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A b s t r a c t .  The lower bound principle (introduced in BShning and Lindsay 
(1988, Ann. Inst. Statist. Math., 40, 641-663), BShning (1989, Biometrika, 76, 
375-383) consists of replacing the second derivative matrix by a global lower 
bound in the Loewner ordering. This bound is used in the Newton-Raphson 
iteration instead of the Hessian matrix leading to a monotonically converging 
sequence of iterates. Here, we apply this principle to the multinomial logistic 
regression model~ where it becomes specifically attractive. 
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i .  Introduction 

Let  L(~r) denote  the log-likelihood, V L(n )  the score vector  and V2L(n)  the 
second derivative mat r ix  at  r E R m. Suppose 

(1.1) V 2 L ( r )  > B 

for all ~ and some negative definite m x m mat r ix  B. Here C > D denotes Loewner  
ordering of two matr ices and means tha t  C - D  is non-negative definite. Consider 
the second order  Taylor  series for the log-likelihood at  n0: 

1 
L(n)  - L(no)  = (n - n o ) T V L ( n o )  + ~ ( n  - no)TV2L(no + a ( n  - no))(~ - no) 

1 n0)rB(~ n0) > (n - ~0)~VL(~0)  + ~ (~  - 

where we have used (1.1) to achieve the lower bound for L. Maximizing the 
r ight-hand side of the above inequali ty yields the Lower  Bound  i terate  nLB ----- 
lro -- B - 1 V L ( n o ) .  We have the following: 

* Supplement to "Monotonicity of quadratic-approximation algorithms" by B6hning and 
Lindsay (1988). Ann. Inst. Statist. Math., 40, 641-663. 
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THEOREM 1.1. (BShning and Lindsay (1988)) (i) (Monotonicity) For the 
Lower Bound iterate we have 

L(~LB) k L(~0) wi th  " >  " i f  ~LB ¢ ~o. 

(ii) (Convergence) Let ( r j )  be a sequence created by the lower bound algorithm. 
I f  L is bounded above in addition, then 

I IVL(~y) l l .  , o. 
3 -.-~.¢x:, 

2. Multinomial logistic regression 

We observe vectors Y = (Yl , . . . ,  Yk+l) T, with y~ = 0 for all i besides one j 
with yj = 1 and corresponding probability pj, implying 

E Y  = p, Cov Y = Ap - pp T, A p =  

0) 
• • • 0 

Pk+l 

Recall that  the multinomial logit-model is given by 

k 

j = l  

k 

j = l  

for i - - - 1 , . . . , k ,  

where x = (x l , . . .  ,Xm) T is  the vector of covariates, and v(i) is the parameter 
vector corresponding to the i-th response category• For reasons of simplicity in 
presentation, consider the log-likelihood of just one observation Y: 

k [ k  ] 
log H p ~ J =  E Y j l r ( J ) r x  - log 1 + Eexp(+(J )T:¢)  . 

j=l j=l j=l 

Let 7r = ( r~ l ) , . . . ,  ~(1),,m, • • •, 7r~ k) , . . . ,  ¢(k))T,,m denote the mk-vector of m k  pa- 
rameters, the upper index going along with the response category, the lower index 
with the covariate. We have for the partial derivative 

OL exp(r  (h)T ~) 
(:97r(gh } = yhxg - 1 + ~jk=l exp(w(J)Tx) xg = (Yh -- ph)Xg 

with the notation Ph --- exp( ~ (h)r x ) / (1 + ~ k=l exp( ~r (j)T x )). This yields the score 
vector 

VL(Tr) = [(yl - i 5 1 ) x l , . . . ,  ( y l  - ~ l ) x m , . . . ,  (Yk --  ~ k ) X l , . . . ,  (Yk --  ~ k ) X m ]  T 

---- (Y - p ) ® x  
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where @ is the Kronecker product A @ B of two arbitrary matrices. The observed 
information can be easily computed to be 

leading to the observed information matrix 

The proof of the following lemma is straightforward. 

LEMMA 2.1. If A 5 B then for symmetric, nonnegative definite C: 

LEMMA 2.2. Ap - ppT < [E - l l T / ( k  + 1)]/2, where 1 is the k-vector of 1's. 

A proof of this lemma is given in the proof of Theorem 5.3 in Bohning and 
Lindsay (1988) or can be constructed from Theorem 2 in Baksalary and Pukelsheim 
(1985). 

Taking Lemmas 2.1 and 2.2 together, we get the following main result: 

THEOREM 2.1. (a) For the information matrix of one observation we have: 

(b) For the information matrix of a sample of size n we get: 
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where X is the n × rn design matrix " . 

(c) B -1 = 2[E - l l T / ( k  + 1)] -1 ® ( x T x )  -1 = 2[E + l i  T] @ ( x T x )  -1.  

(d) = + B - '  E , \ , ( r *  - P*) ® 

Remark. S i n c e  E i = l ( A l ~ ,  ^ ^ T T n ^ ^ T n n - p,p~ ) ® a~x~ = Y~=I(A~, T 
- PiPi ) ® E i - - - - 1  ~/Xi 

is not true in general, we would have to invert the (mk)  2 matrix icom at each step 
of the Newton-Raphson iteration. If we have 6 response categories (k = 5) and 
m : 10 covariates, then icom is a 50 × 50 matrix. In contrast, the lower bound 
principle needs to invert a 10 x 10 matrix only once. The lower bound algorithm 
converges linearly with convergence rate depending on HE - B-1V2L(~r)H. If 
~r = 0, then the lower bound algorithm converges at least superlinearly. Thus, if 
~r is "near" zero, the computational efficiency of the lower bound iteration can be 
expected to be better than that  of the Newton-Raphson iteration. To evaluate this 
point, in B5hning and Lindsay ((1988), Section 5.1) a simulation experiment was 
undertaken for binomial logistic regression, that  is k = 1. There, the comparison is 
essentially between inverting a k x k matrix once (the lower bound algorithm) and 
inverting it several times (until a stopping rule is met, for the Newton-Raphson 
iteration). In all cases studied there, the computational efficiency of the lower 
bound method was better than that  of the Newton-Raphson iteration. However, 
a downward-tendency was observed when the difference in CPU-time was plotted 
against distance of $r to zero. Thus, it is possible that  in extreme cases the Newton- 
Raphson algorithm might be more efficient. Here, we are comparing the single 
inversion of a k x k matrix (in the lower bound algorithm) with several inversions 
of a k m  x k m  matrix (in the Newton-Raphson iteration). This feature makes the 
lower bound method specifically attractive. 
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