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A b s t r a c t .  We study the choice of the quantity a in the FPE~ criterion for 
selecting a member of a class of normal linear models having an orthogonal 
structure. Two approaches are discussed, namely fixing the maximal estimation 
risk at a prescribed level and using minimax regret. Estimation of the risk 
actually achieved and an illustrative example are also discussed. 
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1. Introduction 

Consider the  co-ordinate  free version (Arnold ((1981), p. 55)) of the stan- 
dard  linear model,  where we observe a random n-dimensional  column vector Y = 
[]I1112"'" Yn]' (prime indicates transpose),  which is supposed to have the  form 

(1.1) Y = # + e 

where the n-vector  e is N(0 ,  a2I ) -d is t r ibuted  with I the n x n identi ty matr ix,  
and where # is an unknown parameter  vector  which is assumed to  belong to a 
k n o w n  linear subspace M of R '~. An extension of this model which incorporates 
the problem of m o d e l  s e l e c t i o n  is obta ined if in addit ion we assume tha t  a family 
/:  of linear subspaces of M is given and tha t  # may  actual ly belong to or be close 
to some unknown L E / : .  Wi th in  this wider f ramework all aspects of inference may 
be of interest,  but  in this paper  we restrict  a t ten t ion  to  es t imat ion of/z. A common 
pract ice is to select a subspace L da ta -dependent ly  and to  es t imate /~  accordingly 
and our purpose is to  investigate the consequences of such a procedure.  

The  following nota t ion  is required. For any vector  x E R '~, the  project ion of x 
onto a subspace L will be denoted  by PLX, while the project ion of x onto L ±, the 
or thogonal  complement  of L, will be denoted  by QLX. We will write (x,  y) = x ' y  
for the usual inner p roduc t  of x and y. The  corresponding Euclidean norm of 
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x is IIxH = (x 'x)  1/2. Results in the book by Arnold (1981) will be used freely. 
In particular (Arnold ((1981), p. 73)), PM Y is the component-wise minimum 
variance unbiased estimator of #. Among its other desirable properties is that it 
is minimax with respect to total squared error loss. 

The mu l t i p l e  l inear  r eg re s s ion  model provides a first motivating example. 
It assumes that Y = X]~ + e, with e as before and with X = [ X l ~ 2 " "  XTn] a 
known n x m matrix with columns xl, x,2,...,  x~. The i-th row of X contains 
the values of the m explanatory variables (regressors) when the i-th value of the 
response, Y/, is observed, i = 1 , . . . ,  n. We assume that X is of full rank m. Then 
/~ = X ~  and M is the linear space spanned by the columns of X. Var i ab le  
se lec t ion  (sometimes also referred to as s u b s e t  se lec t ion)  is widely discussed in 
the literature (see e.g. Linhart and Zucchini (1986)). It entails selecting a subset 
of the regressors rather than using the full set. For example, using regressors 
j l , j2 , . . . , j8  (s <_ m) will be appropriate if one believes # to be in the linear 
subspace spanned by xjl, x j2 , . . . ,  xj,. If the choice of regressors is completely 
open, we may introduce the family / :  whose members are the 2 m possible linear 
subspaces spanned by subsets of the columns of X. Often the first column of X 
consists of l ' s  to provide for a constant term in the model, and inclusion of this 
column is required; then 1: may be taken as the family with members the 2 "~-1 
possible linear subspaces spanned by xl and some subset of xe , . . . ,  x~. In either 
case a common procedure is to select some member, L say, of £ data-dependently 
and to use the corresponding least squares estimator PL Y to estimate #. An 
important aspect that we will investigate is the risk w.r.t, total squared error loss 
of such an estimator. Note for future reference that if Lj denotes the 1-dimensional 
subspace spanned by the j - th  column of X, then a typical L E l: can be expressed 
as the direct sum, L = Ljl +Lj2 + . . .  +Lj~,  where j l , j2 , . . .  ,j~ index the columns 
of X that span L. If a constant term is required, we take j l  = 1. 

As a second example, consider the b a l a n c e d  t w o - f a c t o r  A N O V A  model 
where we observe independent random variables Yijk, where Yijk is N(# i j , a2 )  - 
distributed, i = 1 , . . . ,  I; j = 1 , . . . ,  J; k = 1 , . . . ,  K. The Y/jk's are observations 
on the response where we study a row factor on I levels and a column factor on 
J levels, with K observations per cell. We may arrange the Y/jk's in a column 
vector Y and the corresponding arrangement of the #ij 's  constitutes #. Then M 
is the /J-dimensional linear space consisting of vectors whose components form 
IJ  blocks of size K each with identical components within blocks. It is well 
known that M = L0 + L1 + L2 + L3, where L0 is spanned by the vector with all 
components 1, L1 and L2 are subspaces corresponding to main row and column 
effects respectively and L3 to interaction effects. Also L0, L1, L2 and La are 
mutually orthogonal with dim(Lo) = 1, dim(L1) = I - 1, dim(L2) = J - 1 and 
dim(L3) = (I - 1)(J  - 1). The family L: can now be taken as {Lo, Lo + L1,Lo + 
L2, L0 + L3, Lo 4- L1 + L2, L0 ~- L1 + L3, L0 ~- L2 + L3, M}. Selecting a member from 
this family entails a decision as to the inclusion of the row, the column and the 
interaction effects into the model, thereby implying corresponding least squares 
estimators for the #ij's. Once more it is important to investigate the effect of the 
selection step on the overall risk of the resulting estimator of #. 

Returning to the general set-up, we shall denote dim(M) by m. Although the 
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case m = n is of practical interest, it is more difficult and will not be treated here 
and we assume m < n. For this case the standard estimator 

(1.2) ~2 _-IIQM v i i2~(  n - m) 

of a 2 is available. We use it throughout this paper and concentrate on the problem 
of estimating #. It will often be the case that  M can be written as the direct sum 

(1.3) 
k 

M = Lo + L1 + .. .  + Lk = Lo + E L j  
j----1 

and £: will be a sub-family of the 2 k subspaces of the form L = L0 +Lj l  + - . .  +Lj~ -- 
L0 + ~-~jeJ Lj, with J -- { j l , . - - ,  is} a subset of {1, 2 , . . . ,  k}. 

In Section 2 we derive the Cp selection criterion of Mallows (1973) for our 
general formulation using the co-ordinate free approach. We also show that if 
the unbiased estimator in this derivation is replaced by a suitable Bayes estimator 
then the generalized FPEa criterion of Bhansali and Downham (1977) results. The 
choice of a in this criterion has been discussed by a number of authors (see e.g. 
Shibata (1986) and references herein) from various points of view. In Section 3 
we consider the special case where M and/~ have the structure (1.3) and the Li's 
are mutually orthogonal. For this case it is possible to obtain explicit expressions 
for the risk with respect to total squared error loss of the corresponding estimator 
PL Y and this enables us to find its maximum and minimum risks. We then show 
how to choose a (or more generally, a number of a's) such that the maximal 
risk is at a prescribed level. A table is provided to implement this procedure 
in practice. In Section 4 we discuss the choice of a 's  by the minimax regret 
approach suggested by Shibata (1986) in a related problem. A practical example 
that  illustrates application of the various procedures is also discussed. In Section 
5 we introduce an estimator for the risk of PL Y, and we illustrate the use of this 
estimator within the context of an example. We close with a discussion and some 
open questions in Section 6. 

2. The FPE~ selection criterion 

Although the Cp and FPE~ criteria are well known a ready reference to their 
derivation within the general formulation given here using the co-ordinate free 
point of view, does not seem available. For completeness we give a brief outline of 
such a derivation. If we use P L Y  rather than PM Y as an estimator of ]~ (thinking 
that  # E L E £), the risk w.r.t, total squared error loss is given by 

(2.1) EIIPL r -/~{{2 _- dim(L)a2 + tjpMIL~I{2 -_ dim(L)a2 + jjQL~jj2 

since ~ E M. Put  

(2.2) U = IIQL YI[ ~, A 2 = IIQL#II 2, q = dim(L ±) = n - dim(L). 
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Then U is a2X2q(A2/a2)-distributed, and (2.1) is estimated unbiasedly by 

(2.3) dim(L)52 + U - q52 = ItQL YII 2 + 2 dim(L)& 2 - na  2. 

If we ignore the term that  does not depend on L, (2.3) becomes the Cp or FPE2 
criterion, which is the special case a = 2 of 

(2.4) FPE~ = IIQL YII 2 + ad im(L)  a2 

and L is chosen to minimize this criterion. A motivation of (2.4) can be based 
on the following considerations. If we suppose for the moment that a 2 is known, 
an unbiased estimator of A2 is given by U - qa 2, and this was used to obtain 
(2.3) from (2.2). In studying the problem of estimating )2 from U, Saxena and 
Alam (1982) point out that the unbiased estimator is unsatisfactory. It can e.g. 
be negative while )~2 k 0. They introduce a family of Bayes estimators of )~2 of 
the form 

qa 2 U 
- -  -}-  - -  

(2.5) 1 + c (1 + c) 2 

based on a gamma-type prior for A 2, with the constant c a parameter of the prior 
distribution. If this estimator for A 2 is used in (2.1), 5 2 substituted for (r 2, the 
term not depending on L is dropped and the expression multiplied by (1 + c) 2, 
then (2.4) is obtained. 

An alternative form of (2.4) is II YII 2 - ]IPL YI[ 2 + adim(L) &2 and if we omit 
II Y II 2, we obtain the equivalent rule of selecting L to minimize 

(2.6) a dim(L)52 - IIPL Y]I 2. 

If M and £ have the structure (1.3) and the Li's are m u t u a l l y  o r thogona l ,  then 
(2.6) becomes 

(2.7) a52 dim(L0) - IIPLo Yll 2 q- E [ a ~  2 dim(nj)  - IIPL3 Ytl 2] 
j C J  

where 

(2.8) lj = dim(Lj) and Fj = IIPL  YII2/ 2Zj 

is the usual F-statistic for testing the hypothesis tha t / z  E M I Lj. It is evident 
that the minimizing L, L say, will be the direct sum of L0 and those Lj's which 
contribute negative terms to the sum in (2.7). Thus with I(A) denoting the 
indicator function of the event A, we can write 

(2.9) 
k 

L = Lo + E L j I ( F j  > a). 
j = l  
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Shibata (1986) considers the following related structure. Suppose that  M = L1 + 
• " + Lk and £ is restricted to the k + 1 subspaces of the form L = L1 + . . .  + Lr 
with r = 0, 1 , . . . ,  k (L is taken as the null space if r = 0). An example of such 
a structure is provided by the multiple linear regression problem in which the 
columns are to be entered in a given fixed sequence. There is no loss of generality 
in assuming the L j ' s  mutually orthogonal in this case since they could be replaced 
by an orthogonal sequence spanning the same sequence of spaces otherwise. Then 
(2.6) becomes 

(2.10) E [ a ~ 2  d i m ( L j ) -  IlPi~ YI121 = ~2 15(~- Fj) 
5=1 5=1 

and the selected L is L = L1 + . . .  + L+ where ÷ is that choice of r which minimizes 
(2.10). It does not seem possible to express P in a simple form and this considerably 
complicates the treatment of the risk of PLY and the determination of good 

choices of a. By contrast, for ], of (2.9) it is possible to obtain fairly explicit 
results as we show in the next section. 

3. Limiting maximal risk 

In this section we study the risk of the estimator PL Y of it, with ], selected by 
(2.6). In general it seems impossible to obtain analytically tractable expressions 
for the risk of PL Y- We therefore restrict our discussion to the case where M and 

£ have the structure (1.3) and the Li's are mutually orthogonal, so that  L is given 
by (2.9). We consider a further generalization by allowing the possibility that a 
in (2.9) may vary with Lj so that  it may depend on j and ], is given by 

k 

(3.1) L = Lo + E Ls I (F j  > aS)" 
j = l  

Then the risk of PL Y is 

(3.2) EI[P L Y - #I[ 2 

E PL0( k aj)]  2 
= Y - # ) + E P L j [ ( Y - # ) I ( F j > o ~ j ) - I z I ( F j < _  

j = l  

k 

= o'210 + ~_~[EI[PLj ( Y - tt)[12I(Fj > o~j) + [IPLjIZH2p(Fj <_ ~j)] 
j : l  

k 

= a21o + ~[a21y  + E(IIPLjl.tll 2 -- I IPLj(Y - ~)II2)I(Fj < ~j)] 
j : l  

k 

= ~2m + ~ E(IIPL~#II 2 -- IIPLj ( Y - ~t)II2)l(Fj < c~y). 
j = l  
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Let Z = ( Y - # ) / a ,  ~ = #/a and £j = IIPLj~tl/~ = IIPL~II- Also let B j  denote 
the subspace of Lj spanned by PLj ~. Then 

(3.3) IIPLj YII 2 = G211PLj~ + PL~ Zll 2 

= ~2[IIPL~II2 + 2(PL,~,PLjZ) + IIPLjZll 2] 

= aS[A 2 + 2(PLj[~, Z> + IIPB~ZII 2 + IIPL~IBjZII 2] 
= ~ [ ( u j  + A,)~ + wj] 

where 

(3.4) Wj = IIPLjI.~ZII 2 

so that U~ = IIPBj Zll 2, Similarly 

(3.5) 

Also put  

(3.6) 

Then (3.2) becomes 

(3.7) 

with 

(3.8) 

where 

(3.9) 

and Uj = <PLj[Z/Aj, Z> 

IIPLj( Y - ~ ) t l  2 = a2[U ] + Wj]. 

V = ~2/32 and v = n - m .  

I k ] EIIP L Y - # 1 1 2 = a  s m +  E l j h ( A j , a j ; l j , v )  
j = l  

h(~, ~; Z, . )  = ~E(A s - U 2 - W)I [ (U  + ~)2 + W < aW] 

U is N(0,  1)-, W is ~--1- and vV is x~-distr ibuted,  

all independently. (3.7) is a generalization of a result of Mallows (1973) who only 
t reats  the case of variable selection in multiple regression with a 2 known. 

To compare the  risk (3.7) of P L Y  with that  of the minimax est imator  PM Y,  
we need to s tudy  the function h of (3.8). In special cases it simplifies. For l = 1 
we may take W --- 0 in (3.8). Also, when a 2 is actually known, we can replace 
~2 by a s in (2.4) and modify L similarly. If we take V -= 1 in (3.8) and call the  
resulting function h(A, a;  l, c~), then (3.7) with v replaced by oc is seen to be the  
relevant expression for the risk of the corresponding PL Y" The simplest case of 
all is when a s is known and l -- 1, for which 

(3.10) h(A, a ;  1, oc) = E(A 2 - U2)I((U + A) s <_ c~) 

= (a  s - 1 ) [ ¢ ( ~  + v ~ )  - ~ ( ~  - v ~ ) ]  

+ (~ + v ~ ) ¢ ( A  + v ~ )  - (~ - v ~ ) ¢ ( ~  - ~ f 5 )  
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with ¢ and (I) the N(0,  1)-density and distr ibution functions respectively. Note 
also that  

(3.11) h(),, 0; l, u) = 0 

At ~ = 0 we have 

and h(A, oc; l, v) = ~2/1 - 1. 

1 
(3.12) h(O,a;1, u) = - 1 E ( U  2 + W)I(U 2 + W <_ alV) = -Fl+2,~,(al/(l + 2)) 

with Fr,s(t) the  Fr,s-distribution function. At the other  extreme, when ~ ~ oc, 
then 

(3.13) h(£, a;  l, v) ~ 0. 

We have been able to show analytically tha t  for any fixed a with 0 < a < oc, 
h()~, ~; 1, c¢) is unimodal  in ~ > 0. Its minimum value is given by the v = oc 
equivalent of (3.12) with 1 = 1, viz. - G 3 ( ~ )  = 1 + 2v/-a¢(x/~) - 2 ¢ ( v ~ )  with Ga 
the x~-distr ibution function. Also, the maximum of h(A, a;  1, co) is strictly greater 
than 0 if a > 0. We studied h()~, ~; l, v) numerically for many other  choices of l 
and v and always found it unimodal  in )~ for ~ > 0 and we conjecture that  this is 
generally true. Proceeding on this conjecture,  (3.12) gives the  minimum value of 
h(~, c~; l, v) over ~ generally, and there is a unique ~* = ~* (c~; l, v) with 0 < ~* < oc 
for 0 < (~ < c¢ such that  

(3.14) h*(~; l, u) - h(A*, a;  l, u) = max h(A, a; l, u) 
~>0 

and this maximal value is str ictly greater than 0. Figure 1 shows h as a function 
of A for the  case c~ = 2, u = 60 and various values of I and Fig. 2 shows it for 
l = 5, u = 60 and various values of a.  The unimodal i ty  of h as a function of )~ is 
evident. We also see that  h(0, a;  l, v) decreases both  when l increases and when 
a increases. Figure 3 shows h* as a function of a for various values of I and it is 
evident tha t  h* increases as a increases. These conclusions also hold if we vary 
u. The numerical work leading to these figures used subrout ines  D Q D A G I  and 
D U V M I F  of IMSL. 

Applying these findings in (3.1) and (3.7), the maximal risk of PL Y is 

(3.15) a2 Im-4-~= ljh*(aj;lj, v)] 

and this occurs at  the l e a s t  f a v o u r a b l e  c o n f i g u r a t i o n  where # is such that  

(3.16) IIPL~I.tll = o'Aj = a£*(o~j,lj,r,) for j = 1 , . . . , k .  

Also the minimal risk of PL Y is 

(3.17) a 2 m + ~ _ _ l ~ h ( O , ~ j ; l j , v )  = a  2 m - ~ _ l j ~ j + ~ , ~ , ( ~ f l j / ( l j + 2 ) )  
j----1 j = l  
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and this occurs at  the  m o s t  f a v o u r a b l e  c o n f i g u r a t i o n  where 

(3.18) IIPLj/Zll = 0 for j ---- 1 , . . . , k .  

The  risk of  PM Y is a2m and it is convenient  to express (3.15) and (3.17) relat ive 
to  a2m. Thus  the  max imal  and min imal  relative risks of PL Y compared  to  PM Y 
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are 

k k 
1 

~ 1 3 h * ( , 5 ; l j , ~  ) and 1 -  1 ~ l j F ~ j + 2 , ( , A / ( l j  +2 ) )  (3.19) 1 + - -  
rf t  m ' 

j----1 j = l  

respectively. The term ( l /m)  ~=1 ljh*(o~j; lj, v) is the largest fraction by which 
the risk of P L Y  can exceed that of PM Y and we will refer to it as the e x c e e d a n c e  

of PLY" The term ( l / m )  k ~-'~j= 1 It Flj + 2,v (0~ 515 / (15 + 2)) is the largest gain in relative 
risk possible by using P L Y  rather than PM Y and it will be referred to as the 
ga in  of PL Y" 

We now consider the choice of the c~ 5's. One reasonable goal is to choose the 
c~j's to limit the exceedance of PL Y" Thus if e is some prescribed number (say 
e = 0.25) we may require that 

k 

(3.20) -1 Zlsh,( 5;15, ) = 
m 

j=l  

If we insist that  all the cU's be the same (in the spirit of Section 2), then equation 
(3.20) can be solved for c~ with c~j = a for all j .  The resulting c~ will be denoted 
by c~* = c~*(e;/1,..., lk, l~). Another approach which is simpler to implement in 
practice is to allow the c~j's to differ and to take 

(3.21) ~5 = 55 = 5 ( ram~lo;lj, v)  

where 5(rl; l, v) is the solution of the equation 

(3.22) h*(o~; l, v) = ~/. 
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Then (3.20) is satisfied. For the case l0 = 0, (3.21) reduces to 

(3.23) aj = 5(e; lj, u) 

and if we make this choice even for 10 > 0, we will be acting conservatively in the 
sense that the exceedance is strictly below e. Table 1 gives the values of 5(e; l, u) 
for a range of e-, l- and u-values. 

As an e x a m p l e  consider the two way balanced ANOVA data of Table D on 
page 140 of Scheff6 (1959). In that case n -- 90, m = 30, u = 60 and the error 
sum of squares is 112.67 yielding 52 = 1.88. A constant term for the overall 
mean effect is presumed included in the model so that 10 =- 1. With subspaces 
L1 and L2 corresponding to main effects of "sources" and "cylinders" respectively 
and L3 to interaction effects, columns 2 and 3 of Table 2 show the dimensions 
(degrees of freedom) lj and the observed statistics Fj. We calculated numerically 
the wlues of a* = a*(e; 4, 5, 20, 60) and found the values of &j = &(e; lj, 60) from 
Table 1 and the first two entries under each e for each Lj block show these values. 
Comparing the Fj-values with these a j-values we see that L1 and L2 are included 
in the selected model by either approach for the range of e-values shown (and even 
for a much wider range). Regarding L3 (interaction terms), selection based on 
the a*-values includes these terms for e -- 0.05 while selection based on the &j- 
values excludes interaction terms for e = 0.05; for larger e-values, both approaches 
exclude the interaction terms. Since the a*-value is a type of average of the 5j- 
values and the 5j-values increase with increasing l j, we see that  selection based 
on the a*-values will more easily include high dimensional subspaces. Since high 
dimensional subspaces correspond to many parameters, selection based on the &j- 
values will tend to lead to more parsimonious models, which is desirable. The 
original Cp criterion corresponds to taking a = 2 everywhere, has an exceedance 
of 0.212 and also selects the model which excludes interaction terms only. 

While there is a large degree of consensus on the model to be selected for 
this data using either the "constant" a*-values of the "variable" &j-values, the 
same might not be true for other examples and the question would be which is 
preferable. One possible answer is to prefer the procedure with the largest gain. 
For each of the a*- and 5j-values, the gains are shown in the first two rows of the 
GAIN block in Table 2. Evidently there is little to choose between the a*- and the 
&j-values from this point of view. We note in passing that  the gain corresponding 
to the Cp criterion is 0.874. 

In practice a model is often selected by means of hypothesis testing. If 
F(~/; l, u) is the 100~/% upper critical value of the Fl,~-distribution, the subspace 
Lj is included in the selected model if Fj >_ F(~/; lj, u) on the basis of a 3,-level 
test. Evidently this is equivalent to the estimation approach to model selection 
with "variable" aj's now given by 6j = F(7; lj, u). The exceedance associated 
with this procedure is 

k 

(3.24) 1 E l jh . (F ( , , f ; i j , u ) ; i j , u  ) 
m 

j = l  

which is a function of % This function is strictly decreasing from oo at ~/= 0 to 
0 at ~/ = 1 so that we can find the choice of ~ = ~/(e; l l , . . . ,  lk, u) which makes 
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Table 1. Values of &(e; l; u). 

e v ---- 15 v = 30 v = 60 ~, ---- 100 u = oo 

I = 1 0.05 0.302 0.306 0.308 0.309 0.310 

0.10 0.491 0.497 0.500 0.501 0.503 

0.25 0.955 0.962 0.966 0.968 0.970 

0.50 1.619 1.625 1.628 1.629 1.631 

1 ---- 2 0.05 0.501 0.512 0.518 0.520 0.523 

0.10 0.745 0.758 0.765 0.768 0.773 

0.25 1.300 1.314 1.321 1.324 1.329 

0.50 2.045 2.052 2.055 2.057 2.059 

l ---- 3 0.05 0.655 0.673 0.683 0.687 0.693 

0.10 0.926 0.946 0.957 0.962 0.969 

0.25 1.517 1.536 1.545 1.549 1.555 

0.50 2.282 2.288 2.290 2.291 2.291 

l = 4 0.05 0.774 0.799 0.813 0.818 0.827 

0.10 1.060 1.086 1.100 1.106 1.115 

0.25 1.665 1.686 1.697 1.702 1.708 

0.50 2.432 2.434 2.435 2.435 2.434 

l = 5 0.05 0.869 0.900 0.917 0.924 0.935 

0.10 1.161 1.193 1.210 1.217 1.228 

0.25 1.771 1.795 1.808 1.812 1.820 

0.50 2.534 2.535 2.534 2.533 2.530 

l = 10 0.05 1.146 1.201 1.231 1.244 1.265 

0.10 1.444 1.495 1.522 1.534 1.551 

0.25 2.045 2.077 2.091 2.096 2.102 

0.50 2.779 2.773 2.762 2.755 2.741 

l ---- 15 0.05 1.282 1.352 1.392 1.410 1.436 

0 . i0  1.575 1.638 1.672 1.686 1.707 

0.25 2.161 2.198 2.212 2.216 2.219 

0.50 2.875 2.864 2.846 2.834 2.811 

l = 20 0.05 1.362 1.445 1.492 1.512 1.544 

0.10 1.651 1.723 1.762 1.778 1.801 

0.25 2.226 2.266 2.280 2.283 2.284 

0.50 2.927 2.913 2.889 2.874 2.840 

l ---- 25 0.05 1.416 1.507 1.561 1.583 1.619 

0.10 1.700 1.779 1.822 1.839 1.864 

0.25 2.267 2.309 2.324 2.326 2.323 

0.50 2.959 2.943 2.915 2.896 2.854 
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Table 2. Example. 

Lj lj Fj a e = 0.05 0.10 0.25 0.50 
L1 4 8.31 a* 1.235 1.549 2.123 2.778 

& 0.813 1.100 1.697 2.435 
1.290 1.769 2.764 3.987 

L2 5 5.94 c~* 1.235 1.549 2.123 2.778 
& 0.917 1.210 1.808 2.534 
& 1.281 1.706 2.575 3.629 

L3 20 1.29 ~* 1.235 1.549 2.123 2.778 
& 1.492 1.762 2.280 2.889 

1.203 1.424 1.846 2.329 

GAIN (~* 0.571 0.751 0.891 0.939 
& 0.628 0.742 0.865 0.928 
(~ 0.560 0.730 0.897 0.952 

the exceedance equal to e for any prescribed e. In our example numerical  work 
shows tha t  for e equal to 0.05, 0.10, 0.25 and 0.50 the  corresponding values of 
7 are equal to  0.284, 0.147, 0.0355 and 0.0062 respectively. The  corresponding 
values of the ~ j ' s  are shown as the third ent ry  under  each e in Table 2 and the 
gain of the corresponding es t imator  can be calculated as before and is shown in 
the last row of the GAIN block. In terms of exceedance and gain it is evident 
t ha t  the three procedures  are very similar. However, notice tha t  the (~j-values 
decrease with increasing lj whereas the &j-values increase. This is readily seen to 
be generally true. Thus  the hypothesis  test ing approach will also tend  to select 
less parsimonious models t han  the est imat ion approach based on the  &j-values (as 
is i l lustrated by the e = 0.05 case). 

If all the  subspaces Li are of the same dimension, as for example in the case 
of a regression model  when every li = 1, the three approaches in t roduced above 
for selecting L are readily seen to be equivalent. In such a case the a-values 
corresponding to some given value of e can be obta ined from Table 1. 

4. Minimax regret 

In this section we consider choosing the a j ' s  by the  minimax regret approach of 
Shibata  (1986) and Hosoya (1983) applied to  the s t ruc ture  (1.3) with the orthogo- 
nali ty assumption as before. Since M E £ any # E M must  be in some L E £.  Let  
J ( g )  be the smallest subset of {1, 2 , . . . ,  k} such tha t  # e L(/~) = Lo + ~jed(~t) Lj .  

If L(#)  were known we could have used PL(u) Y to  es t imate  # entailing a risk 

(4.1) EIIPL(.) Y - #112 = a 2 dim(L(t t ) )  = a 2 

Then  the  r e g r e t  of P L Y  is defined as 

(4.2) t~R(~, a l , . . . ,  ak) = EIIPL Y - #1[ 2 - EilPL(~,) Y - #ll 2. 
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Table 3. Min imax  regret values and  choices of ~. 
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l 

~ , - -15  ~ , = 6 0  v = o o  v - - 1 5  v = 6 0  v = c ~  

1 1.887 1.878 1.875 0.607 0.601 0.599 

2 1.934 1.897 1.887 0.457 0.442 0.437 

3 1.922 1.880 1.864 0.363 0.356 0.348 

4 1.914 1.859 1.838 0.325 0.299 0.290 

5 1.907 1.834 1.813 0.290 0.260 0.248 

10 1.881 1.773 1.726 0.203 0.158 0.140 

15 1.870 1.737 1.673 0 . 1 6 8  0.114 0.093 

20 1.863 1.714 1.637 0.148 0.090 0.066 

25 1.859 1.698 1.610 0.136 0.074 0.049 

By (3.7) and (4.1) this becomes 

(4.3) 
"1 

E ljh(Aj,c~j;lj,v)+ E lj(l+h(O, aj;lj,~'))]. 
icJ(~,) jC J(~,) J 

To maximize the regret will respect to # E M, we first maximize with respect to 
# restricted such that  J(#)  = J and then vary J over all subsets of {1, 2 , . . . ,  k}. 
Clearly 

(4.4) max 6R(#, OZl , . . .  , O~k) 
{D:J(D)=J}  

k 

= ~2 E l j  [I(j e J)h* (aj; lj, ~') + I(j ¢ J)(1 + h(0, c~j;lj, v))]. 
j = l  

It is readily seen that  the equation 

(4.5) h*(a; l, v) = 1 + h(0, a; l, ~) 

has a unique solution a = &(l, ~,). For the choices &j = ~(lj, v), (4.4) becomes 

k k 

(4.6) ljh*( j; = l j [1 - + 2))] 
j----1 j = l  

which does not depend on J,  and for any other choice of the ~j ' s  we can choose J to 
make (4.4) larger than (4.6). Hence (4.6) is the value of the minimax regret and the 
( ~ j - v a l u e s  a r e  the minimax regret choices of the aj 's .  For purposes of comparison 
it is convenient to divide (4.6) by a2m and speak of the relative minimax regret. 
Comparing (4.6) and (3.19) we see that  the relative minimax regret is equal to 
the exceedance and is also related in a simple way to the gain corresponding to 
the minimax regret choice of the c~j's. Table 3 gives the values of 5(/, v) and 
h*(&(/, ~,);1, v) for some choices o f / a n d  ~,. We note that  &(/, v) does not vary 
much with 1 and ~ and are fairly close to the Cp choice of a = 2. As a result the 
corresponding exceedances are rather large for small I. 
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Returning to our example, we get &l = 1.859, &2 = 1.834 and ~i3 = 1.714 
so that  the selected model includes only the main effects which is in accordance 
with the model selected by most of the previously discussed criteria. The minimax 
relative regret is 0.143 which is also the exceedance and seems reasonably small. 

5. Estimating the risk in the orthonormal case 

Consider the estimator P L Y  with L given by (3.1). We assume that  the 
constants a j  in (3.1) have been chosen beforehand, e.g. to limit the exceedance of 
the resulting estimator to some given amount  e. The relative risk of PL Y ,  given 
by 

(5.1) 
k 

1 
1 + - -  ~ ljh()~j, c~j; lj, z~) 

m 
j = l  

is between the two limits in (3.19). Close to the least favourable configuration 
(3.16) the relative risk (5.1) will be close to the upper limit in (3.19), while the 
lower limit in (3.19) is approached if we are close to the most favourable configu- 
ration (3.18). In most cases, however, the true situation will be some intermediate 
configuration. For instance, the observed F~-values in the example in Section 3 
seem to indicate that  )~1 and A2, corresponding to the main effects, are signifi- 
cantly different from zero, while )~3, corresponding to the interaction effects, is 
close to zero, so that  it appears unlikely that  we are close to the least or the most 
favourable configuration. To obtain an indication of the actual accuracy of P£ Y 
as an estimator of # we may estimate the relative risk (5.1) of PL Y" A detailed 
study of the problem of finding a good estimator for (5.1) will not be done here; 
we will only give a brief outline of a simple approach and apply it to our example. 

Since (5.1) is a linear combination of the h(%j, c~j; lj, v) and the lj are known, 
estimating (5.1) can be accomplished by estimating the individual terms. Consid- 
ering such a term in general, let L be a given/-dimensional subspace of M and put 
)~ = HPLI.tl]/a and assume that  ~ is a known positive constant. We wish to find an 
estimator of h = h(A, a; l, v) given by (3.8) based on the statistic F = ][PL Y]]2/la2 
which has a non-central Fl,~(~2)-distribution. Since E F  = (1 + )t2/1)v/(v - 2) and 
the factor v / (v - 2) will usually be close to 1, l (F - 1 ) is an approximately unbiased 
estimator of %2. However, it may be negative. Truncating and taking its square 
root, a simple estimator of A is 

(5.2) £= vq(F-1)+ 

with x + -- max(0, x). A corresponding estimator of h is 

(5.3) h = h ( ~ , a ; l , v ) .  

To appraise this estimator consider its MSE, E[h - h] 2. The minimax value of 
the problem of estimating h provides a norm with which the MSE of ~t can be 
compared to see whether the accuracy of tt is within reach of what is possible for 
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this problem. To calculate this minimax value, consider a discrete prior placing 
probability 7ri on the point A = Ai for i = 0 ,1 , . . .  where ~ 7ri = 1 and we shall 
take 0 = A0 < A1 < ." '. The corresponding Bayes estimator of h is 

(5.4) hB(F) = E rih(,~i, a; l, l:)f(F I .x,, t , . )  
E Irif(F I Ai, l, I/) 

where f ( x  I A, l, v) is the non-central Ft,,(A2)-density of F.  The MSE of hB is 

(5.5) f0 cC[hB(X) - h(A, a; l, v)]2f(x I A, l, y)dx 

and if we can choose the zri's and Ai's such that (5.5) as a function of A achieves 
equal global maxima in each of the points A = Ai, then (5.4) is the minimax 
estimator of h and this maximum of (5.5) is the minimax value for the problem of 
estimating h (see e.g. Lehmann ((1983), pp. 249-250)). Numerical studies showed 
that for I < 2 three point priors satisfying this requirement can be calculated while 
for l > 2 two point priors suffice. Figure 4 shows how the MSE's of h and the 
minimax estimator compare in the illustrative case l -- 5, a -- 2 and v = ec. For 
this case we find that A1 = 2.55 and 1rl = 0.519. While the MSE of h is larger than 
that of the minimax estimator for small values of A, the converse is true for large 
values of A. The minimax estimator itself has the unsatisfactory property that it 
does not approach 0 as F ~ cc and its MSE does not approach 0 as A --, c~. 
Overall we feel that  h provides a simple and reasonably accurate first estimator of 
(5.1). 

Fig. 4. 
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To conclude we apply these results to the example of Section 3. For the 
minimax regret choice of the aj 's ,  the estimated overall relative risk is found to 
be 0.666. For the different cases reported in Table 2, the estimated overall relative 
risks are given in Table 4. The estimated relative risks in the third row of Table 4 
first decrease as e increases but increase when e becomes large. This trend is also 
true for the first two rows with minima occurring between e -- 0.25 and e -- 0.5. 
Clearly these estimated relative risks indicate that  substantial risk reduction is 
obtained by the selection rules studied here over a large range of e values. 

Table 4. Es t imated  relative risks. 

e = 0.05 0.10 0.25 0.50 

a* 0.833 0.714 0.581 0.575 

& 0.732 0.648 0.567 0.559 

(~ 0.846 0.761 0.658 0.689 

6. Concluding discussion 

(i) The strategy in Sections 2 and 3 to design the selection rule so that  the 
maximal risk of the estimator is 1 + e times the minimax value has often been 
used in the literature (see e.g. Hodges and Lehmann (1952), Bickel (1984) etc.). 
An advantage of doing this is that  different estimators are made comparable in 
terms of an important global property, viz. their maximum risks, and that  they 
can then be compared sensibly in terms of other properties. However, in practice 
it might be difficult to commit oneself to a particular value of e in order to obtain 
a uniquely specified choice of the aj 's .  Fortunately as illustrated in our example, 
a wide range of e-values may lead to the same conclusions, so that  this need not 
be a critical issue. Of course, similar issues occur often; the choice of a significance 
level in hypothesis testing is another example. 

(ii) In some problems no proper subspace M of R n which is known to contain 
# is available, i.e. effectively M = R n, m = n and the usual estimator ~2 is not 
available. Therefore it is desirable to extend the results obtained in this paper to 
such cases and even to attempt to improve on these results when m is close to n 
by e.g. basing an estimator for a 2 on IIQL YII 2. 

(iii) Throughout this paper we assume that  once a model (subspace L) has been 
selected the estimator of # is the projection of Y onto L. This is the least squares 
estimator associated with L and is commonly used in practice. Other estimators 
may however also be considered such as an appropriate Stein type estimator which 
shrinks PM Y towards P£ Y. Research on this possibility is in progress. 

(iv) A major limitation of the results obtained in Sections 3 and 4 is the 
orthogonality assumption regarding the subspaces Lj in the assumed structure 
(1.3). Thus the results obtained can be applied directly to the variable selection 
problem in multiple regression only if the columns of the X-matrix are orthogonal. 
If this is not the case, one possible solution is to transform to principal components 
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and  to  select a model  in t e rms  of the  pr incipal  componen t s  of the original variables  

(columns of the  X - m a t r i x )  r a the r  t h a n  in t e rms  of the  variables themselves  (see 
e.g. Subsect ion 7.4 of L inhar t  and  Zucchini (1986)). I f  the  user insists on a model  
selected in t e rms  of the  original variables  this solution will not be  acceptable .  
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