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Abst rac t .  In linear regression models with random coefficients, the score 
function usually involves unknown nuisance parameters in the form of weights. 
Conditioning with respect to the sufficient statistics for the nuisance parameter, 
when the parameter of interest is held fixed, eliminates the nuisance parame- 
ters and is expected to give reasonably good estimating functions. The present 
paper adopts this approach to the problem of estimation of average slope in 
random coefficient regression models. Four sampling situations axe discussed. 
Some asymptotic results are also obtained for a model where neither the re- 
gressors nor the random regression coefficients replicate. Simulation studies 
for normal as well as non-normal models show that the performance of the 
suggested estimating functions is quite satisfactory. 
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1. Introduction 

Linear regression models with random regression coefficients have been studied 
by different authors (see Hildreth and Houck (1968), Swamy (1971), Anh (1988) 
and Dielman ((1989), Chapters V and VI)). For estimation of /3  (the average 
of the random regression coefficients), standard techniques involve fully-iterated 
maximum likelihood and weighted least squares. The former method requires the 
knowledge of underlying distributions. In the weighted least squares technique, 
the weights axe functions of unknown parameters, estimates of which are usually 
obtained using the ordinary least square estimator. See, for example, Swamy 
(1971). 

Our results are mainly concerned with situations where the data are in a 
stratified form. Let a~(i) and a2(i) respectively denote the variances of random 
regression coefficients and error terms in the i-th stratum, i = 1 , . . . ,  m. Most of 
the work in this area assumes that a~(i) -- a~ for all i and a2(i) --- a~ for all i, 

though Swamy (1971) discussed the case where a~(i) = a~ for all i, but a2(i) 's 
may vary over the strata. We axe primarily interested in situations where both 
a~(i) 's and a2(i) 's are allowed to vary over the strata. 
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We discuss four situations which are usually met in practice. For each situa- 
tion, we consider the problem of estimation of the regression parameter /3, from 
the point of view of the theory of estimating functions. We derive an optimal esti- 
mating function, which is free from the unknown (nuisance) parameters, through 
conditioning the data  on the complete sufficient statistic for nuisance parameters, 
holding/3 fixed. For related discussions of such conditional estimating functions, 
the reader is referred to Lindsay (1982) and Mantel and Godambe (1989). 

Let G denote the class of regular unbiased estimating functions (cf. Godambe 
(1985)). 

DEFINITION 1.1. An estimating function 9" 6 G is said to be locally optimal 
at 0 = 00, if for any g 6 G, 

E2(Og * /O/3)E(g 2) > E2(Og/O/3)E(g *2), 

where/3 is the parameter of interest and 0 is the nuisance parameter (Mantel and 
Godambe (1989)). 

DEFINITION 1.2. The standardized version g~, of an estimating function g 
for the parameter/3 is defined by 

g8 = g/E(Og/O/3). 

DEFINITION 1.3. With respect to a random variable S(/3) (free from 0), an 
estimating function g is said to be conditionally zero unbiased, if E{g  I S(/3)} = 0. 

DEFINITION 1.4. The conditional information of a conditionally zero unbi- 
ased estimating function g is defined by I { g I S(/3)} = E2{(09/0/3) t S (/3) } / E { g 2 I 
s(/3)}. 

Usually, we choose S(/3) to be a sufficient statistic for the nuisance parameter,  
holding the parameter of interest,/3, fixed. 

Let yij's be random variables (j = 1 , . . . , n i )  with joint density function 
f i ( Y i l , . . . ,  Yi,~,;/3, O) = fi(/3, 0), which satisfies the Cramer regularity conditions, 
where/3 is the parameter of interest and 0 is the vector of nuisance parameters. 
Let U be the score function given by 

m m 

(1.1) U - E Ui = E O{log fi(/3, 0)}/0/3. 
i = 1  i = 1  

The estimating function U is optimal if 0 were known or absent in (1.1). When 
U involves 0 (unknown), U cannot be directly used for estimation of/3. Following 
Lindsay (1982), if for each fixed /3, there exists a unique maximum likelihood 
estimator 0(/3) of 0, we define the estimating function 0 as 

m m 

(1.2) O =  = u,(/3, #(/3)) 
i = 1  i = 1  
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But, U may fail to give a zero unbiased estimating function. To overcome this 
problem, Lindsay (1982) suggests using the conditional score function as described 
below. (Earlier work in this direction is due to Bartlett,  Neyman and Scott; cf. 
Cox and Hinkley ((1974), p. 146) and Godambe (1976)). 

Let Si(~) be a sufficient statistic for the nuisance parameter 0, when ~ is fixed. 
Consider 

m m 

( 1 . 3 )  w = = - E , ( U ,  I 

i = l  i .~ l 

Mantel and Godambe (1989) show that  (1.3) is locally optimal at a specified value 
of 0. As noted by them, if W depends on 0, no optimal estimating function exists. 
Under certain assumptions, Lindsay (1982) has shown that  W is a zero unbiased 
and information unbiased (i.e. E((OW/O~) ÷ W 2} = 0) estimating function and 
I]V is an unbiased estimating function, where 

m 

(1.4) w(3) = w,(3, e(Z, s(3))). 
i = l  

Mantel and Godambe (1989), in a recent paper, adopt the following approach. 
Consider the functions hi(yil , . . . ,yin~;t3) = hi (say). Let S(~) = ($1(~) , . . . ,  
Sm(~)) be as described above. Suppose that  the hi's are conditionally zero un- 
biased and orthogonal; that  is, E{hi  I S(~)} = 0 and E{h ih j  I S(~)} = 0 for 
i , j  = 1 , . . . ,  m, i ~ j .  The conditionally optimal estimating function g*, that  is, 
one which maximizes I {g  I S(~)} for all 8, in a semi-parametric set up, is given 
by 

m 

(1.5) g*-~ Z a * h i ,  
i----1 

where a* = E{(Ohi/O~) I S (~ ) } /E{h~  I S(fl)}, i = 1 , . . . ,  m. The estimating func- 
tion (1.5) is optimal in the class of conditionally zero unbiased estimating functions 
viz., G* = {g = ~-~ aihi, where the ai's are functions of fl and S(fl) only}. 

Various situations that  we discuss in this paper are described below. 

Model I. Yij = ~ixi +ei j ,  j = 1 , . . . , n i ;  i =- 1 , . . . , m .  

ASSUMPTIONS. (i) eij's (j = 1 , . . . , n i )  are independently distributed with 
mean zero and variance a~(i); i = 1 , . . . ,  m. (ii) ~i's are independently distributed 
with mean f~ and variance a~(i) for i = 1 , . . . ,  m. (iii) ~i and ejk are independent 
for all i, j and k. 

Notice that  both the (random) regression coefficient and regressor are fixed 
throughout  the i-th stratum. 

Model II. Yij -=~ixij ÷e i j ,  j = 1 , . . . , n i ;  i ~ 1 , . . . , m .  
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Other assumptions are the same as those of Model I. 

Model III. Y i j : ~ i j x i + £ i j ,  j = l , . . . , n i ;  i = l , . . . , m .  

ASSUMPTIONS. (i) eij'S (j = 1 , . . . ,n i )  are independently distributed with 
mean zero and variance a2(i); i = 1 , . . . ,  m. (ii) ~ij's (j = 1 , . . . ,  us) are indepen- 
dently distributed with mean/3 and variance a~(i); i = 1 , . . . ,  m. (iii) eij and ~k~ 
are independent for all i, j ,  k and I. 

These models are widely discussed in the literature. Hyde (1980) applied 
Model II, with an intercept factor to analyze "OUABAIN DATA" obtained from 
seventeen kidneys. He considers Yij as the j - th  observation of the oxygen con- 
sumption of the i-th kidney and xij, the corresponding sodium reabsorption, after 
changing the kidney equilibrium with the drug ouabaln. The reciprocal of the 
regression coefficient/3, is interpreted as the estimate of the pumping efficiency. 
In his statistical analysis, Hyde treats the ~i's as realizations of a random vari- 
able and notes that  the variance of the error term changes from kidney to kidney. 
We refer to Dielman ((1989), Chapters V and VI), for more references regarding 
applications. 

Section 2 discusses conditionally optimal estimating functions (1.5) for ~, for 
each of the above heterogeneous models. The suggested estimating functions can 
very well be used in an appropriate semi-parametric set up. This is further sup- 
ported by our simulation studies. 

In Section 3, we deal with the above three models with equal variances over 
the strata. We also consider another regression model (Model IV) with a random 
coefficient, given by 

Model IV. Yi ---- ~ixi + ei, i ---- 1 , . . . , n ;  

with the same assumptions as that of the earlier models. In this model, there are no 
replications of x's or ft's. The optimal estimating function depends on unknown 
parameters in the form of weights. Therefore, one usually proceeds to obtain 
an asymptotically optimal estimating function by replacing nuisance parameters 
by their consistent estimators. We have considered another estimating function 
where the nuisance parameters are substituted in terms of functions of the data 
and parameters of interest only. If f~i and ei are normally distributed, then this can 
be viewed as I]V of (1.4). Unlike the first three models, results of this subsection 
are asymptotic in nature. It is shown that the resulting estimating functions 
are asymptotically optimal in the sense that  both the estimating functions have 
asymptotically the same variance as that  of the estimating function with known 

2 0. (It weights. This extends a result due to Anh (1988), who assumes that a~ -- 
may be pointed out that Anh's results deal with estimators rather than estimating 
functions.) No distributional assumptions have been made here. 

All our results can be easily extended to multiple regression models. The so 
called mixed effect models discussed in Dielman (1989) can also be seen as a special 
case of such a multiparameter extension. 
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2. Models with heterogeneity 

2.1 Analysis of  Model I 
Let fli and eij be normally distributed with means fl and zero respectively 

and variances a~(i) and a2(i) respectively. For notational convenience, we write 
2 instead of a2~(i) and a2(i) when a s t ra tum is fixed. The log likelihood a~ and a e 

function for the i-th s t ra tum is given by 

(2.1) log Li = - (ni/2) log(27r) - {(ni - 1)/2} log(a 2) 

- ( 1 / 2 )  log(ni¢~x 2 + a 2) - {1/(2a2)} Z ( y i j  - ~i) 2 
j = l  

 i(fJi - 
2 2 " 2(n   xi + 

Here, U = Y~in ix i ( f l~ -  flx~)/(nia2flx 2 + a 2) (which coincides with W) and it 

cannot be directly used for estimation purposes. Let 0(fl) be the unique maximum 
likelihood estimator of 8 2 2 = (a~, cre) for fixed ft. Lindsay (1982) suggests the use 

of ~r (of (1.2)), if it leads to an unbiased estimating function. Since, in this case, 
~]i = xi /(~i  - flxi), this approach fails here. 

Let Sil = ~"]j(Yiy - Yi) 2, Si2 = (fli - flxi) 2. From (2.1), we see that  Si(fl) = 
(S~1, Si2) is both complete and sufficient for the nuisance parameter 0 =(a~,a~),2 2 
when fl is fixed. It is clear from Rao ((1984), p. 197) that  Sil and Si2 are in- 

2 2 dependent.  The random variable Sil is distributed as a, Xn,-1,  whereas Si2 is 
2 2 rr2Jn \ 2 distributed as (a~x i + ~/ i)X1. 

Let Hij = Yij - flxi. Here, in principle, it is possible to maximize the product  
of the conditional likelihoods of (H i j , j  = 1 , . . .  ,ni)  given Si(fl), i -= 1 , . . .  ,m .  
However, this conditional distribution is too messy to handle, particularly since the 
range of the distribution depends upon fl in a highly complex manner. Secondly, 
such an estimation procedure would be heavily influenced by the assumption of 
normality and would tend to be non-robust against departures from normality of 
fli - fl and or eij. We, therefore, adopt the following approach. 

Let Hi = (/-//1,...,Hi,~,)' = ( Y i l  - f lX i , . . . , y in ,  -- flXi)'. It is easy to see 
that  E { H i j  I Si(fl)} = 0. Since for fixed fl, Si(fl) is both complete and suffi- 
cient for the family of distributions of Hi,  E { H  2 I Si(fl)} is the uniformly min- 
imum variance unbiased estimator of E ( H ~ ) .  Combined with the distributional 
properties of Sil and Si2 described earlier, we have E { H ~  I Si(fl)} = Var{Hid I 
Si(fl) } = Si2+ S i l /n i  almost surely, E {  Hij Hik I Si(fl) } = Cov{Hij,  Hik ] Si(fl) } = 
Si2 - Si l / { ni ( ni - 1)}, almost surely. Since Hi j ' s, j = 1 , . . . ,  ni are conditionally 
correlated, the estimating function (1.5) is no more optimal. However, it is easy 
to see that ,  in this situation, the estimating function g* = Y~i~l E[C~-I(fl)Hi 
is conditionally optimal, where Ei = - ( x i , . . . ,  xi) ~ and Ci(fl) is the conditional 
variance-covariance matrix of Hi. Simplifying g* further, we can see tha t  it reduces 
to y~i(E~Hi/niSi2) ,  since niSi2 is a characteristic root of Ci(fl) and Ei is the cor- 
responding right characteristic vector. However, note that,  E]g*] = oc. But, this 
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difficulty can be easily dealt with by considering the conditional standardization 
of g*, viz., g; = g*/E{(Og*/Oj3) I S(fl)},  i.e. we consider 

(2.2) g* = niSi2 x k2 • 
i = 1  ~ ~ k = l  ~ ~ 

It is easy to see that E(g~) = 0 and Var(g~) < oc. 
The estimating equation (2.2) is solved by using the ordinary least square 

estimate obtained from 

(2.3) 
m 

, = 1  

and using the iterative procedure 

where ~30 is the solution of (2.3). In our simulation study, we restrict to one step 
correction only. We note that the estimating function (2.2) is reasonable for semi- 
parametric models also. This follows from the fact that S~2(fl) simply estimates 
the weight in the optimal estimating function U. We have obtained the mean 
square errors of estimates from U (for known values of nuisance parameters), g~ (of 
(2.2)) and gl (of (2.3)) for three different distributions of j3i and eij. The results of 
simulations axe reported in the table given below. Since U merely serves as a bench 
mark and is not used in practice, we report the ratios of the mean square errors 
which reflect the magnitude of the loss in efficiency when the nuisance parameters 
are unknown. (Throughout the Tables 1-4, mse(gl)/mse(g2) denotes the ratio of 
the mean square error of the estimate obtained from gl to the mean square error 
of the estimate obtained from g2.) From Table 1, we can see that the performance 
of g; is much better than that of gl, in almost all situations. Note that, even if 
the variances do not change over the strata, the estimating function (2.2) performs 
quite well. Further, we note that for distributions other than normal, U is not 
the score function and may not be a proper bench mark. Thus, in nonnormal 
situations, it is possible that the MSE ratio of suggested estimating functions be 
less than one. This is reflected in Table 1. Similar comments apply to the Table 
2 also. 

2.2 Analysis of  Model H 
Let fli and eij be normally distributed with means ~ and zero respectively, 

and variances a2~(i) and a2(i) respectively. As before, we write a~ and a~ 2 instead 

of a~(i) and a2(i) when a stratum is fixed. Let Yi = (Y i l , . . . ,  Yi,~,)'. Then, Yi has 
an ni-variate normal distribution with mean ui and dispersion matrix V~, where 
vi (Zxil , fl ins) = flX~ and V~ -- a 2 X i X "  + a 2I Without loss of generality, 
we assume that X ' X i  = 1 for all i --- 1 , . . . ,  m. The log likelihood function Li for 
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Table 1. Ratios of mse's of estimates obtained from g~ and gl to U. Number  of simulations = 
1000; m ---- 6; ni ----- 3, 4, 5, 6, 5~ 4. 

Trial 

~umber ~(i) ~(i) 
1 100, 200, 150, 50, 75, 20 10, 20, 15, 25, 10, 100 10 

2 2,4,6,8,  16,32 1, 1, 1, 1, 1, 1 2 

3 10, 10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10 5 

Trial 

/~i "~ Normal eij ,,~ Normal 

mse(g*)/mse(U) mse(gl)/mse(U) 

1 1.643829 2.855207 

2 1.651286 4.429885 

3 1.090402 1.547711 

Trial 
/3i ~ Logistic eij ~ Logistic 

mse(g~)/mse(U) mse(gl)/mse(U) 

1 1.436874 1.169453 

2 1.789639 5.481226 

3 0.893838 1.372011 

Trial 
~ i - ~ t s  e i j ~ t s  

mse(g~)/mse(U) mse(gl)/mse(U) 

1 1.502885 1.472559 

2 1.849164 2.339907 

3 1.001800 1.325434 

Note. The values of x i ' s  are arbitrarily chosen between 0 and 10. t8 ~ t-distribution with 

8 degrees of freedom. 

the i-th s t ra tum is given by 

(2.4) logLi = - ( n i / 2 ) l o g ( 2 7 r ) - { ( h i -  1)/2} log(~ 2) 

- (1/2) log(a~ + a~) 

- - ( 1  + 

where )~ 2 2 = a~/aft. It follows that  

n, (Yij : 13xij)xij 
Ui = 0/0/~{log Li} = ~ ~-~(i) + ~2(i) " 

j----1 

It can be easily seen that  U -- )--~, Ui, does not lead us to an estimating function 
which is free from the nuisance parameters. Further, even though U is free from 
nuisance parameters, it is not zero unbiased, since EIUil = oo. 
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Now, let Zi = (Zil , . . . ,Zi ,~,) ' ,  where Z~j =- yiy - ~ x i y ,  j = 1, . . .  ,n~. Let 
0 = (a~,a2). From (2.4), we see that  Si*(fl ) = (Z~Zi, Z ~ X i X ( Z i ) i s  sufficient 
for the nuisance parameter 6, when ~ is fixed. Define S,i(~) = (Til,Ti2), where 
T~, = Z~X~X(Zi and T~2 = Z [ ( I -  X iX( )Z i .  Then, we have the following: (i) 
T/~ and T/~ are independent; (ii) Si(~) is a complete sufficient statistic for ~; (iii) 

~2~. 2. and (iv) Ti2 is distributed as o'~ Xn~-I Ti, is distributed as (a~ + e ~ l ,  2 2 (cf. Rao 
(1984), p. lSS). 

In this case, W coincides with U, whereas, l~, given by (1.4) reduces to I~ = 
~ i  ~Vi = )-~i )-~j(Yij - ~x i j ) x i j /T i l  is not zero unbiased. In fact E(llfVil) = ¢x~. 
We, therefore, proceed as follows. 

Arguing as before, we have E{Zij  ] Si(Z)} = 0, almost surely. Further, 

= 1) 
T/2 + ~  

- 1 ) '  

almost surely, and 

T/2 
j~=k,  

almost surely. Thus, the conditionally optimal estimating function is given by 
g{ = ~{m I X[f~( l (~)Zi ,  which simplifies to g** = ~'~m=l(X[Zi)/Til (this follows 
since T/1 is a characteristic root of f~{(~) and Xi is the corresponding vector). But, 
again, EIg~l : oc. As before, standardization leads to 

(2.5) gr~ : ~ X:  Zi T{I X ; X k / T k l  , 
i = l  

which is zero unbiased, further Var(g~8 ) < c~. To solve (2.5), we consider 

Tn ~r~ 

4=1 j = l  

The procedure is the same as described in Subsection 2.1. 
Here also, a similar type of simulation study is carried out as explained in 

Subsection 2.1. The parameters remain the same. From Table 2 it is clear that  
the performance of the estimating functions (2.5) and (2.6) is quite good for all the 
three combinations of distributions of ~ and e~j. It is also seen that  the estimating 
function g~ has an edge over (2.6). Further, note that  even if the variances do 
not change over the strata, (2.5) performs reasonably well. 



ESTIMATION IN RANDOM COEFFICIENT REGRESSION 221 

Table 2. Ratios of rose's of estimates obtained from g* and g to U. Number of simulations = ls 
1000; m = 6; ni = 3, 4, 5, 6, 5, 4. 

Trial 
n u m b e r  

1 100,200,150, 50, 75, 20 10120, 15, 25, 10,100 10 

2 2, 4, 6, 8, 16, 32 1, 1, 1, 1, 1, 1 2 
3 10,10, 10, 10, 10, 10 10, 10, 10, 10, 10, 10 5 

Trial 
fli ~ Normal eij ~ Normal 

mse(g{.)/mse(U) mse(g)/mse(U) 

1 1.237109 1.355899 

2 1,200304 1,397028 

3 1.074006 1 

Trial 

~i ~ Logistic eij ",~ Logistic 

mse(g{s)/mse(U ) mse(g)/mse(U) 
1 0.858224 1.461172 

2 1.248242 1.549602 

3 0.856324 1 

Trial 

/~i - / ~ t 8  eij ~ t8  
mse(g~s)/mse(V ) mse(g)/mse(V) 

1 1.023723 1.267342 

2 1.362298 1.745427 

3 1.049131 1 

Note. The values of xij's are arbitrarily chosen between 0 and 10. 

2.3 A n a l y s i s  o f  Mode l  I I I  

Under the assumption of normali ty for eij and ~ij, (1.1) and (1.3) give the same 
est imating function, which is not free from nuisance parameters.  Thus, we are nat- 
urally led to the conditional procedure. Wi th  the natural  choice of hi = fli - / 3 x i  = 
~ -~ j ( y i j / n i )  - / 3 x i ,  i = 1 , . . . ,  m ,  it is easy to see tha t  the conditionally optimal 
est imating function in the class G* (with respect to  S(~) = ( $ 1 ( ~ ) , . . . ,  Sm(~)),  
where Si(f~) = ~'~j(Yij - ~xi) 2) is given by 

, n zi(Oi - Z x i )  
( 2 . 7 )  a = • 

i=1 

Note tha t  (2.7) is nothing but  y~ U/(f~). (Here, it is understood tha t  s t ra ta  for 
which ni = 1 are ignored.) 

One can also use the replications to suggest another  est imating function as 
follows: the sample variance of the i- th s t ra tum is an unbiased est imator of the 
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Table 3. Ratios of mse's of estimates obtained from g~,/~18 and g~. to U. Number of simulations 
= 1000; m = 6; For trial 1, ni = 3 for all i, for trial 2, n~ : 4, 5, 6, 7, 6, 7 and n~ = 6, 7, 8, 6, 7, 8, 
for trial 3. 

Trial 
number a~(i) a~(i) 

1 50,70,100,150,200,100 10,20,30,40,50,20 25 
2 10,20,30,40,50,20 100,70,50,200,150,100 25 

3 100,100,100,100,100,100 10,10,10,10,10,10 25 

j3i ,'- Normal eij,-, Normal 
Trial mse(g~)/mse(U) mse(~ls)/mse(U) mse(g~)/mee(U) 

1 2.514146 3.003451 2.712723 

2 1.299891 1.139620 1.517157 

3 1.436803 1.504831 1.333610 

~, ~ Logistic eij ,,, Logistic 
Trial mse(g~)/mse(U) mse(/~8)/mse(U) mse(g*)/mse(U) 

1 1.146593 1.205535 1.083448 
2 1.422302 1.612142 1.136712 
3 1.243003 1.514950 1.002894 

~i '~ t8 eij '~ t8 
Trial mse(g~)/mse(U) mse(/~l,)/mse(U) mse(gl)/mse(U ) 

1 2.013145 2.132145 2.190246 
2 1.214482 1.120904 1.212345 

3 1.761266 2.161171 1.311367 

Note. The values of xi's are arbitrarily chosen between 0 and 10. 

nuisance  p a r a m e t e r  a2~(i)x 2 + a2(i).  Let  S 2 = ~-~j(yij - f l i )2/(ni  - 1). T h e  corre-  

s p o n d i n g  e s t ima t ing  func t ion  is given by  

• m - Zx ) 

( 2 . 8 )  = 
i~1 

This  is. an  unb iased  e s t ima t ing  func t ion  and  its uncond i t i ona l  var iance  exists  if 
ni  > 5. Var iances  o f  the  s t a nda rd i z e d  vers ions of  the  above  e s t i m a t i n g  func t ions  
can  be  easi ly o b t a i n e d  and  are no t  r epo r t ed  here. 

T h e  e s t ima t ing  func t ion  (2.8) can  be  ve ry  well appl ied  in a s emi -pa r ame t r i c  
set  up  also. T h e  func t ion  g~ (of (2.7)), is o p t i m a l  for the  models ,  which  have  
E{~i  [ S~(~)} = j3xi a nd  Var{9~ [ S i (~)}  = Si(13)/ni. 

In  Table  3, we give some  s imula t ion  resul ts  for Mode l  I I I .  T h e  e s t i m a t i n g  
func t ion  g~ is solved by  search ing  a zero in the  conf idence interval  based  on  the  



ESTIMATION IN RANDOM COEFFICIENT REGRESSION 223 

ordinary least square estimator viz., ~b = ~-~i f/ixi/~J'~i x2" Variance of this es- 
t imator is estimated by Wu's weighted jackknife procedure for heteroscedastic 
regression models (see Wu (1987)). The ratio of the mean square error of f)b to 
the mean square error of U is also included in Table 3. It can be noticed that  the 
performance of the conditional estimating function g~ as well as g~ is quite good. 

3. Models with homogeneity 

3.1 The first three models 
Even when the variances do not change over the strata, it is fruitful to follow 

2 the approach of conditional estimating functions to avoid estimation of a~ and a~. 
For example, in Model I, an estimating function optimal in an appropriate class 
is given by 

g = E { T 1 / ( N - m ) } { 1 -  2 2 -1 T _2,x--" x2~-i x i (Eix i )  E i ( I / n , ) } +  z~i~z~i i }  i = i  

where Ti = E Ej(wj T2 = 2 and N = E~m. The above 
estimating function is obtained as follows. We have E(T1) = a 2 ( N -  m), E(T2) = 

2 2 ~-~i(aZxi + a2/ni). Consider, hi = fh - j3xi and S(/~) = (Ti,T2), the sufficient 
and complete statistic for the model holding ~ fixed. Note tha t  E{h~ I S(~)} = 0, 
E{hihj I S(~)} = 0 for i # j .  Further, E{h~ I S(~)} is given by 

1 {  T1 { 1 - ( ~  x2 ) 
ni (N - m) i 

-1 
. ~(1 /n i )x~}  + (~i ) - 1 }  

Thus, the optimal estimating function g is as given by (1.5). Similarly, an optimal 
estimating function can be obtained for Model III also. (In the case of Model 
II, it is clear from the form of the score function that  the ordinary least square 
estimator itself is the optimal estimator). 

3.2 Regression Model IV 
In this section, we restrict ourselves to Model IV. The ordinary least square 

estimator of/~ in this case is 

(3.1) 
(~-~ 2) -1 ~ ls - - - -  x i Y i  x 

i=1 Xi=l 

Consider the estimating function g = ~-~i aih~, with hi = Yi - ~xi. In view of 
Godambe (1985), the estimating function g, optimal within ~, the class of regular 
unbiased estimating functions which are of the form ~ i  aihi, is given by 

(3.2) ~ (Yi - ~xi)xi 
g : 7 : _ 2 ~ - - : ~ ,  

i:i (a~xi + a~) 



224 T. V. RAMANATHAN AND M. B. RAJARSHI 

provided )~ 2 2 = az /ae  is known. Note that, under the assumption of normality on 
both j3i and e~, (3.2) is nothing but the score function. We start with the following 
lemma. 

LEMMA 3.1. Under the assumption that ~'~i(Ax 2 + 1)- ix  2 ~ oc as n ---* oo, 

for some ), e (0, A), h < oo, the following results hold. 

(i) b~l/2g has an asymptotic normal distribution with mean zero and variance 
one, where bn = Zi(a2(Ax2i  + 1) ) - ix  2. 

(ii) ~ l ,  the estimate obtained by solving g = O, is consistent for/3.  

PROOF. Part (i) follows from the assumptions and Feller-Lindeberg central 
limit theorem. Part (ii) follows in a routine manner. 

2 and then sub- Here, the usual procedure consists of estimating q~ and a~ 
stituting these estimates in (3.2). The following discussion shows that, under 
appropriate conditions on the regressors, this procedure is asymptotically as good 
as using (3.2) with known ~ = aJa~.2 2 

To estimate a~ and a~, consider the residual sum of squares after estimating 
by the ordinary least square estimator (3.1). This leads to a regression equation 

{ n --1 } - 1 )  ( (x TM~ 
E (y~ - ~L~x~) 2 1 - I ~ . . ,  ~ ] ~ = a ~ x i  + cry, 

\i----1 

which further yields 

(3.3) 
~2 : (Z (Z2 i_  Z2n)2 Zli-  Zln)(Z2i- Z2n); 

xi--1 "-- 
^2 

where Zli (Yi ~tsxi)2{1 __ (~-~ _2"~-1Z21-1 21 n n-1  2 and = - ~ i J  ~ , = ~ Z l ~ , Z 2 ~ = x i  
^ ^ ~ (or both) is negative. Z2n = (l/n)~-]~i Z2i. It is possible that either of a~ and a,  

The simplest remedy would be to use alternative estimator 5~* defined by, &~* = 
^2 max(5~, 0), as suggested by Hildreth and Houck (1968). The estimator a,  can be 

modified in a similar manner. If, in a given sample, both the modified estimators 
happen to be zero, we estimate ~ by ordinary least square estimator/~ts. 

The following result presents the relevant properties of (3.3). 

LEMMA 3.2. Suppose that the following hold. 
(i) E(Y~ 4) < oc, 

(ii) ( ~-~i----1 --2"~--1--2 n ~i !  ~i - ' 0  uniformly i n i ,  

'~ Z (iii) limsupn {n -1 )-~i=1( 2 i -  Z2n)2}-i22n < oc. 
^ ^ 2 defined by (3.3) is mean square consistent. Then, each of the estimates a~ and ae 

PROOF. Proof is based on the direct evaluation of the mean square errors. 
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The following result generalizes a result due to Anh (1988), who discusses the 
0. It may be pointed out that Anh (1988) discusses properties of the case ae -- 

estimator itself rather than those of the estimating function. 

THEOREM 3.1. In addition to the assumptions of Lemma 3.2, suppose that 
lim sup,  ~ xi12 (A*xi ~ + 1) -s  < oc, A* varying in a neighbourhood of A. Consider 
the estimating function 

--~ (~ - ~ ) ~  
(3.4) g = -Z_2--~--Z~- • 

Then, (i) n-1/2(~ - g) = %(1), (ii) Var(~) = Var(g) + O(n-~). 

PROOF. We have, 

n-1/2(~ _ g) 

= -n - l i 2 (b~  - a~) ~ ^2 2 + a~)((rnx i + a~) i~-i (O'J 3x i  ^2 2 2 

n 6ixi 

(~x~ + ~) ~=~ (a~x~ + ~ )  ~ 2 

where 5i = y~ -/~x~. The asymptotic distributions of 

^ 2 2  E 2 2  (ff  BX ~ ^ 2 2 2 + ~e)(~x~ + ~ )  and n -~/2 (~Zz ~ + ~ ) 2  

are the same. Using aiapounov's lemma (see Anh (1988)), n -1/2 ~,(g~x~ + 
2 -2 3 cry) 5ix i converges in distribution to a random variable having normal distri- 

bution with mean zero and variance lim,__.oo(a2nl/3) -3 )-~,(Ax~ + 1)-3x~. The 
same argument along with the consistency of b~ and b 2 proved in Lemma 3.2 
proves part (i). 

2 by a Taylor series expansion and making use of Expanding (3.4) at a~ and a~ 
the assumptions, it can be shown that Var(~) = Var(g) + O(n-1).  This completes 
the proof. 

Another useful estimating function, which avoids the two stage estimation, 
can be obtained as follows. Consider the substitution of nuisance parameters ~ 

2 by appropriate functions of the data and 13. More precisely, let and a e , 

~r2 (Z  ) : Ein--~l { (Yi - ]~Xi ) 2 -- [Ejn_--i (Y3 -- Zxj )2 /n] }{Z2i - Z2n} 
n Z E ~ = I (  2~ - 2 2 n )  2 

n 2 by 5~(Z) and b~(fl)= { )-~/--I(Yi- flxi)2/n} -b~(fl)22n. Substituting a~ and a~ 
and 5~(3) respectively in (3.2), we get 

n 
(yi  - ~ x ~ ) x ~ _  . . . .  

i= l  n(- Z2 i  -- 22n) n 
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It can be seen that ,  if/3i and e~ follow a normal distribution, then  21 is nothing 
but  I?V defined in (1.4). Proof  of the following result is similar to tha t  of Lemma 
3.2. 

LEMMA 3.3. 
Lemma 3.2, 

(b) 

Under the assumptions (a) and (b), viz., (a) assumption (i) of 

z i(z - o, 
nli~na~ [ ~ - - a  (Z2"----~' - Zzn)2]----~ : 

2 respectively. 8r2~(13) and &2(13 ) are mean square consistent for  a~ and ae 

A similar result holds for the standardized est imating functions also. 
Result similar to Theorem 3.1 establishing the optimali ty of 91 is immediate,  

as the mean square error consistency of b~(/3) and 82(/3) is assured by the above 
lemma. 

Below, we give Table 4 which gives the ratio of mean square errors of three 
estimates obtained by solving corresponding est imating equations. It is seen tha t  
the mean square errors of the estimates obtained by solving 9 = 0 as well as gl = 0 
are considerably less than  the ordinary least square estimator,  irrespective of the 
distributions of the error te rm and the random coefficient. Further,  bo th  ~ and gl 
perform reasonably well in comparison with (3.2) which assumes the value of )~ to 
be known. 

Table 4. Ratios of mse's of estimates obtained from ~, gl and/318 to g (based on 1000 simulations 
with sample size - 50). 

Distribution Distribution mse(~)/mse(9) mse(~l)/mse(g) mse(~ls)/mse(g) 
of E~ of ~3~ 

Normal(0,36) Normal(15,225) 1.586911 1.717785 1.781797 
Logistic(0,36) Logistic(15,225) 1.034116 1.073874 1.133878 
(ei/6) - t8 (/3~ - 15)/15 - t8 1.023369 1.088428 1.221408 

Note. xi's are chosen in such a way that 0 < xi < 1, for all i. 
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