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A b s t r a c t .  Asymptotic risk behavior of estimators of the unknown variance 
and of the unknown mean vector in a multivariate normal distribution is con- 
sidered for a general loss. It is shown that in both problems this characteristic 
is related to the risk in an estimation problem of a positive normal mean un- 
der quadratic loss function. A curious property of the Brewster-Zidek variance 
estimator of the normal variance is also noticed. 
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1. Introduction 

In this paper  we consider the asymptot ic  es t imat ion of the unknown vari- 
ance a 2 and of the  unknown mean of a mult ivariate  normal  dis tr ibut ion with a 
covariance mat r ix  o'2I. 

This  is a classical problem of mult ivariate  analysis. The  inadmissibili ty of the  
t radi t ional  es t imator  of the mean  for dimensions larger t han  three is known since 
1955, when C. Stein discovered this phenomenon,  and this field has been an active 
area of research since (cf. for example James and Stein (1961), Baranchik (1970), 
Efron and Morris (1976)). 

The  t radi t ional  es t imator  of the variance is also known to be inadmissible 
(Stein (1964)). Although somewhat  similar these two results are different. For 
quadrat ic  loss in the normal  mean  case one can use the by now popular  integrat ion 
by par ts  technique to derive an unbiased est imate  of the risk difference between the  
t radi t ional  and an al ternat ive est imator .  It  is possible to find a procedure  which 
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makes this risk difference estimate nonnegative. The same technique applies in the 
normal variance case but no nonnegative risk difference estimate exists. Perhaps 
related is the fact that  in the mean vector estimation problem the relative risk 
reduction tends to 1 as the dimension increases. In the univariate problem of 
estimating a normal variance the savings do not exceed 4% (Rukhin (1987)). 

The goal of this paper is to explore these estimation problems when both the 
dimension and the sample size tend to infinity. We show that  these problems are 
intimately related to the estimation problem of a positive normal mean on the 
basis of one observation with unit variance. In particular the largest possible risk 
improvement in variance estimation is determined by the corresponding quantity in 
the positive mean problem, which also enters the asymptotic expansion of relative 
risk reduction of a multivariate normal mean estimator. 

The history of normal variance estimation is reviewed by Maat ta  and Casella 
(1990). We mention only a paper by Brewster and Zidek (1974), where an admissi- 
ble improvement over the traditional estimator is derived. We study this estimator 
in Section 2 and show that  the risk function of the Brewster-Zidek estimator has 
a maximum at the origin. This is surprising because this estimator is generalized 
Bayes with respect to an (improper) prior density with the mode at the origin. 

In Section 3 the counterparts of this estimator and of the original Stein esti- 
mator in the positive mean estimation problem are found. They turn out to be 
the generalized Bayes estimator against the uniform distribution over the positive 
half-line, and the maximum likelihood estimator. In Section 4 a similar result is 
obtained for the classical mean vector estimators of Stein and of James-Stein. 

2. The risk function of Brewster-Zidek estimator 

Let X be a normal random vector with the distribution Nk(#, O'2~ r) and let S ~ 
be independent of X with S2/a 2 having the chi-squared distribution with m - 1 
degrees of freedom. 

This is a canonical form of classical problems of multivariate statistical anal- 
ysis. 

Assume that the unknown variance cr 2 is to be estimated under a nonnegative 
bowl-shaped smooth loss function W(5 /a  2) with a unique minimum at 1, W~(1) = 
W(1) = 0. The estimator 5BZ due to Brewster and Zidek (1974) has the form 

5Bz(X,S) = S2¢Bz(V), 

where 
v = S(IlXll + s21-1/  

and the function ¢BZ is found from the condition 

Em[W{S2¢BZ(V)} I Y > v] = minEm{W(S2¢)  I V > v}. ¢ 

Here E ~  refers to the expected value under parameters tt and a. 
We assume that 

EolIW'(S2¢Bz(V)}L < ce, 
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so that 

(2.1) Eol[W'{S2¢Bz(v)}S  ~ IV  > ~] = O. 

It is known (Brewster and Zidek (1974)) that C B Z ( 0 )  ---- CO, where cos 2 is the 
best multiple of S 2 (the best equivariant estimator), i.e. 

(2.2) Eol W (coS 2) = min Em W ( cS2) . 
c 

Using the explicit form of the joint distribution of S and V, one obtains from (2.1) 

x sm+k-2(1 - u2)(k-2)/2u-kduds = O. 

Multiplying both parts of (2.3) by ¢~z(V) and integrating by parts we see that 

1 } 
0 = exp - -  82/U 2 (1 - u2)(k-2)/2u-kdu 8m+k-4dW(s2¢BZ(V)) 

k J V  

/0701 ) = - -  W{s2¢Bz(O)}exp -- S2/U 2 (1-u2)(k-2)/2u-ksm+k-4duds 

= -EolW(CoS 2) + EolW{S2OBz(V)} .  

Thus we have proved 

PROPOSITION 2.1. Let S2¢Bz(V) be the Brewster-Zidek estimator of the nor- 
mal variance under differentiable bowl-shaped loss function W.  Then 

(2.4) Eol W {  S2OBz(V) } = Eol W(CoS2), 

i.e. at the origin # --- 0 the risk function of the Brewster-Zidek estimator equals 
the risk of the best equivariant estimator. 

Formula (2.4) is surprising for the following reason: the Brewster-Zidek esti- 
mator is known to be minimax, 

E , ~ W ( S 2 ¢ B z ( V ) / a  2) < E~oW(coS2/a 2) = EolW(coS2). 

Also it is the generalized Bayes rule with respect to a prior of the form 

1A a 
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where / ? (  ) A(~) = exp tllvll2 tk/2-1(1 + t)-ldt. 
2 

This (improper) density has a unique mode at r / =  0, and yet the corresponding 
Bayes estimator has its frequentist risk taking the largest value at rl = 0. This 
curious fact, noticed first for the quadratic loss and k = 1 by Rukhin (1987), shows 
a difficulty with the traditional interpretation of prior distribution as a parametric 
weight assignment which reflects the relative importance of different parameter 
values. 

To conclude this section we give an explicit form of the Brewster-Zidek esti- 
mator for the quadratic loss: 

(2.5) 

and 

vm_l(1 _ v2)k/2 } 
CBZ (V) ---- (m -[- 1) -1 1 -- (mn t- k -~ 1 ~ j i m ( - i  7-~)k/2-1dt 

co = (m + i) -1. 

In the next section we shall use the following analogue of the original Stein 
(1964) estimator for a general loss function W: 

(2.6) ¢8(v)=min(co, clv-2). 

Here Co is defined by (2.2) and cl is determined by the condition 

Eol{W'(ClV-2S2) s21 y = v }  = o, 

which means that  

(2.7) ~o ~ W' ( o s2)e-82 /~ sm+k-2 ds = O. 

In particular for quadratic loss 

(2.8) Cs(v) = min{(m + 1) -1, (m + k + 1)-1v-2}. 

Some numerical results for the risk of these estimators in the case of quadratic 
loss and entropy loss are reported by Rukhin and Ananda (1992). 

3. Asymptotic risk behavior of scale-equivariant variance estimators 

Keeping the notation of the previous section, we consider here scale-equivari- 
ant variance estimators 5(X, S) written in the form 

(3.1) s )  = cos2{1  - + ( v ) } ,  

where Co is the constant determined by (2.2) and (I) is a continuous function. 
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It is easy to see that  the corresponding risk function depends only on II ll/a = 
r/, so that  in risk evaluations one can put a = 1. 

Since the exact form of the risk is not tractable, we study its asymptotic behav- 
ior for large dimension k and large "sample size" m. Their rates and the following 
limiting formulae (3.4) and (3.5) are suggested by the behavior of estimators (2.5) 

and (2.8). 
Notice first of all that  c0m --* 1 as m --* oo. Indeed 

(3.2) 

and with probability one 

Eol W '  (coS2)S 2 = 0 

S 2 / m  ---+ 1. 

Since W is bowl-shaped this fact and (3.2) imply that  

lim c0m = 1. 
77~ -"-~ O O  

In fact 

(3.3) c0m = 1 - W " ( 1 ) / m  + o(m-1).  

Indeed, because of the central limit theorem the distribution of 

ml/22-1/2(S  2 - m) 

converges to the standard normal one. Let 

Then (3.2) shows that  

corn = 1 + rra. 

Here Z is a standard normal random variable. It follows that  

lim r,~m = - W " ( 1 ) .  
7 ~ ' - - +  (:X) 

Now we can analyze the asymptotic risk behavior of the best equivariant esti- 
mator cos 2 as m increases. 

Indeed one has 

lim rnEolW(CoS 2) ---- lim m E W { ( 1  q- rra)(1 -4- 21/2Zm-1/2)} = WH(1) .  
m - - - - ~ o o  m ----> O o  

0 = lim EolW'(coS2)S 2 
Tt%---+ O O  

= lim m E W ' { ( 1  + rm)(1 + 21/2Zm-1/2)}(1 + 21/2Zm -1/2) 
I D, " ' ~  0 0  

= W ' ( 1 ) E Z  2 + lim r~m.  
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Also for any est imator  (3.1) 

limoo mE, TW{6(X,S)} = W"(1) ,  

so tha t  the first order asymptot ic  behavior  of 6(X, S) coincides with tha t  of coS 2 
Therefore  the  relative risk improvement  

r(~) = [E,W(~oS 21 - E~W{~(X, S)}]/E~W(coS ~1 

tends to zero as m --* c~. 
Let  us consider now the case when k ~ c~ and 

We also assume tha t  

(3.4) 

The n  with probabil i ty one 

and for a fixed m,  as k ~ cc 

ll~ll2/k ~ v:. 

• (vk -~/2) --+ ~o(v). 

II~:ll...~ 2 = __~ Xy ~ 1 + 7/1, 
k k 

E , w { ~ ( x ,  s ) )  ~ EoW[~oS2{a - ¢0(S(1 + ~,)-1/2)}]. 

Suppose now tha t  for m ~ oc 

m l / 2 ~ o ( m l / 2  -- 2 -1 /2Z)  ___+ 21/2x(Z) (3.5) 

and 
ml/2~1 -+ 21/2{ 9 

with a nonegative finite e .  
T h e n  with a s tandard  normal  Z 

lira ,~EoW[c0S2{X - ¢0(s(1 +,1)-'/2)}3 
m--~oo 

= lim mEW[(1 + rm)(1 + 21/2Zm -1/2) 
m---*oc 

X { 1  - -  c I % ( m  1 /2  -~- ( Z  --  { 9 ) .  ( 2 T n ) - l / 2 ) } ]  

= lim mEW[1 + 21/2{Z + X(@ - Z)} m-~/2] 
m - - - + ~  

= W"(I)E{Z - X({9 - Z)}. 

Therefore,  under  our assumptions 

(3.6) lira lira rQ/) -= 1 - E{Y + x ( Y )  - 0} 2. 
rrt ----+ Oo 1¢ ----* oo 



ASYMPTOTIC RISK BEHAVIOR 305 

Here Y = O - Z is a normal random variable with the positive mean O and 
the unit variance. 

In other terms the relative risk reduction in the variance estimation problem 
converges to the risk improvement over the estimator Y in the estimation problem 
of a positive normal mean. 

We formulate results obtained so far. 

THEOREM 3.1. Let 5(X, S) be a scale-equivariant estimator of the normal 
variance under bowl-shaped smooth loss function W such that W(1) = W'(1) = 0. 
Assume that as k -* oc and m --~ oc conditions (3.4) and (3.5) hold, and that 

(3.7) lim lim 11#l12a-2m1/2k-Z2 -1/2 = O.  
?Tt ---~ OO k ---* O o  

Then the asymptotic formula (3.6) for the relative risk reduction is valid. 

Clearly in the limiting problem of the positive normal mean estimation, the 
estimator Y, which corresponds to the best equivariant estimator cos  2 of the 
variance, is not a good procedure. (It does not make any sense to estimate a 
nonnegative parameter by a negative number which can happen with Y.) 

However, as we show now, both Stein estimator and Brewster-Zidek estimator 
have limiting forms which are important estimators of the positive normal mean. 

THEOREM 3.2. Conditions (3.4) and (3.5) are satisfied for both Stein esti- 
mator (2.6) and Brewster-Zidek estimator (2.1). In the first ease 

(3.8) (I)o(v) = max(O, 1 - colv-2) ,  Xs(z) = max( -z ,  0), 

in the second case Oo(c) is found from the equation 

(3.9) 

(3.10) 

v c¢ W'[c0u:{1 - (ho(v)}]um+4e-~'/2du = O, 

/ ;  XBZ(Z) = e -z2/2 exp -- t 2 dt. 

PROOF. If one writes the Stein estimator (2.6) in the form (3.1), then 

• (v) = ma (1 - elColV 0), 

where cl is defined by (2.7). 
As in the case of Co, for a fixed m 

cl = (m + k) -1 + o(k-1). 

Therefore 
(~(vk -1/2) --* max(1 - c o l v  -2 ,  0) = (I)0(V). 
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Also 

lim m 1/2 max{1 - Col(m 1/2 - 2 -1 /2 z ) -2 ,0 }  
m--*c~ 

= limm_..~ marc { (--21/2zr~ ~- ~ z2ml/2) /~'~1/2 - 2-1/2z)-2' 0 } 
= 21/2 m a x ( - z ,  0), 

and (3.8) follows. 
In the  case of the  Brewster-Zidek es t imator  make a t ransformat ion  of variables 

in (2.3) to see tha t  

fo°°~k~/2 W'[cos2 {1-  Oo(V) }] exp ( - l  ks2u - 2) 

× sin+k+2(1 - u2/k)k/2-1u-kduds = O. 

Notice tha t  for fixed u, v 

/0 I = W'[cos2{1 - O0(v)}]exp - ks2u -2 sk+m+2ds 

= fo~ W'[cos2{l - Oo(V)}]exp { - k  ( ls2u-2 -10g s) } sm+2ds. 

Since the max imum of the function s 2 u - 2 / 2  - logs  occurs at  s = u, Laplace's 
me thod  shows tha t  as k --* ~ ,  

I ~ W'[c0u2{1 - ¢o(V)}]um+k+2e-k/2(2r)l/2k-1, 

so tha t  (3.9) obtains. 
This  formula also shows tha t  

z W'[co( ml/2 2-1/2t)2{ 1 2 1 / 2 X ( z ) m - 1 / 2 } ]  
c o  

×exp{-l(ml/2-2-1/2t)2}(l-2-1/2tm-1/2)m+4dt=O. 

It  is easy to verify tha t  

~(m 1/2 - + mlog(1 - 2 - 1 / 2 t )  2 2-1/2tm-1/2) 
1 = - - m  + t m l / 2 2  - 1 / 2  -- t 2 / 4  -- t m l / 2 2  - 1 / 2  -- t2/4 + o(1) 
2 
1 ~- ---m -- t2/2 + o(1), 
2 

so tha t  

0 = l i r a  m ~/2 W'[(1 + r,~)(1 - 2~/2tm-~/2){1 - 2~/2X(z)m-~/2}]e- t~/2dt  

// = - W " ( 1 ) 2  ~/2 {x(z) + t}e-t~/2dt .  
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Formula (3.10) follows now immediately. 

Theorem 3.2 shows that the Stein variance estimator corresponds to the max- 
imum likelihood estimator max(Y, 0) of the positive normal mean. The Brewster- 
Zidek variance estimator corresponds to the generalized Bayes estimator of the 
positive normal mean with respect to the "uniform" prior distribution over the 
positive half-line (cf. Katz (1961)). Both estimators of the positive mean are mini- 
max, i.e. their quadratic risks are bounded by 1. The latter estimator is admissible 
(Lehmann (1983), pp. 267-268), and the second is not. 

The form of the risk of the generalized Bayes estimator resembles this of 
the Brewster-Zidek estimator: it is a unimodal function which takes its largest 
(minimax) value at O -- 0 and tends to 1 as O --* oo. Its minimum equal to 0.584 
is attained at e = 1.08. 

The risk of the maximum likelihood estimator has a different form: it is a 
monotonically increasing function which takes value 0.5 at O = 0 and tends to 
1 as O -~ oc. It is curious that the inadmissible maximum likelihood estimator 
provides a larger degree of improvement than the admissible generalized Bayes 
estimator. 

The problems of finding an explicit improvement over the maximum likelihood 
estimator and of determination of the smallest risk value at a point within the class 
of all minimax estimators of the positive normal mean apparently are very difficult. 
Yet they are not only related to the problem of the largest possible improvement 
over the best equivariant variance estimator, but also to that  of the mean vector 
estimators, as we shall see in the next section. 

4. Asymptotic risk behavior of scale-equivariant estimators of the mean vector 

In this section we perform an asymptotic analysis of the risk of the mean 
vector estimators which have the form 

(4.1) 5(X, S) = {1 - ? (V) (m + 1 ) - I } X  

with a continuous function 7. 
This form is motivated by the existing estimators of the multivariate normal 

mean, namely, Stein estimator 5s with 

(4.2) " / s (V)  ---- (k - 2 )V2(1  - V2)  -1  

and the positive part of this estimator, the James-Stein estimator 5js, such that 

(4.3) 1 - (m + 1)-I~/js(V ) = max{1 - (m + 1)-l 'ys(V),0}.  

Assume that  the loss function has the form 

= w(ll (x, s )  -  ll2k-X  -2)  

with a smooth nonnegative function w such that w(0) = 0, w(1) = 1. 
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The  risk of est imators  (4.1) depends only on 7/ = I t~a,  so tha t  we can put  
o " = 1 .  

Clearly the risk of the es t imator  X does not  depend on 77 and as k --* oo 

Eow(l lXl l2k  -~) --. w(1)  = 1, 

so tha t  the relative risk reduct ion p(7/) has the form 

P(V) = 1 - E , w { l l S ( X ,  S )  - , l12k-1}. 

Assume as in Section 3 tha t  as k --* oc 

and 

(4.4) 

Then  

where 

One has 

-~(vk -1/2) --. "yo(V). 

lim E n w { I I 6 ( X ,  S )  - ~/H2k - 1 }  = lim E n w { l l X  - ~1 - ~ ' ( S ) X I I 2 k - 1 } ,  
k--,c~ k--*e~ 

"~(S) = ( m  -~- 1) - I ' ) 'O{S(1 -~- ?']1)-1/2}. 

IIX - ,  - ;~(S)Xll2k -1  
= {1 - ~(S)}211X - r]ll2k -1  

k 
+ ~2(S)ll~l12k-~ + 25(s){1  - ~ ( s )}  E ( x j  - ~?j)~?jk - 1 .  

1 

By the strong law of large numbers  with probabil i ty  one 

IIX - ~7112k -1 --, 1. 

Also the normal random variable y~ ( X j  -~j)~/ j  k-1  has zero mean and the  variance 

11,112k -2. 
Therefore  

lim G w { l I X  - v - ;y(s)Xll 2k-1} = Ew[{1 - -~(S)} 2 + ~/1~2(S)]. 

Now we suppose tha t  as m --* oo 

(4.5) 
and 

ml/2{1 -- m - 1 , . y o ( m l / 2  _ z2-1/2)}  ~ 21/2t~(z) 

ml/2?/1 ~ 21/2 0 
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with a nonnegative finite O. 
Then 

Ew[{1 - ~(S)} 2 + ~]1~'2( ,~)]  

,,~ Ew[2a2(O - Z ) m  -1 q- 21/20{1 - 21/2a( 0 _ Z)m-1 /2}2m-1 /2  ] 

- -  W'(0)21/20 
ml/2 + 2W'(0------~) E ( a m  -- 0)2  "~- W//(0) /yt2W/(0) 02 "~ ° ( m - l )  

with a standard normal Z. 
We have proved the following result. 

THEOREM 4.1. Let 5(X, S)  be a scale-equivariant estimator of the multivari- 
ate normal mean of the form (4.1) such that as k --+ oc and m ~ oc conditions 
(4.5) and (4.4) hold. I f  (3.7) is satisfied, then 

W'(0)21/20 2W' (O)E{a(Y)  - 0}  2 
r ( , )  = 1 

m 1/2 m 

_ w " ( 0 )  - 2 w ' ( 0 ) e 2  + o ( m _ l ) .  
m 

Here Y is a normal random variable with the nonnegative mean 0 and the unit 

variance. 

Theorem 4.1 shows that  the estimation problem of the multivariate normal 
mean is also intimately related to that  of scalar positive mean. However in the 
variance estimation problem the quadratic risk of a positive mean estimator enters 
the leading term of the asymptotic expansion of the relative risk reduction. For 
the vector mean estimation this quantity enters only the third term which has the 
order m -1. This facts explains why better estimators of the multivariate normal 
mean offer more sizable savings than better variance estimators. 

Notice that  conditions (4.5) and (4.4) are satisfied for both Stein and James- 
Stein estimators (4.2) and (4.3). 

Indeed in the first case 

and 

~/s(S) = S 2 / ( m  + 1) 

21/2~;s(Y ) ---- lim 

= lira ?n ,-.-..~ O0 

ml/2{1 _ ~s(ml/2 - y2-1/2)}  

ml/2{1 - ( m l / 2  _ y2 -1 /2 )2m -1} = 21/2y. 

Thus the limiting form of this estimator is not quite reasonable (although unbiased) 
estimator which is Y itself. 

For James-Stein estimator 

"Tjs(S) = min{1,'~s(S)} 

and 
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~Js(Y) - max{0, as(Y)} = max(0, Y), 

i.e. the limit of this estimator corresponds to the familiar maximum likelihood 
estimator of the positive normal mean. Clearly max(0, Y) is better than Y. This 
corresponds to the fact that the positive part of the Stein estimator is better than 
the Stein estimator itself. 

The results of the previous section suggest new generalized Bayes estimators 
of the multivariate normal mean which are analogous to the Brewster-Zidek es- 
timator. However, because of their risk behavior (which is the worst around the 
origin) they are of less interest than the James-Stein estimator. 

Notice that in the case of the known variance an asymptotic analysis of this 
estimator for large dimensions has been performed by Casella and Hwang (1982). 
For large sample sizes approximations to the risk functions of a normal covariance 
matrix were derived by Sugiura and Fujimoto (1982) and Sugiura and Konno 
(1987). 

We conclude this paper with the following remark. Our results are true in a 
much broader setting than a normal vector X and a chi-squared distributed S 2. 
In fact, the only facts needed in the proofs of Theorems 3.2 and 4.1 were that with 
probability one as k -+ oc 

IlXll2k -1  -+ 1 + . 1  if IIEXll2k -1 .1 

and that the asymptotic distribution of  m l / 2 ( $ 2  - m )  as m --+ oo is a normal one. 
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