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Abstract. The lower bound principle (introduced in Bohning and Lindsay
(1988, Ann. Inst. Statist. Math., 40, 641-663), Bohning (1989, Biometrika, 76,
375-383) consists of replacing the second derivative matrix by a global lower
bound in the Loewner ordering. This bound is used in the Newton-Raphson
iteration instead of the Hessian matrix leading to a monotonically converging
sequence of iterates. Here, we apply this principle to the multinomial logistic
regression model, where it becomes specifically attractive.
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1. Introduction

Let L(m) denote the log-likelihood, VL(r) the score vector and V2L(r) the
second derivative matrix at = € R,,. Suppose

(1.1) V3L(r) > B

for all m and some negative definite m x m matrix B. Here C > D denotes Loewner
ordering of two matrices and means that C-D is non-negative definite. Consider
the second order Taylor series for the log-likelihood at mg:

L(n) — L(my) = (7 — m) TV L(mg) + %(ﬂ' — 70)TV2L(mg + a(m — m)) (7 — 7o)
> (1 — m)TVL(mg) + %(w —m0)TB(7 — mp)

where we have used (1.1) to achieve the lower bound for L. Maximizing the
right-hand side of the above inequality yields the Lower Bound iterate wp =
7o — B~V L(my). We have the following:
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THEOREM 1.1. (Bohning and Lindsay (1988)) (i) (Monotonicity) For the
Lower Bound iterate we have

L(myg) > L(me) with “>" if mwLp # mo.

(if) (Convergence) Let (m;) be a sequence created by the lower bound algorithm.
If L is bounded above in addition, then

VL)l =0

2. Multinomial logistic regression

We observe vectors Y = (y1,...,yk+1)7, with y; = 0 for all i besides one j
with y; = 1 and corresponding probability p;, implying

41 0

r 0 --- 0

EY=p, CovY=A,-pp', Ap=] . .
0 Pk+1

Recall that the multinomial logit-model is given by

k
pi = exp(vr(i)Ta:) / [1 + Zexp(ﬂ(j)Tm)} for i=1,...,k,
j=1

Prg1 =1 / [1 + zk:exp(r(j)Tm)]

=1

where & = (xy,...,2Zm)T is the vector of covariates, and 79 is the parameter
vector corresponding to the i-th response category. For reasons of simplicity in
presentation, consider the log-likelihood of just one observation Y:

k+1 k k
log H pgj = Zij(j)Ta: —log [1 + Z exp(ﬂ'(j)T:c)].
Jj=1 Jj=1 Jj=1
Let m = (7r§1), - ,Wg),.‘.,wgk), .- ,m(ff))T denote the mk-vector of mk pa-

rameters, the upper index going along with the response category, the lower index
with the covariate. We have for the partial derivative

oL - exp(r(M” x)
— = Yhlg — ,
67r£(,h) S+ Z;.Czl exp(r()7 )

Tg = (Yn — Pn)Tg
with the notation py, = exp(r(®” z)/ (1 +Z§=1 exp(n¥ )Ta:)). This yields the score
vector

VL(”T) = [(yl - ﬁl)wl’ LR (yl - ﬁl)mm’ R (yk - ﬁk)xl’ EERE (yk - ﬁk)xm]T
~(Y-p) s
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where ® is the Kronecker product A ® B of two arbitrary matrices. The observed
information can be easily computed to be

%L
6#571) Bﬂs(,h)

Snw exp(n®” ) (1 + Z§=1 exp(w(j)Tz)) — exp(r®)" ) exp(r (™" z)
- _'Eg/(L‘g

k AT 2
(1 + 3% exp(nt9) :z:))

= (Onh'Pr — Ph/Pr)Tg g,
leading to the observed information matrix

T

p(l—pr)zeT  —pipozx —p1prxxT

. ) ) )

VL= p2(1 — p2)zaT :
~prprzat e pr(l — pr)zxT

= (A — pp7) @ 2™
The proof of the following lemma is straightforward.
LEMMA 2.1. If A < B then for symmetric, nonnegative definite C:
ARCLB®C.
LEMMA 2.2. A, —ppT < [E—11T/(k+1)]/2, where 1 is the k-vector of 1’s.
A proof of this lemma is given in the proof of Theorem 5.3 in Béhning and
%llggz?y (1988) or can be constructed from Theorem 2 in Baksalary and Pukelsheim

Taking Lemmas 2.1 and 2.2 together, we get the following main result:

THEOREM 2.1. (a) For the information matriz of one observation we have:

i(m) = —ppT)@a2zT < [E-11T/(k+1)| @ zx”.

N} =

(b) For the information matriz of a sample of size n we get:

n

. . =1
fcom(m) = > _(Ap, — pibT) @zl <) B~ 117/(k + 1)] ® ma]|

i=1 =1

= %[E’ -117/(k+1)]® iz,»:cf
i=1
= %[E -117/(k+1)]® XTX =: B,
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!

where X is the n x m design matriz :
zl
(c) B ' =2E-11T/(k+1)]!'® XTX) =2[E+117) @ (XTX)"!
(d) LR = 7o + B~ 121;1 Y pz)@mz-

Remark. Since Y7 (Ap, — pibT) ® mal = L0, (A, — idl) © X0, wial
is not true in general, we would have to invert the (mk)? matrix icom at each step
of the Newton-Raphson iteration. If we have 6 response categories (k = 5) and
m = 10 covariates, then ic,y is a 50 x 50 matrix. In contrast, the lower bound
principle needs to invert a 10 x 10 matrix only once. The lower bound algorithm
converges linearly with convergence rate depending on |E — B-1V2L(#)||. If
# = 0, then the lower bound algorithm converges at least superlinearly. Thus, if
# is “near” zero, the computational efficiency of the lower bound iteration can be
expected to be better than that of the Newton-Raphson iteration. To evaluate this
point, in Bohning and Lindsay ((1988), Section 5.1) a simulation experiment was
undertaken for binomial logistic regression, that is kK = 1. There, the comparison is
essentially between inverting a k x k matrix once (the lower bound algorithm) and
inverting it several times (until a stopping rule is met, for the Newton-Raphson
iteration). In all cases studied there, the computational efficiency of the lower
bound method was better than that of the Newton-Raphson iteration. However,
a downward-tendency was observed when the difference in CPU-time was plotted
against distance of # to zero. Thus, it is possible that in extreme cases the Newton-
Raphson algorithm might be more efficient. Here, we are comparing the single
inversion of a k x k matrix (in the lower bound algorithm) with several inversions
of a km x km matrix (in the Newton-Raphson iteration). This feature makes the
lower bound method specifically attractive.
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