2, 
we find 

- 1  -y = k-3{k +k(k- 1) +k(k- 1)(k- 2)/6} 
= ( k + l ) ( k + 2 ) / ( 6 k  2) 

so that "~ = 6k2/{ (k  + 1)(k + 2)}. Some values of this are as follows 

k = 2 3 4 5 6 7 8 
7 = 2 2.70 3.33 3.57 3.86 4.08 4.27 

so that, under this argument, quite large values of ~/still lead only to a maximum 
doubling of the error variance over R. Table 3 shows some calculations of Ok 1/2 
for "y's of this order and smaller. We see that, in a majority of cases, the factorial 
design points are slightly inside the region R of unit radius and that the results 
are insensitive to variation in the number of center points. As in Example 1, the 
addition of more center points causes the design to expand. An increase in 
causes the designs to contract. Note that, for the series of k and p values shown in 
Table 3, the ratios of the axial point distances to the cube point distances (from 
the origin) are given by 2(k-P)/4/k 1/2 = 1, 0.97, 1, 1.06, 0.89, 0.97, 1.07, 1.19, 
respectively. Thus for (k,p) values of (2.0), (3,0), (4,0), (5, i), (6, I), the axial 
points are either on the same sphere as the cube points, or slightly inside. For 
(5, 0), (7, 1) the axial points are slightly outside, and for (8, 1) rather more outside. 

As we mentioned earlier, neither Welch (1983) nor Steinberg (1985) gave ex- 
amples for second order model fitting, so that no comparisons are possible. 

For both first and second order examples, the conclusion is that, in (what we 
have defined as) "typical situations", the design points should lie slightly inside 
the region R. 
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